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ABSTRACT

Point clouds acquired from 3D sensors are usually sparse and
noisy. Point cloud upsampling is an approach to increase the
density of the point cloud so that detailed geometric infor-
mation can be restored. In this paper, we propose a Dual
Back-Projection network for point cloud upsampling (DBP-
net). A Dual Back-Projection is formulated in an up-down-up
manner for point cloud upsampling. It not only back projects
feature residues but also coordinates residues so that the net-
work better captures the point correlations in the feature and
space domains, achieving lower reconstruction errors on both
uniform and non-uniform sparse point clouds. Our proposed
method is also generalizable for arbitrary upsampling tasks
(e.g. 4×, 5.5×). Experimental results show that the pro-
posed method achieves the lowest point set matching losses
with respect to the benchmark. In addition, the success of
our approach demonstrates that generative networks are not
necessarily needed for non-uniform point clouds.

Index Terms— Back projection, point cloud processing,
upsampling

1. INTRODUCTION

A point cloud is one of the popular ways to represent 3D sur-
faces because they capture high-frequency geometric infor-
mation without requiring much memory. Recently, the study
on point-cloud-based 3D analysis is getting more attention. A
fundamental problem is, however, that the 3D sensors used in
robotics or autonomous cars can only produce sparse, incom-
plete, or noisy point cloud data. For small objects or objects
far from the camera, the collected point cloud cannot be di-
rectly used for analysis. The objective of this work is, given
a sparse and noisy point cloud, to upsample it as dense ones
by learning or non-learning approaches. Recently, learning
based point cloud upsampling methods [1, 2, 3, 4] show that
learning priors from data is a very promising direction. Al-
though these deep-learning-based methods already achieved
good progress on this task, there are still many issues to be
solved: 1) developing a universal up-sampling model applica-
ble to arbitrary upsampling tasks would be highly desirable,
and 2) point cloud from real life is usually non-uniformly dis-
tributed and noisy. An ideal point cloud upsampling model
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Fig. 1: 16× upsampling from noisy non-uniform points.

should be robust against these different types and levels of
artifacts.

To address these two challenges, we introduce a novel,
Dual Back-Projection network (DBPnet), specially designed
for point cloud upsampling. Its originality is to tackle both
coordinate and feature refinement using back projection. As
shown in Figure 1, in contrast with existing methods [2, 3],
our new method is able to upsample noisy non-uniform dis-
tributed point clouds into dense, uniformly distributed ones.
More importantly, we train our proposed network for a large
upsampling factor, e.g., 16×, and downsample it to achieve
arbitrary upsampling. We claim the following original con-
tributions 1) we introduce a novel, dual back-projection pro-
cess to learn point correlations for upsampling tasks. Infor-
mation from both feature and coordinate spaces are updated
using an up-down-up process. 2) Position-aware attention is
embedded into the back-projection process to learn non-local
point correlations. With the help of this positional embed-
ding, the attention module can incorporate both position and
feature correlations to capture global representation. 3) A re-
sampling stage is introduced as a second-stage point cloud re-
finement where dense points are downsampled to sparse point
sets. Hence, each generated point gets a chance to attend
to information from the neighborhoods of the original sparse
point cloud. This stage acts as a self-supervision where local
and global information are combined for coordinate estima-
tion.

2. RELATED WORK

Point cloud Upsampling Early work in the Computer Graph-
ics field used optimization methods to solve point cloud up-
sampling problems [5, 6, 7, 8]. For example, [5] assumed
that the new inserted points should lay on a smooth surface
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Fig. 2: Overview of our proposed DBPnet model. It includes
two stages of α× upsampling processes. The upsampling
block contains feature-based back-projection for feature ex-
pansion. The initial upsampled points are resampled by kNN
to obtain α subsets of estimated points. Along with the in-
put points, the second stage of upsampling process works as
a coordinate-based back-projection to update the residual dis-
tance between input points and neighborhood points.

so that they can be optimized by the moving least squares.
To ensure sharp reconstruction, Huang et al. [8] proposed a
progressive method called EAR for edge-aware resampling
of points. Deep learning techniques recently spread in a va-
riety of fields, including 3D processing. The first work on
point cloud upsampling was PUNet [1]. The authors pro-
posed a convolutional neural network to directly extract fea-
tures from point sets. To upsample the points, the learned
features were expanded and separately mapped to a subset of
the point cloud. To avoid point clustering, repulsion loss was
used to balance the point distances. To explicitly upsample
the point cloud, Wang et al. [2] proposed to use 1d code to at-
tach features to different locations. By stacking multiple 2×
upsampling blocks, their method can progressively upsample
the point cloud to the desired number of points. As men-
tioned in [1], upsampling points is equivalent to upsampling
features. Li et al. [3] resolve it by using a generative adversar-
ial network to learn point distribution from the latent space.
Most recently, SSPU [9] utilizes multi-view rendering to su-
pervise the dense point cloud generation. SAPCU [10] seeks
to find rich points from a surface learned from neural implicit
functions. PU-GCN [11] designs a graphic convolution net-
work to better encode coordinate information for upsampling.

