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ABSTRACT
Despite the remarkable progress in semantic segmentation
tasks with the advancement of deep neural networks, ex-
isting U-shaped hierarchical typical segmentation networks
still suffer from local misclassification of categories and
inaccurate target boundaries. In an effort to alleviate this
issue, we propose a Model Doctor for semantic segmenta-
tion problems. The Model Doctor is designed to diagnose
the aforementioned problems in existing pre-trained models
and treat them without introducing additional data, with the
goal of refining the parameters to achieve better performance.
Extensive experiments on several benchmark datasets demon-
strate the effectiveness of our method. Code is available at
https://github.com/zhijiejia/SegDoctor.

Index Terms— Semantic segmentation, Model treatment.

1. INTRODUCTION

Image segmentation [1, 2, 3] is a crucial task in the computer
vision field, with a wide range of applications [4, 5], includ-
ing scene understanding, video surveillance, medical image
analysis, robotic perception, and so on.

However, the current mainstream semantic segmentation
techniques focus on the structural design of deep convolu-
tional neural networks, but ignore the treatment and utiliza-
tion of existing semantic segmentation models. In addition,
the black box [6] structure of deep neural networks also
contributes to the lack of ability to analyze problems from
segmentation results, making it challenging to target errors
and fine-tune the semantic segmentation model. There are
currently model-interpretable methods that can assist in bet-
ter understanding and analyzing models. However, much
of the focus has been on visualizing model prediction re-
sults through techniques such as Class Activation Mapping
(CAM) [7], Grad-CAM [8], and Grad-CAM++ [9]. Through
these methods, the patterns that the model prioritizes and
the areas of input that the model pays more attention to
can be identified. Additionally, some works utilize the in-
terpretable random forests algorithm to dissect deep neural
networks [10], and decouple deep neural models, which facil-
itates rapid identification of the source and location of model
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Fig. 1. Feature analysis of semantic segmentation model. The
content of the red box represents the category error, and the
content of the yellow box represents the boundary error.

errors. Nevertheless, these techniques cannot be applied
directly and automatically to model treatment.

In the preliminary experiments, we find that errors in se-
mantic segmentation models can generally be divided into
two types: semantic category errors and regional boundary
errors. Semantic category errors arise from the inclusion of
feature errors in deep semantic features, resulting in category
classification errors for certain regions. On the other hand, re-
gion boundary errors occur due to the lack of fine edge detail
features in shallow texture features, resulting in lost boundary
information.

In this paper, we introduce a Model Doctor to amend se-
mantic category errors and regional boundary errors, respec-
tively. As shown in Fig. 1, we apply semantic category treat-
ment to deep semantic features extracted by deep neural net-
works to bridge the gap within classes in deep features and
force intra-class features to converge to the category center.
For regional boundary treatment, we constrain shallow tex-
ture features at various levels to enhance internal feature con-
straints on objects and preserve more edge detail features.
Exhaustive experiments demonstrate that incorporating the
proposed method with several semantic segmentation models
leads to improved performance on commonly used datasets.
Our contributions can be summarized as follows:

• We present a Model Doctor for diagnostic treatment
segmentation models, which can be plugged into ex-
isting convolutional segmentation models.
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• Semantic category treating strategy and region bound-
ary treating strategy are designed to address seman-
tic category errors and region boundary errors, respec-
tively.

• Extensive experiments showcase that the proposed se-
mantic segmentation model treating method can effec-
tively boost the performance of existing semantic seg-
mentation models.

2. RELATED WORK

Due to the complexity and ambiguity of deep neural net-
works, humans cannot give exact explanations for their be-
havior. At present, the interpretability methods of deep mod-
els are mainly divided into two categories [11]: Post-hoc in-
terpretability analysis method and Ad-hoc interpretable mod-
eling method. Post-hoc interpretability analysis method is an
interpretable analysis of deep models that have been trained;
Ad-hoc interpretable modeling method mainly builds deep
models into interpretable models to ensure that the inferences
of the models are interpretable. Post-hoc interpretability anal-
ysis method mainly include seven categories of techniques,
such as feature analysis [12, 13, 14], model checking [6, 15],
salient expression [16, 17], surrogate modeling [18], ad-
vanced mathematics analysis [19], case interpretation [20],
and text interpretation [21]. Ad-hoc interpretable modeling
method mainly includes two types of methods: interpretable
representation [22] and model improvement [23]. However,
the above methods mainly focus on model interpretation
and cannot achieve automatic diagnosis and optimization of
model defects. Recently, Feng et al. [24] proposed model
doctor for the optimization of classified convolutional neural
networks, but due to the difference between the segmentation
model and the classification model architecture, this method
cannot be applied to the semantic segmentation model.

3. METHOD

In this paper, we present a novel model therapeutic approach
for semantic segmentation models, designed to address the in-
adequacies in semantic category classification and boundary
refinement of these models.

