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ABSTRACT

Deep convolutional neural networks have achieved great
progress in image denoising tasks. However, their compli-
cated architectures and heavy computational cost hinder their
deployments on mobile devices. Some recent efforts in de-
signing lightweight denoising networks focus on reducing
either FLOPs (floating-point operations) or the number of
parameters. However, these metrics are not directly corre-
lated with the on-device latency. In this paper, we identify
the real bottlenecks that affect the CNN-based models’ run-
time performance on mobile devices: memory access cost
and NPU-incompatible operations, and build the model based
on these. To further improve the denoising performance,
the mobile-friendly attention module MFA and the model
reparameterization module RepConv are proposed, which en-
joy both low latency and excellent denoising performance.
To this end, we propose a mobile-friendly denoising net-
work, namely MFDNet. The experiments show that MFDNet
achieves state-of-the-art performance on real-world denois-
ing benchmarks SIDD and DND under real-time latency on
mobile devices. The code and pre-trained models will be
released.

Index Terms— Image Denoising, Mobile-friendly Net-
work Design

1. INTRODUCTION

With the rapid development of deep learning techniques, the
performance of image denoising is improved significantly in
recent years [1, 2, 3, 4]. However, deploying a state-of-the-
art (SOTA) denoising model on resource constrained devices,
such as mobile devices, remains challenging. On the one
hand, although NPUs specifically optimized for deep neu-
ral networks are ubiquitous on mobile devices, most SOTA
network architectures do not consider NPUs’ compatibility.
Hence they cannot fully utilize the powerful NPUs. On the
other hand, the requirement of high resolution processing
(720p/1080p or even higher) for real applications expo-
nentially increases the computational and memory access
cost, which are key efficiency bottlenecks on mobile devices.
There have been some attempts to design lightweight models

to promote mobile deployments [5, 2, 1]. These lightweight
models reduce either the FLOPs or the number of parameters
of the model. However, recent works show that reducing
the FLOPs or the number of parameters does not necessarily
lead to a low latency on mobile devices [6, 7]. For example,
skip connections and multi-branch structures are commonly
used design choices for low-level vision tasks [8, 4, 3, 2].
However, these operations can incur a high memory access
cost, hindering fast inference on mobile devices. In addition
to the model architectures, whether the operations are well
optimized by NPUs is also essential when improving runtime
performance [7]. Benefiting from the powerful parallel com-
puting capability and specialized optimization for common
operations, NPUs show great advantages over other proces-
sors when processing neural networks. However, operations
well optimized by the NPUs are quite limited. Architectures
containing NPU-incompatible operations will be partially
processed by CPUs or GPUs. This introduces the additional
data transfer cost between processors and increases the syn-
chronization cost, leading to a severe overhead. For example,
the ESA module [9], which is adopted by the winner in the
runtime track of the NTIRE 2022 efficient super-resolution
challenge [10], contains NPU-incompatible operations like
max-pooling with a kernel size of 7 and a stride of 3 and
bilinear interpolation with a scale larger than 2, which will
be processed by GPUs. In this case, the feature maps have to
be moved from NPUs to GPUs until the process is finished,
which significantly slows down the inference speed of the
model, as shown in Table 2.

In this paper, by conducting extensive experiments on an
iPhone 11, we identify the preference of the Apple Neural
Engine (ANE), which is a typical type of NPUs, for dif-
ferent network architectures and operations. Based on this,
a mobile-friendly denoising network is proposed to signifi-
cantly improve the model’s runtime performance on mobile
devices while achieving enhanced denoising performance
than other lightweight denoising networks on the real-world
denoising benchmarks SIDD [11] and DND [12]. The exper-
iments show that our model only takes around 20ms when
processing a 720p image on an iPhone 11, which offers the
possibility to process 720p images or videos in real-time on
mobile devices.
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Fig. 1. The architecture of the baseline model.

Table 1. Quantitative performance of different downsampling
factors.

Model Setting Factor MACs/G Memory/M PSNR/dB Latency/ms

Baseline
C16 N8 1 12.61 2271 36.74 19.87
C32 N12 ↓ 2 24.66 1448 38.52 18.96
C48 N16 ↓ 4 20.30 822 38.52 16.87

2. NETWORK ARCHITECTURE

In this section, we build a mobile-friendly denoising network
from scratch. To ensure that our model can have efficient run-
time performance on mobile devices, we only use operations
compatible with the ANE. The results of models with differ-
ent capacities are shown in the experiment section.

