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ABSTRACT

While deep learning-based methods have demonstrated
outstanding results in numerous domains, some important
functionalities are missing. Resolution scalability is one of
them. In this work, we introduce a novel architecture, dubbed
RESSCAL3D, providing resolution-scalable 3D semantic
segmentation of point clouds. In contrast to existing works,
the proposed method does not require the whole point cloud
to be available to start inference. Once a low-resolution
version of the input point cloud is available, first semantic
predictions can be generated in an extremely fast manner.
This enables early decision-making in subsequent processing
steps. As additional points become available, these are pro-
cessed in parallel. To improve performance, features from
previously computed scales are employed as prior knowledge
at the current scale. Our experiments show that RESSCAL3D
is 31-62% faster than the non-scalable baseline while keep-
ing a limited impact on performance. To the best of our
knowledge, the proposed method is the first to propose a
resolution-scalable approach for 3D semantic segmentation
of point clouds based on deep learning.

Index Terms— Resolution scalability, point cloud pro-
cessing, semantic segmentation, scalable data acquisition

1. INTRODUCTION

In recent years, deep learning has shown great potential in
different domains such as compression [1, 2], 6D pose esti-
mation [3, 4] and semantic segmentation [5, 6]. While most
papers focus on pure performance and are able to outperform
traditional methods significantly, less attention has been given
to practical features. One such feature is scalability.
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Scalability is a broad term that can be applied on different
aspects of deep learning, leading to different subdomains. In
[7, 8], techniques are proposed allowing the selection of the
model complexity at runtime depending on the available com-
puting resources, thus achieving complexity scalability. In
[9], a novel layer, called MaskLayer, is proposed that provides
quality scalability with applications presented in compression
and semantic hashing. The domain of resolution scalability
allows operating at different resolutions, dependent on the ap-
plication or available data. It has proven to be an important
feature in traditional compression algorithms [10, 11, 12] and,
more recently, in a point cloud geometry codec [13]. While
all of these methods provide various scalability functionali-
ties, full-resolution point cloud data is required to be available
at the start of inference as input for these methods. Conse-
quently, existing methods are not able to handle varying spa-
tial resolutions of the input point cloud.

In addition, existing methods are not able to progressively
process additional points in the input point cloud as they
become available over time. The recent advent of scalable
3D acquisition devices [14, 15] enables the acquisition of
point clouds of which the densities increase progressively
over time. Such resolution-scalable 3D scanning devices
generate a low spatial resolution of the scene with extremely
small latency, and progressively increase the resolution of the
acquired point cloud over time. An important advantage of
this new 3D scanning paradigm is that it enables processing
the sparse point cloud while higher resolutions are captured.
Once new points are captured, the results are refined.

In this work, we propose a novel method, dubbed RESS-
CAL3D, that allows processing the point cloud data in a
resolution-scalable manner. It allows processing low resolu-
tion 3D point clouds while higher resolutions are still being
captured by the scanning device. When extra points become
available, instead of restarting processing for all points, lead-
ing to large delays, the proposed method processes only the
new points. To improve performance, processing of any
given spatial resolution employs the information obtained at
the lower spatial resolutions as prior information. This re-
duces the processing time. Another advantage is that early
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Fig. 1: The RESSCAL3D architecture. The grey circle with ’C’ stands for concatenation.

Fig. 2: RESSCAL3D fusion module

decision-making is enabled as intermediate predictions on the
lower resolutions are retrieved very fast.

To evaluate the proposed architecture, semantic segmen-
tation was chosen as target application. 3D scene understand-
ing is of critical importance for many application domains,
such as virtual reality, autonomous driving, and robotics,
where timing is crucial. To this end, a fundamental compo-
nent is 3D semantic segmentation [6, 16, 17, 18, 5, 19]. We
highlight PointTransformer [5] which yields state of the art
results by using the Transformer architecture for this task.

Summarized, our main contributions are as follows:

• The first deep learning-based approach, to the best of
our knowledge, that provides resolution scalable 3D se-
mantic segmentation

• A fusion module that fuses features from different res-
olution levels

• An experimental analysis on S3DIS. While minimizing
the cost of scalability, RESSCAL3D is 31-62% faster
than the non-scalable baseline at the highest spatial res-
olution. Additionally, intermediate results are gener-
ated, the fastest after only 6% of the total inference time
of the baseline.

The paper is structured as follows: Sec. 2 introduces the
proposed approach. Sec. 3 and Sec. 4 present our experimen-
tal results and ablation study, respectively. Finally, Sec. 5 con-
cludes this work.

