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ABSTRACT
Image based Deep Feature Quality Metrics (DFQMs) have been
shown to better correlate with subjective perceptual scores over
traditional metrics. The fundamental focus of these DFQMs is
to exploit internal representations from a large scale classification
network as the metric feature space. Previously, no attention has
been given to the problem of identifying which layers are most
perceptually relevant. In this paper we present a new method for
selecting perceptually relevant layers from such a network, based on
a neuroscience interpretation of layer behaviour. The selected layers
are treated as a hyperparameter to the critic network in a W-GAN.
The critic uses the output from these layers in the preliminary stages
to extract perceptual information. A video enhancement network
is trained adversarially with this critic. Our results show that the
introduction of these selected features into the critic yields up to
10% (FID) and 15% (KID) performance increase against other critic
networks that do not exploit the idea of optimised feature selection.

Index Terms— Compressed Video Enhancement, Perceptual
Optimization, Perceptual Deep Features

1. INTRODUCTION

Lossy compression is necessary to support the current infrastructure
of modern media applications. However it introduces a wide range
of spatial and temporal artifacts that negatively impact the end user
quality of experience [1]. Statistical techniques for artifact removal
as a post-processing step has been a long studied research topic [2].
More recently, Deep Neural Networks (DNNs) have been used in
different areas of the compression pipeline, from end-to-end learnt
compression [3], to purely post-processing [4] and mixed post/pre-
processing [5]. The use of DNNs for compressed video enhance-
ment has high potential for its ability to exploit perceptually salient
metrics in the training process through the use of generative adver-
sarial networks (GANs), something which is difficult to exploit with
traditional statistical methods.

The use of transfer learning for crafting Deep Feature Quality
Metrics (DFQMs) has been an emerging area of interest in the Deep
Learning Community. Image DFQMs have been shown have a high
correlation with human based subjective scores [6]. The underlying
features used to generate these scores are the internal representa-
tions of high performing pre-trained image classification networks
e.g. VGG [7]. LPIPS [8] has been shown to outperform traditional
quality metrics such as `2, SSIM and FSIM. FloLPIPS [9], an exten-
sion of LPIPS that emphasizes areas of motion in a patch, has out-
performed other traditional metrics including VMAF and MS-SIM.

While these DFQMs are used in wide range of applications for
assessing algorithmic performance and also in the loss-functions for

Fig. 1. Proposed W-GAN setup for compressed video enhancement.
The generator take in motion information, the current patch and the
patch from the nearest I-frame. The critic network includes selected
extracted outputs EfficientNetB3 to assist with restoration.

training networks, the features that are used to generate these new
metrics lack explainability. This is a characteristic hallmark of deep
neural networks, however there are some approaches that can be
used to help segmenting deep features and their importance in the
current application.

Contributions of this paper

This paper outlines the use of perceptually relevant deep features
in the creation of a neural critic for a Wasserstein-GAN (W-GAN)
with gradient penalty [10]. This neural critic is then used for train-
ing a compressed video enhancement network using data that is
compressed with the H.265 codec. The following contributions are
made:

• A method for evaluating deep features of a pre-trained im-
age classification network to isolate feature blocks that have
perceptually relevant features.

• The design of a critic network that uses these selected feature
blocks as a primary input and an associated compressed video
enhancement network that is trained adversarially with the
critic.

1.1. Related Work

Perceptually relevant DNN approaches have been recently used
within the compression pipeline. Chen et al. [11] investigates the
use of loss functions that include perceptual metrics (VMAF, SSIM
or MS-SIM) alongside MSE for training an end-to-end DNN image
codec. Their results show more than 20% coding gain with VMAF
in the loss function when compared to a pure MSE loss. There has
been sufficient work that show DFQMs [6, 8, 9] are more closely
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Fig. 2. Averaged weights per layer in RDM analysis. Based on this
measure of importance, layers 0 and 3 were selected as the top two
most significant internal representations. This follows the notion that
layers closer to the input of classification networks encode higher
perceptual information.

related to human subjective scores. This suggests that using the
features that these metrics are dependent on has the potential to
yield better results beyond using hand crafted metrics like VMAF.
In our proposed model that focuses on post-processing for videos,
we utilize extracted prior deep features from EfficientNetB3 directly
in the neural critic of our W-GAN for training. We do not optimize
for any other traditional metrics or DFQMs directly.

Mohammadi et al. [12] presents an investigation of the percep-
tual impact of changing the optimization metric of the loss func-
tion for a DNN image codec. Results indicate that training with the
DFQM DISTS [6] and MS-SSIM yields highest perceptual gain. Im-
ages that were compressed with DISTS were selected with the high-
est winning frequency of 21% when compared to a total of 9 differ-
ent optimization schemes. In [12], the entire set of deep features is
used for the DFQM. In our work we instead identify the subset of
features which are most relevant and deploy them in a more efficient
adversarial training approach.