3.1. Segmentation Error Diagnosis

In the preliminary experiments, we find that semantic seg-
mentation models are prone to regional boundary problems
and category classification problems, and different model
problems are related to different feature errors.

3.1.1. Semantic category error

The semantic segmentation model is typically composed of
an encoder and a decoder, where the encoder is responsible

for extracting image features and the decoder is responsible
for restoring image edge details. Given an input image I , the
output feature map of the last layer of the encoder is Me,
computed as Me = Encoder(I), where the shape of Me

is (N,C,H,W ), where N is bach size, C is the number of
channel and (H,W ) is the feature map size, and the vectors
of each (1, C, 1, 1) inMe correspond to a patch in the original
image. The deep features extracted by the encoder Me, pos-
sess a wealth of deep semantic information and semantic cat-
egory information. The widening gap between the deep fea-
ture vectors signifies that the semantic category information
of the corresponding patches is no longer equivalent, leading
to subsequent classification errors.

3.1.2. Regional boundary error

The extracted image features {Me
1 ,M

e
2 ,M

e
3 , ...,M

e
l , ...,M

e
L}

of the encoder exhibit distinct attributes at various depths,
where L is the maximum layer number in the encoder. While
shallow image features Me

l are rich in edge detail informa-
tion, they lack semantic intricacies; Conversely, deep image
features Me

l are abundant in semantic information but de-
ficient in edge detail. The extensive semantic features of
Me

l enable the model to perform efficient class classifica-
tion, whereas the edge details present in Me

l aid in partial
reconstruction of the object’s edge details by the decoder.

Hence, during the decoding phase, the shallow and deep
feature maps {Me

l }Ll=1 are concatenated and processed by
a convolutional function Fconv , to produce the feature map
Md

i+1 of i-th layer as follows:

Md
i = Concat(Me

l ,M
d
i−1), l ∈ {1, 2, 3, ..., L}, (1)

where the initial input feature map Md
1 of encoder is the out-

put feature map Me
L of the encoder. However, if the shallow

featureMd
i of the decoder contains errors in shallow detail in-

formation, the model will miss crucial detail information dur-
ing the upsampling process, rendering it insensitive to the ob-
ject’s edge area and incapable of producing fine-grained edge
details of the object.

3.2. Segmentation Error Treatment

In light of the aforementioned observations, we have devel-
oped a segmentation error diagnosis and treating method that
encompasses both semantic category correction and regional
boundary rectification, aiming at addressing the classification
and boundary errors of the semantic segmentation model.

3.2.1. Treating Category error

Consequently, in order to mitigate the impact of semantic cat-
egory errors on deep features, we devise a category constraint
technique for treating semantic category error. It constrains
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Fig. 2. The framework of the proposed method, which is comprised of two parts: the semantic category treatment applied to
the deep features, and the regional boundary treatment applied to the shallow features.

the deep features of the model by minimizing inter-class vari-
ations and maximizing intra-class similarity. To achieve this,
the cluster center Ck for the k-th class in cluster Dk is com-
puted to represent the central tendency of features within each
class and provides a basis for comparison with other feature
vectors. The cluster center Ck is calculated as follows:

argmin
Ck

∑
Rk∈Dk

||Rk − Ck||2, (2)

where Rk is the feature representation in cluster Dk.
In the context of deep features, the image feature for a

given class k is denoted as Rk. To alleviate semantic errors
and improve the model’s classification accuracy, a feature dis-
tance constraint is imposed to force the intra-class image fea-
tures to gravitate towards the centroid of the class cluster Ck,
which can mitigate intra-class feature divergence. The feature
distance penalty ζsim is calculated as follows:

ζsim = 1−D(Ck, Rk),D(Ck, Rk) =
Ck ·Rk

||Ck|| × ||Rk||
, (3)

where ‘·’ denotes vector multiplication, D(Ck, Rk) repre-
sents the feature distance between the feature representation
Rk and the cluster center Ck.

3.2.2. Treating boundary error

In accordance with the information presented in Section 3.1.2,
if the shallow image features contain erroneous texture fea-
ture information, this can result in inaccuracies in the de-
coder’s fine edge reconstruction. To address this, superpixel
technology is incorporated as superpixel branch, which is a
coarse segmentation method that helps preserve edge details
and enforce consistency within shallow image features. The
SpixelFCN algorithm proposed in [25] is a noteworthy imple-
mentation of superpixel segmentation that leverages a fully
convolutional network to achieve rapid and remarkable re-
sults. In this work, we drew inspiration from SpixelFCN to
devise the superpixel branch, aiming to preserve the shallow

texture features. The superpixel branch is assembled by a
block consisting of three conv-bn-relu layers, which performs
the upsampling operation and generates the link probability
connecting the pixel to the neighboring superpixels.