2. PROPOSED METHOD

Overview of the proposed method. The RESSCAL3D
architecture is illustrated in Fig. 1. To retrieve the multi-
resolution data, the complete input sample X ∈ RN×C , with
N and C the number of points and channels, respectively,
is subsampled in s different, non-overlapping partitions. We
will denote these partitions as Xi ∈ RNi×C with i ∈ [1, s]
and N1 < ... < Ns < N . The employed subsampling
method is described in Sec. 3.

Firstly, the partition with the lowest resolution, X1, is
processed by a PointTransformer [5], resulting in a predic-
tion Y 1 ∈ RN1 . As N1 << N , the computational com-
plexity of this first scale is low and a fast prediction can be
obtained. The second scale receives as input X2, which is
processed by another PointTransformer encoder to produce
the features α2 ∈ RN ′

2×F , with N ′
2 and F the number of sub-

sampled points by the encoder and features, respectively. In
order to improve performance, those features are fused with
the already computed features of lower scales by a fusion
module. The resulting multi-resolution features αf

2 are em-
ployed by the decoder to obtain Y 2. At higher scales, the
input of the fusion module is the concatenation of the fused
features of previous scales. Once all scales are processed,
Y = {Y 1,Y 2, . . . ,Y s} ∈ RN is obtained.

Regarding computational complexity, the presented ap-
proach has a benefit over handling all the data at once. Since
PointTransformer uses an attention mechanism that requires
the computation of the K-Nearest Neighbors (KNN), the com-
plexity of processing the input as a whole can be expressed
as: O(N2) = O((N1 + ... + Ns)

2) = O(N2
1 + ... + N2

s +



2
∑s

k=1

∑s
p=1,p̸=k NkNp), with N = N1 + ... + Ns, and

considering s scales.
With RESSCAL3D, the attention mechanism is applied

in parallel on the partitions, leading to complexity of order
O(N2

1 + ... + N2
s ). Compared to the non-scalable approach,

RESSCAL3D substantially lowers complexity with a factor
proportional to:

s∑
k=1

s∑
p=1,p̸=k

NkNp. (1)

With a larger s, this effect becomes more pronounced as
the partition sizes become smaller. It should be noted that se-
quential processing of scales also brings some computational
redundancy, though the KNN is the most computational ex-
pensive operation. For large N and a large amount of scales,
the effect of the double product elimination becomes signif-
icant. Experimental validation of the introduced concepts is
further reported in Sec. 3.
Fusion Module. Let αc

i−1 ∈ RN ′
j×F be the concatenated

features from the lower scales with N ′
j the number of con-

catenated points in feature space. Given αc
i−1 and αi, the

fusion module combines the multi-scale information into a
single feature matrix which is used for decoding. The fusion
architecture is depicted in Fig. 2. In more detail, the fusion
module firstly retrieves the relevant features from the previ-
ous scales. This is done with a KNN algorithm on the points
associated to the features in αi. In other words, for each fea-
ture vector in αi, the features of the K nearest neighbors in
αc

i−1 are utilized. As these features are originating from dif-
ferent resolution scales, the acquired feature matrices contain
multi-resolution information. In a next step, these neighbor-
hoods are processed by a Conv1D, followed by a MaxPool
layer. After concatenation with the original scale features,
αi, a fully-connected layer encodes the information back to
the original feature size.
Training. RESSCAL3D is trained scale by scale. All weights
from previous scales are freezed while training an extra scale
and the loss-function is computed only on the results from the
current scale. This allows the PointTransformer backbone to
achieve maximal results for each resolution.

3. EXPERIMENTS

Dataset and Evaluation metrics. The Stanford 3D Indoor
Scene dataset (S3DIS) [20] consists of 6 large-scale indoor
areas with in total 271 rooms. Each point has been anno-
tated with one of the 13 semantic categories. Area-5 has been
captured in a different building than the other areas and is
therefore often selected as test set [5, 18, 19]. As evaluation
metrics, the mean intersection over union (mIoU), mean ac-
curacy (mAcc) and overall accuracy (oAcc) are being used.
All presented results are averaged over the Area-5 testset.
Implementation details. PointTransformer [5] has been se-
lected as backbone architecture as it achieves state of the art