2.1. Baseline Model
As mentioned before, to ensure real-time on-device runtime
performance, the memory access cost has to be strictly con-
trolled. Therefore, we start from a DnCNN-like [13] plain
topology, as shown in Fig.1 left, which contains only the well-
optimized 3× 3 convolutions and ReLU activation functions.
To reduce the memory access cost, only one residual connec-
tion is adopted. We start from this architecture because the
DnCNN-like architectures have demonstrated their effective-
ness in the image denoising task [13]. And we remove batch
normalization to reduce potential artifacts [14, 15].

Based on this plain topology, we adopt multiple 3×3 con-
volutions with stride 2 to downsample the input, followed by
N Conv-3×3+ReLU blocks with a local skip connection. At
the end of the network is a PixelShuffle [16] for reconstruc-
tion. The modified model is shown in Fig. 1 right.

Downsampling in the beginning brings two benefits. First,
most of the operations in the model are executed at a low res-
olution, which significantly reduces the total memory access
cost, as shown in Table 1. Second, the overall increased re-
ceptive field of the network enables the network to capture
more contextual information and improves denoising perfor-
mance.

We compare the denoising performance of the models
with different downsampling factors on the SIDD validation
dataset and the runtime performance on an iPhone 11. Both
the runtime performance and the total memory access cost
(read and write) are evaluated with a 720p input. The re-
sults are summarized in Table 1, where C and N represent
the number of channels and the number of Conv-3×3+ReLU
blocks, respectively. Results show that the pre-downsampling
enables a wider and deeper model under a similar latency by
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Fig. 2. The architecture of MFA.

Table 2. Performance of different attention mechanisms.
Model Attention MACs/G Memory/M PSNR/dB Latency/ms

Baseline

ESA [9] 12.78 562 38.59 43.23∗

SCA [1] 12.52 400 38.41 15.20
HFAB [17] 14.60 574 38.51 18.94

MFA 12.85 448 38.60 15.61

significantly reducing the memory access cost, thus leading
to an enhanced denoising performance. So we choose the 4×
downsampling model as our final baseline model.

2.2. Attention

Attention mechanisms have been extensively studied in low-
level vision tasks [9, 17, 1, 2, 4]. In previous works, attention
modules often adopt complex topology or use operations that
are not optimized by ANE [9], which affects the runtime per-
formance severely, as shown in Table 2. In this paper, we
propose a simple yet effective mobile-friendly attention mod-
ule, MFA. Its architecture is shown in Fig.2. Our proposed
architecture has three advantages. First, in order to reduce
the memory access cost and boost the runtime performance
of the module, we discard the complex topology and retain
only the necessary residual connection for multiplying the
learned attention maps with the input feature maps as a spa-
tial attention mechanism. Second, we further downsample the
feature maps to reduce the latency and enlarge the receptive
field of the attention module. Finally, we only use operations
well-optimized by ANE, like the common 3× 3 convolution,
the ReLU activation function and bilinear interpolation with
a scale of 2 to further boost the efficiency.

In practice, we propose a mobile-friendly denoising
block, MFDB, which contains K Conv-3×3+ReLU blocks
followed by one MFA. The width of the MFA is set to 1

4 of
the width of the model. In Table 2, we compare MFA with the
attention modules commonly used in low-level vision tasks,
including ESA [9], SCA [1], and HFAB [17]. It can be seen
from the table that MFA achieves the best denoising perfor-
mance. Meanwhile, MFA is also close to SCA in terms of
latency, with a difference of only 0.4ms. Note that although
ESA has a comparable memory access cost compared to other
methods, its on-device latency is still significantly higher due
to incompatible operations mentioned in section 1.

2.3. Activation

Although Rectified Linear Unit (ReLU) has been extensively
used in low-level vision tasks, many SOTA methods tend to



Table 3. Quantitative performance of different activation
functions.