Ma et al. [13] presents a post-processing GAN based approach
that uses a mixture of multiple objective metrics. Their loss func-
tion incorporates the distance between complete deep features of a
degraded-reference pair directly. In our approach, we do not use a
difference between deep feature pairs. Instead, we improve perfor-
mance by only using a subset of features that are perceptually rele-
vant. These features are given to our critic network. This allows the
critic to learn distinguishing features between deep representations
of clean and degraded patches.

2. DEEP FEATURE SELECTION

DFQMs such as LPIPS, FloLPIPS and DISTS are all dependent on
the internal representations of pre-trained classification networks.
The deep representation of an image is generated by extracting the
output of intermediate layers in the network. Features are usually
collected at the final output of the convolution filter bank operation
of that layer.

These features can be represented by a set of rank 3 arrays whose
height and width depends on the size of the input image. The num-
ber of channels in the feature array is dependent on the number of
convolution filters used at that layer and can be represented by the
layer depth. For an arbitrary image input Ĩ , the set of generated fea-

tures F can be represented by Fz(Ĩ) ∈ F (Ĩ), where z represents the
depth at which a feature is accessed.

Historic DFQMs (Q) [6, 8, 9] are based on comparing the in-
ternal representations of a reference (x) and degraded (y) patch,
Q(F (x), F (y)). A key point is that the Fz are extracted from frozen
layers of a network trained for classification. Hence not all of the fea-
tures will have significant relevance for perceptual criteria. There-
fore, in our proposed method, our critic utilizes only a subset of
perceptually relevant features Fα from a single input x̂: Fα(x̂) ⊂
F (x̂). Discovering which subset is perceptually relevant is one of
our main contributions. The intuition is that there is a set of compres-
sion invariant features that can be used by the W-GAN in restoration
of a given patch. In addition, by selecting this subset we reduce the
dimensionality of Q() and thus improve computational performance
of the critic network by allowing to focus on a subset of key features.

A dataset of 99 reference 512× 512 patches was used to gener-
ate deep feature representations from the classification network Effi-
cientNetB3 [14] pre-trained on ImageNet. This network was chosen
for its relatively small number of parameters and increased perfor-
mance over other classificaton networks. The 99 patches were com-
pressed using the H.265 codecs at 6 linearly spaced constant rate
factor (CRF) points in the operating range. This resulted in 99 refer-
ence and 594 degraded full feature representations.

Each F for a single patch contains rank-3 arrays that total
≈ 3 million elements. Traditional statistical techniques for di-
mensionality reduction proves intractable for these high element
multi-dimensional feature arrays. To overcome this limitation, we
take inspiration from neuroscience [15, 16]. In [16], inferior tempo-
ral (IT) response to images presented to humans were compared to
responses from layers in a pre-trained classification network when
presented with those same images. Their goal was to discover which
CNN layers were able to best model the human response. To do
that, the authors exploited a dissimilarity measure [15] for the CNN
layer outputs which was then used to predict the same dissimilarity
response from the human stimulus. In our case we are interested
in discovering the specific layers in our representation (Efficient-
NetB3) which best enable the critic network to discriminate between
degraded and clean video. In a sense the stimulus here is the input
images and the response is the output of our CNN layers. Hence we
follow the same strategy as the neuroscience case.

We first define Representational Dissimilarity Matrices (RDMs)
for responses Fz from layer z and F from all layers, as follows.

RY (i, j) = d
(
F(yi),F(yj)

)
(1)

RcXz (i, j) = d
(
Fz(x

i
c), Fz(x

j
c)
)

(2)

where d(,̇·) is the euclidean distance, yk is the kth patch in our clean
dataset and xkc is the k th patch in the datset degraded through com-
pression with CRF c. Hence Fz(xic) is the response of the zth layer
to the degraded patch i. RY (i, j) is therefore a measurement of the
auto-dissimilarity between all the clean patches in the dataset, while
RcXz (i, j) is the auto-dissimilarity across the degraded patches.

By building a linear predictor for RY (i, j) based on linear com-
bination of elements across layers inRcXz (i, j), we can select layers
based on significance for prediction. The linear predictor is defined
through weights cβz applied to each layer/degradation element in
RcXz as follows.

R̂Y (cβz) =
∑
∀z

∑
∀c

cβzRcXz , (3)

We estimate cβz by minimising the cosine distance between R̂Y (cβz)
and RY . We apply the additional constraint of non-negative weights
with the BFGS algorithm[17].