For shallow feature map Me
l , the superpixel branch Fsup

predicts the probability of p being associated with surround-
ing superpixels as follows:

p = σ(Fsup(M
e
l )), (4)

where σ(·) represents the sigmoid function. Then the recon-
struction of pixel feature f ′(·) and pixel coordinates v′ are
calculated as follows:

v′ =
∑
s∈Nv

∑
v:s∈Nv

v · p∑
v:s∈Nv

p
· p, (5)

f ′(v) =
∑
s∈Nv

∑
v:s∈Nv

f(v) · p∑
v:s∈Nv

p
· p, (6)

where v = [x, y]T denotes the original pixel’s position, and
Nv is the set of surrounding superpixels of v. The penalty
function of the superpixel branch is divided into two parts:
feature constraint and coordinate constraint, which is speci-
fied as follows:

ζsp =
∑
v

CE(f(v), f ′(v)) +
m

s
||v − v′||2, (7)

where f(·) represents one-hot encoding vector of semantic la-
bel. s denotes the superpixel sampling interval, and m is a
weight-balancing term, and CE(·, ·) denotes Cross-Entropy.

Overall, with the shallow feature map Me
l as input, the

first terms of ζsp encourages the trained superpixel branch
Fsup to group pixels with similar category property, and the
second term enforces the superpixels to be spatially compact.

3.3. Overview

Finally, the total loss function adopted is the original Cross-
Entropy loss ζce combined with the category error loss ζsim



Table 1. The performance on different models and datasets.
Dataset→ VOC 2012 Cityscapes

Method ↓ Origin +Treatment Origin +Treatment

FPN 61.7 62.5(+0.8) 66.5 67.9(+1.4)
UNet 54.0 55.2(+1.2) 69.5 70.1(+0.6)

CCNet 57.1 58.7(+1.6) 70.8 72.0(+1.2)
PSPNet 68.1 69.0(+0.9) 72.8 74.1(+1.3)

Deeplab v3+ 67.3 68.4(+1.1) 74.2 74.9(+0.7)

Table 2. The ablation study on different treating strategies.

Method mIoU

UNet 54.0
+ Treating category 54.4 (+0.4)
+ Treating boundary 54.8 (+0.7)
+ Treating category & boundary 55.2 (+1.2)

and the boundary error loss ζsp as follows:

Loss = ζce + αζsim + βζsp, (8)

where α and β denote the balance parameters.

4. EXPERIMENT

4.1. Dataset and Experiment setting

Dataset. Our experimental evaluation is performed on
two publicly available datasets, namely the PASCAL VOC
2012 [1] dataset and Cityscapes dataset [2]. The PASCAL
VOC 2012 dataset, a semantic segmentation dataset with 20
categories, comprises 10,582 images in its training set and
1,449 images in its validation set. The Cityscapes dataset,
a driving dataset for panoramic segmentation with 19 cate-
gories, comprises 2,975 images in the training set and 500
images in the validation set.
Experiment Setting. During the training of models, we ran-
domly crop images to 512 × 512 (VOC) and 512 × 1024
(Cityscapes) and utilize horizontal and vertical flipping aug-
mentations. The batch size is set to 8 for all datasets, and
the optimization is performed using Stochastic Gradient De-
scent (SGD). The initial learning rate is set at 0.01 and the
cosine annealing rate decay policy is employed. The balance
parameters are set as follows: α = 1 and β = 0.01. The
performance of the semantic segmentation is reported using
the mean Intersection over Union (mIoU) metric.

4.2. Compatibility with Existing Segmentation Models

In the experiment, we adopt some mainstream segmentation
network to verify the effectiveness of the proposed method.
Results in Table 1 demonstrate that the proposed approach is

Fig. 3. Visual results on PASCAL VOC 2012 dataset.

able to enhance the performance of different models on the
PASCAL VOC 2012 dataset and the Cityscapes dataset.

4.3. Visual Results

We demonstrate the efficacy of the proposed method by incor-
porating it into the UNet network on the VOC 2012 dataset,
resulting in improved semantic segmentation performance.
As depicted in Fig. 3, our method produces more accurate
and nuanced structures, as evidenced by several visualiza-
tions from the VOC 2012 validation set.

4.4. Ablation Study

In this section, we conduct the ablation study on two treat-
ment strategies. The ablation study experiment is conducted
with UNet on the VOC 2012 dataset. As shown in Table 2, the
semantic category treatment strategy and regional boundary
treatment strategy both effectively enhance the performance
of the segmentation model.

5. CONCLUSION

In this paper, a new method called Model Docter is introduced
to address semantic category errors and regional boundary er-
rors in semantic segmentation. Semantic category treatment
is applied to deep semantic features extracted by deep neural
networks to reduce gaps within classes and correct misclassi-
fications. Regional boundary treatment is imposed on shal-
low texture features to enhance internal feature constraints
and preserve edge detail features. The proposed approach has
been tested on several datasets and models and can be com-
bined with other models for further refinement.
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