Model Activation PSNR/dB Latency/ms

Baseline+
MFA

ReLU 38.60 15.61
GELU 38.71 16.11
PReLU 38.71 15.84
LReLU 38.73 15.74

replace ReLU with other activation functions, such as GELU,
LReLU, PReLU [1, 17] for better performance. In order to
test the compatibility of the ANE for different activation func-
tions and the potential performance gains, we replace ReLU
with several different activation functions, as shown in Table
3. The results in the table show that these activation func-
tions are all well-optimized by the ANE. Replacing ReLU
with LReLU results in a performance gain of 0.13dB on the
validation dataset of SIDD, while the inference time on an
iPhone 11 remains nearly unchanged. We, therefore, replace
all the ReLU in our baseline model with LReLU.

2.4. Lightweight Feature Extraction

To further improve the feature extraction and representation
capabilities of the downsampling module, we replace the
stride-2 convolution with the Haar transform, which can be
efficiently implemented in a convolution form with a kernel
size of 2. Compared to a stride-2 convolution, Haar transform
is invertible, which ensures that the frequency information
of the input can be effectively captured in a lossless manner.
This is very helpful in preserving textures [18]. In addition,
Haar transform is a more compact feature representation,
meaning that fewer hidden channels between the downsam-
pling blocks can lead to a better denoising performance,
which also reduces the latency. Table 5 shows that using
the Haar transform to extract features significantly improves
the model’s denoising and on-device runtime performance. It
brings 0.22dB performance gain on SIDD and 1.32ms latency
reduction on an iPhone 11.

2.5. Reparameterization

The idea of reparameterization was first proposed by RepVGG
[19]. The core idea behind reparameterization is to param-
eterize a plain topology with the parameters transformed
from a more complex topology (e.g., multi-branch topology).
Model reparameterization is very beneficial in the design of
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Fig. 3. The structure of RepConv.
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Fig. 4. The overall architecture of MFDNet.

Table 4. Comparisons between different reparameterization
methods.

Model Reparameterization Method PSNR/dB

MFDNet w/o
reparameterization

/ 38.95
ECB [7] 38.97

RRRB [17] 38.95
RepConv 38.99

mobile-friendly models. Complex topologies, such as multi-
branch structures, can significantly increase the memory
access cost and slow down the inference. However, the plain
topology lags in the feature extraction capability, resulting in
compromised model performance. Model reparameterization
can be used to address this issue. In the training phase, the
model takes advantage of the complex topology to enrich the
feature representation and bring performance gains. In the
testing phase, the model reparameterization method is used
to simplify the topology and improve the inference speed of
the model without a performance drop.

In this paper, we use the expand-and-squeeze topology for
training, named RepConv, since the wider features result in
better feature representation. As shown in Fig.3, the topology
consists of two 1 × 1 convolutions, a 3 × 3 convolution, and
a skip connection in the training phase. In the testing phase,
we merge three convolutions and a skip connection into a sin-
gle 3 × 3 convolution by reparameterization, thus eliminat-
ing the cascaded and multi-branch structures. In Table 4, we
compare the RepConv with other reparameterization methods
commonly used in low-level vision tasks, including ECB [7]
and RRRB [17]. Results show that RepConv achieves the
best denoising performance with an improvement of 0.04dB
on SIDD.

2.6. Summary

At this point, we build our mobile-friendly denoising network
step by step from the baseline model. The architecture of
MFDNet is shown in Fig.4. For MFDNet, we set both the
number of MFDBs (M ) and RepConv+LReLU blocks in each
MFDB (K) to 3.

3. EXPERIMENT

In this section, we first analyze the role of the different model
design choices mentioned in the previous sections in terms
of both denoising and runtime performance. We then apply
our model to the real-world denoising benchmarks SIDD and



Table 5. Ablation study of different components in MFDNet.

MFA ReLU
→ LReLU

Stride-2 Conv
→ Haar Transform RepConv PSNR/dB Latency/ms

Baseline

38.54 12.82
✓ 38.60 15.61
✓ ✓ 38.73 15.74
✓ ✓ ✓ 38.95 14.42
✓ ✓ ✓ ✓ 38.99 14.42

DND. To test the models’ on-device runtime performance, we
execute them 300 times on an iPhone 11 to get the average
elapsed time. Note that in all experiments, latency with the ∗
notation indicates that the model contains ANE incompatible
operations and is processed by CPUs/GPUs. The computa-
tional complexity, latency and total memory access cost in all
experiments are evaluated with a 720p input.

3.1. Ablation Study
We conduct our ablation study on the validation dataset of
SIDD and measure the models’ latency on an iPhone 11. We
train our model using the Adam optimizer with the learning
rate initialized with 4e-4 and halved every 100k iterations. We
train the model for a total of 1M iterations with a batch size of
32 and use cropped patches of 256×256 from SIDD-Medium
as the training dataset.