(a) Critic. An input patch is processed by EfficientNetB3 and only layers 0
and 3 (purple) are used in producing output scores. Computation stops at
layer 3, other layers are included for clarity.

(b) Generator. Motion magnitude and direction mt of the current frame is
concatenated with the current RGB patch ft. The corresponding patch from
the nearest intra-coded frame is fed into a CNN block (blue). The resulting
features are concatenated with the center of the UNet (red). These features
are then fed into an attention module (CBAM [18]). The restoration param-
eter dt guides the enhancement network and ∆t is a weighting factor that
scales the features extracted from the I-frame.

Fig. 3. Proposed Critic (a) and Generator (b) networks.

By averaging the estimated weights across degradation level c (6
in our case) we estimate the relative importance of each layer. This
is shown in Figure 2. Layers 0 and 3 of EfficientNetB3 are therefore
chosen for our critic network as they clearly encode most perceptual
information.

3. NETWORK ARCHITECTURE
Critic: Our critic network takes a patch as input and produces a fea-
ture block that represents the patch degradation level. This is adapted
from the PatchGAN architecture [19]. The main contribution of our
critic network is the introduction of the selected EfficientNetB3 lay-
ers as a primary input. This is shown in Figure 3(a).

The extracted features are processed in parallel by CNN Blocks.
The input frame is also processed directly to capture information that
EfficientNetB3 may have missed. These are then concatenated and
processed further to produce the feature block. There is no activation
function in the final layer. This follows the requirement of a W-GAN
for the critic output to be unbounded.

To compare our proposed critic with optimal layers (Copt), we
also train with critic networks that:

1. Uses the output from layers 5 and 6 of EfficientNetB3 (C5,6).

2. Does not use the EfficientNetB3 module, and hence the entire
critic is fully trainable (Ct).

Generator: Our generator (Figure 3(b)) uses a UNet structure as the
main network. Motion vector information (magnitude and direction)
are concatenated with the input RGB patch. This is then fed into a
UNet with skip connections. Features from the nearest Intra-coded
frame (I-frame) are extracted by a CNN block and is concatenated
with the center of the UNet. It is assumed that the nearest I-frame has

Table 1. The impact of varying Λ for Copt compared against other
critics and VBM4D.

Lambda PSNRY PSNRCBCR SSIM VMAF LPIPS FID KID

Copt

0.0 26.92 33.24 0.80 46.82 0.45 0.44 3.3e-4

1.0 26.07 34.82 0.79 43.67 0.45 0.44 3.5e-04

10.0 27.98 35.06 0.79 50.43 0.44 0.45 3.6e-04

100.0 28.25 36.87 0.81 48.72 0.43 0.40 3.8e-04

1000.0 29.11 37.75 0.83 47.28 0.41 0.36 3.2e-04

10000.0 29.43 38.12 0.83 47.28 0.42 0.37 3.7e-04

C5,6 1000.0 29.64 38.41 0.83 45.91 0.43 0.39 3.8e-04

Ct 1000.0 29.06 37.65 0.82 49.50 0.44 0.40 3.5e-04

VBM4D - 30.86 39.21 0.82 41.09 0.43 1.2 1.2e-02

Degraded -

a high amount of texture related to the current scene. The features
extracted from the I-frame are scaled by the distance parameter ∆t,
where 0 ≤ ∆t ≤ 1. This allows the I-frame features to have a
greater weight if they are closer to the current patch. ∆t is calculated
as : ∆t = e−0.02(γ), where γ is the absolute distance between the
frame index of input patch and the nearest I-frame.

The user-defined restoration parameter dt specifies the strength
of the restoration and is proportional to the amount of degradation
present in the input patch. This value is fed into all stages of the
UNet to guide the restoration.

4. TRAINING

A dataset with 2649 degraded/reference pairs was created by degrad-
ing clips using the CRF parameter on an H.265 codec such that the
resulting PSNRY of the degraded video was ≤ 38dB. More details
about the dataset can be found in the supplementary material [20].
All training patches were 512x512.

The degradation parameter dt, which controls the strength of
the restoration network, was set to be the LPIPS score between the
degraded input patch and the reference patch. Our motion magni-
tude and direction (mt) was calculated using the DeepFlow algo-
rithm [21] and the Luma channel of the previous patch, current patch
and next patch.

Our generator was initially trained using the squared l2 norm
loss for 25 epochs. The outputs from this initially trained generator
was then used to train the critic network for 10 epochs. This type of
training is adapted from the NoGAN approach [22]. The Adam op-
timizier with learning rate 1e-04 was used in both cases. The gener-
ator and critic network were then trained adversarially for 50 epochs
using Adam optimizers with an initial learning rate of 1e-04 that de-
cayed to 1e-06. Our adversarial training routine follows [10], with
the loss function for both the critic and generator as follows.