Fig. 3: Ablation study and comparison of the scalable RESS-
CAL3D with the non-scalable baseline

performance and has official, publicly available code. Each
scale was trained for 34 epochs with a batch size of 4. Other
training and network parameters are the same as in [5]. Each
input point is represented by a 6-dimensional vector: xyzrgb.
To obtain the multi-resolution data, X is voxelized s times
with s different voxel sizes. Subsequently, one point per voxel
is randomly selected while making sure a point is not present
in multiple partitions. More specifically, we have opted to
employ 4 scales with voxel sizes [0.16, 0.12, 0.08, 0.06].
S3DIS semantic segmentation. RESSCAL3D is, to the best
of our knowledge, the first method that performs resolution-
scalable 3D semantic segmentation of point clouds. Conse-
quently, no quantitative or qualitative comparison with exist-
ing methods can be made. Nevertheless, in order to char-
acterize its performance and inference time, we compare the
proposed method with the non-scalable baseline, which em-
ploys the same semantic segmentation backbone for the dif-
ferent scales. Our scalable approach processes the additional

Fig. 4: Comparison of RESSCAL3D with the non-scalable
baseline in inference time. The actual inference latency is
bounded to the yellow zone. The displayed non-scalable base-
line timing results are not cumulative.



(a)
Ground truth

(b)
Scale 0

Time: 31.1 ms

(c)
Scale 1

Time: 42.9 ms

(d)
Scale 3

Time: 201 ms

Fig. 5: Visualization of S3DIS results for RESSCAL3D. The input data and semantic prediction are visualized on the top and
bottom row, respectively. Non-cumulative time is used.

points at each scale, using side information from the previous
scales, the baseline processes the whole point cloud at that
scale. Thus, the latter can only be launched when all data is
available and does not process data in a progressive manner.
Also, no intermediate results are obtained.

The results in terms of mIoU of our scalable approach,
with and without the fusion module, and the non-scalable
baseline are shown in Fig. 3. At the first scale, all methods
operate in an identical manner and thus, achieve equal perfor-
mance. At higher scales, using the proposed fusion module
reduces the performance gap between the scalable approach
and non-scalable baseline. At the highest scale, the perfor-
mance gap in mIoU is only 2.1% of the total performance.
Although the proposed method is not able to achieve the same
performance as the baseline at the highest scale, the resulting
difference is deemed small.

On the other hand, the scalable approach presents an im-
portant advantage in inference time. In Fig. 4, the inference
time can be compared. Important to note is that the latency
invoked by RESSCAL3D depends on the data availability.
Since the scalable approach can start processing lower reso-
lutions while higher resolutions are being acquired, it utilizes
the otherwise lost acquisition time, while the non-scalable
baseline can only start once all point cloud data is avail-
able. Therefore we have opted to present the upper and
lower bounds of the induced latency by RESSCAL3D. When
operating on the upper bound, all data is available at the
start and all inference timings are cumulated. For the latter,
the processing of the previous scale is finished before the
point cloud data for the current resolution becomes available.
Therefore, the latency introduced by RESSCAL3D will be
in the yellow zone (see Fig. 4) and is mainly lower than the
baseline. Important to note is that even if operating on the
upper bound, RESSCAL3D is able to attain a 31% decrease
in inference time at the highest scale with respect to the

Scale Method Performance Time (ms)oAcc mAcc mIoU

0 Without Fusion 85.7 67.9 59.8 31.1
Fusion 85.7 67.9 59.8 31.1

1 Without Fusion 86.5 69.6 61.8 73.8
Fusion 87.0 70.0 62.5 73.9

3 Without Fusion 87.0 70.5 62.7 167
Fusion 87.6 71.2 64.1 167

4 Without Fusion 87.8 72.4 64.8 368
Fusion 88.5 73.0 66.0 368

Table 1: Ablation of fusion module. Cumulative time is used.

baseline. The main reason is the reduced complexity of the
attention modules as explained in Sec. 2. In the lower bound
case, RESSCAL3D achieves an impressive 61% decrease
in inference time. When operating with higher number of
points, the gain will become even more pronounced (Eq. (1)).

Qualitative results are presented in Fig. 5. Overall, one
can notice very accurate segmentation, with some errors on
the lower scales corrected at the higher scales. An example is
the erroneous dark segmentation on the bookcase on the right.

4. ABLATION STUDY

In this section, the effect and value of our fusion module is
analysed. The removal of the fusion module leads to the loss
of multi-resolution processing and scales which are processed
independently. In Fig. 3 and Tab. 1 is shown that employing
the fusion module consistently leads to better results. The
added inference time is negligible.



5. CONCLUSION

In this paper, we propose RESSCAL3D, a novel architec-
ture allowing resolution scalable 3D semantic segmentation
of point clouds. The experiments show that our scale-by-
scale approach allows significantly faster inference while
maintaining a limited impact on performance relative to the
non-scalable baseline.
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