We start from the baseline model with a downsampling
factor of 4, as mentioned in section 3.1, and build the MFD-
Net step by step. We set the depth of the baseline model (N )
to 9 and the width to 48. Table 5 shows the effectiveness of
different components.

3.2. Application

We evaluate our model on two real-world denoising bench-
marks, SIDD and DND. All training settings are identical
to those used in the ablation experiments. To see the gen-
eralization ability of our model on different NPUs, we also
test the on-device latency on iPhone 14 Pro. The results are
summarized in Table 6. For MFDNet, we also design two
models with different scales: MFDNet-S and MFDNet-L. For
MFDNet-S, we reduce M and K to 1. For MFDNet-L, we
keep K = 3 unchanged and increase M to 6. We compare
our model with models proposed in [13, 20, 1, 3, 21]. Note
that as these models are not designed specifically for mobile
devices, we prune them in terms of depth and width to ensure
that they can run on mobile devices. For DnCNN [13], we set
both the width and depth to 12, and for DnCNN-S, we set the
width to 16 and the depth to 3. For RIDNet [20], we trim the
number of channels to 8 and set the channel reduction to 2.
For NAFNet [1], the number of channels is also trimmed to 8
and the number of blocks is reduced to 7. For HINet [3], we
adjust the number of channels and the depth of the model to
8 and 2, respectively.

We can see from Table 6 that, MFDNet and MFDNet-L
achieve the best denoising performance with the lowest la-
tency compared to models with comparable computational

0323 from SIDD

Noisy 18.25dB

GT

RIDNet 34.29dB NAFNet 35.35dB HINet 34.18dB

PMRID 35.88dB MFDNet 35.77dB MFDNet-L 36.12dB

0259 from SIDD

Noisy 24.21dB

GT

RIDNet 34.82dB NAFNet 35.89dB HINet 34.70dB

PMRID 36.42dB MFDNet 36.10dB MFDNet-L 36.50dB

Fig. 5. Qualitative comparisons on SIDD.

Table 6. Quantitative performance of different methods.

Model MACs
/G

Memory
/M

Latency/ms SIDD DND

iPhone 11 iPhone
14 Pro PSNR SSIM PSNR SSIM

DnCNN-S [13] 2.77 583 11.7 5.7 33.84 0.877 36.41 0.910
NAFNet [1] 3.81 2974 1384.5∗ 25.9 38.66 0.951 38.74 0.945
MFDNet-S 2.34 142 8.3 4.0 36.93 0.932 38.09 0.939

DnCNN [13] 12.88 2720 23.4 12.5 36.24 0.921 38.13 0.936
HINet [3] 11.68 2178 84.7∗ 23.3 37.83 0.943 36.82 0.931
MFDNet 11.46 384 14.2 6.2 38.90 0.952 39.06 0.947

RIDNet [20] 20.39 4224 75.9 30.0 38.01 0.945 38.88 0.947
PMRID [21] 15.07 4448 80.8 40.1 38.96 0.953 38.82 0.948
MFDNet-L 21.81 684 24.1 8.9 39.01 0.954 39.15 0.948

complexity. For models with computational complexity un-
der 5GMACs, MFDNet-S achieves the best runtime perfor-
mance with the denoising performance far exceeds that of
DnCNN. Note that the proposed MFDNet is fully compati-
ble with both iPhone 11 and iPhone 14 Pro, which indicates
its excellent generalization ability. In contrast, NAFNet and
HINet are only compatible with iPhone 14 Pro. The layer
normalization operation in NAFNet and the instance normal-
ization operation in HINet are incompatible with iPhone 11,
which severely affect the inference speed of these models.
By removing the incompatible operations from NAFNet and
HINet, the latency on iPhone 11 will reduce to 71.3ms and
47.3ms, respectively.

4. CONCLUSION
In this paper, we identify the network architectures and oper-
ations that can run on NPUs with low latency and excellent
denoising performance through extensive analysis and exper-
iments. Based on that, we build a mobile-friendly denois-
ing network from scratch. Experiments show advances of
our method in terms of both denoising and runtime perfor-
mance. We hope this work will promote the application of
CNN-based denoising models on mobile devices.
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