Lcritic = −
[
C(yt)− C(G(ft))

]
+ λΓ (4)

Lgen = −C(G(ft)) + Λ
(
l2(f̂t, yt)

)
(5)

Where C, G are the critic and generator network respectively. λ,
Γ are the gradient penalty weight and gradient penalty function (as
in [10]). Λ is a weight that allows the generator to strike a com-
promise between MSE (l2(·, ·)), and perceptual criteria. This is im-
portant because generative networks like these do have the tendency
to synthesise or hallucinate content which looks like picture content
but is not constrained by the input pixel texture. The MSE weight
Λ therefore allows the output to be constrained to be related more
closely to the input content.



Fig. 4. Generated patches. VBM4D (b) has the highest PSNR but suffers from oversmoothening. This is a characteristic of optimzing with
respect to MSE alone. Our proposed methodCopt with Λ = 10 yields a high detailed image but the color does not match the original material.
C5,6 has the highest PSNR of all critic approaches, but still has a loss of detail. Ct has higher DFQM scores than C5,6, however there is a
consistent streaking effect overlaid on degraded parts of the image. Copt with Λ = 1000 has the best performing DFQM metrics.

5. RESULTS

Table 1 shows results of performance of the various systems tested
using a unique test set of 501 reference/degraded clips. In addi-
tion to the usual performance metrics of VMAF and PSNR, we re-
port Frechet Inception Distance (FID) and Kernel Inception Distance
(KID) [23]. These latter metrics express distance in terms of the out-
put of features from an Inception network. They have recently in-
creased in importance for perceptual evaluation of picture quality as
used [24].

In order to select the optimal value of Λ, the table reports per-
formance for Copt under the effect of varying Λ on a log scale.
Λ = 1000 is chosen as optimal given that it minimises KID and
FID. Our proposed critic Copt (using perceptual layers) is the best
performer with up to 10% (FID) and 15% (KID) average improve-
ment compared to other critics (C5,6, Ct).

Λ is used to weight the effect of the MSE loss function when
training the generator. With lower Λ the output content has a high
level of detail but the color of the generated patches does not match
the source material. This effect can be seen in Figure 4(e) and is
corroborated by the low PSNRY/CBCR scores. As Λ increases the
resulting PSNRY/CBCR also increases as MSE is inversely propor-
tional to PSNR. The other critic configurations C5,6 and Ct were
also trained with Λ = 1000. Patches generated from training with
C5,6 contain less detail than the other critic configurations, how-
ever PSNRY/CBCR was the best performing among critics. This
effect can be seen in Figure 4(f). Training with Ct yielded DFQMs
that were better performing than C5,6, however there are visible
streaking effects over areas of high distortion. This can be seen in
Figure 4(g). Considering the performance of more traditional statis-
tical approaches, we find our optimal critic to outperform VBM4D
in DFQMs. Patches generated from VBM4D suffered from the

“over-smoothing” effect that is characteristic of MSE optimized
algorithms. The visual impact of this is shown in Figure 4(b). This
validates the need for perceptual criteria.

6. DISCUSSION & CONCLUSION

Drawing upon the principles of DFQMs, such as LPIPS, we devel-
oped a critic that employs layers from a pre-trained classification
network to enhance critic proficiency. Although our model displays
lower performance in conventional metrics such as VMAF, PSNR,
and SSIM, it generates output that exhibit a close resemblance to
the source content and this is reflected in performance increases in
LPIPS, FID and KID (Shown in Table 1) as well as visual evidence.

Our proposed critic Copt, outperforms the other critics which
indicates that the use of the selected layers from EfficientNetB3 ex-
ploits latent information that is invariant to degradation from com-
pression. The superior perceptual performance achieved by our pro-
posed model, as compared to VBM4D, provides evidence of the ca-
pactiy of the critic to focus on highly informative perceptual features
beyond the conventional distance metrics.

A drawback of pure adversarial training for compression en-
hancement purposes is the introduction of hallucination artifacts,
which can cause the appearance of plausible image features that are
not present at all in the source content. To mitigate this, we use
a weighted loss function using Λ to combine both perceptual critic
and MSE. Lower values of Λ imply more emphasis on perceptual
loss and hence result in pictures with greater detail.

In future, we plan to conduct a subjective study to further vali-
date our approach. We also plan to measure the importance of dif-
ferent layers of the critic and the generator. Data, full network archi-
tectures and models are available at [20].
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