3. METHOD

Given a sparse non-uniform 3D point cloud P = pi
N
i=1, our

network aims to generate dense point cloud Q = qi
αN
i=1, where

α is the upsampling factor. The generated point cloud should
follow the same underlying surface as the target object and
be uniformly distributed. As shown in Figure 2 and Figure 3,
our proposed Dual Back-Projection network (DBPnet) con-
sists of three components: 1) Dense feature extraction, 2)
Back-Projection upsampling, and 3) Coordinate estimation to
achieve a two-step upsampling process. The overall process
is a coordinate-based back-projection. The initial upsampled

point sets are downsampled again to match with the input
point sets, and the residual distances computed using the k
nearest neighbors are back-projected for refinement. The re-
fined and the initial point sets are combined together for the
final coordinate estimation. Within the upsampling block, the
feature-based back-projection iteratively updates point fea-
tures for estimation. Combining coordinate and feature-based
back-projection, we achieve significant improvements over
previous works.
Motivation The overall upsampling network is built upon the
coordinate-based back-projection, which can be described us-
ing the following equation:

Q∗ = f

(
S{g[f(P )] \ P}

)
∩ f(P ) (1)

where f (·) is the upsampling operation, g(·) the resampling
operation, \ is the set-difference operation, S is the dimension
switch operation, P ∈ RN×3 is the input sparse points and
Q∗ ∈ RαN×3 is the upsampled points. We omitted feature
extraction and coordinate reconstruction for simplicity.

Following the process of back projection, we first up-
sample the input points and then resample them to the same
dimension as the input. The resampling process is different
from the downsampling process in the sense that we do not
sample only one sparse point subset but rather gather the
points into a set of subgroups. For example, we can find N
points as cluster centroids and then use k Nearest Neighbor-
hood (kNN) to group neighboring points into these clusters.
As shown in Figure 2, the upsampled points P can be resam-
pled into α sparse point subsets. Together with the input point
set, we form a pool of sparse point sets that can be used for
neighborhood feature extraction. Hence we learn the relative
complement of the set P with respect to the set Q. As men-
tioned in PUNet [1], features and points are interchangeable,
so feature expansion is equivalent to expanding the number
of points. After resampling, we thus expand features and
then switch the dimensions of features and points. For α×
upsampling, we use α + 1 features (one point from the input
set plus α resampled points for reconstruction. There are
three merits of using coordinate-based back-projection: 1)
it forms a global loop of self-supervision where the target
points should locate around the input points, achieving kNN
interpolation, 2) it avoids the expensive computation of kNN
searches and feature extraction in every layer, and 3) by us-
ing resampling, it ensures each point collects both local and
global information for estimation.
Back-Projection Upsampling. The key component of the
upsampling block is the use of back-projection. We call it
feature-based back-projection because it is done in the feature
domain. As shown in Figure 4, it includes three components,
namely upsampling, downsampling, and self-attention. The
basic procedure is shown in Figure 4A. The input sparse point
features are firstly upsampled to the dense features, and then
the dense features are downsampled and subtracted from the
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Fig. 3: The proposed DBPnet model, including Deep feature
extraction, Back-Projection up-sampling and Coordinate esti-
mation.
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Fig. 4: Back-Projection upsampling. It includes up-sampling,
down-sampling and self-attention blocks. It iteratively up-
down-up upsamples the point features.

input features to calculate residues. The residual information
is further upsampled for updating the dense point features.
Position-aware self-attention. We strive for a better feature
representation for point cloud upsampling. To achieve this
goal, attention is a good choice because of its nonlocal learn-
ing ability. It has been widely used in many fields [12, 13,
14, 15], including 3D point cloud [16, 17, 18, 19]. What dis-
tinguishes our position-aware self-attention from other works
is that we introduce the position embedding technique for at-
tention computation. As introduced in [20], adding position
codes in the attention computation can incorporate the order
information into the model. Though the point cloud is un-
ordered data that is invariant to permutation, the relative po-
sition defines the structure of the underlying 3D surface. It is
necessary to keep the position information, that is, coordinate
data for feature extraction. To this end, we add positional en-
coding to the point feature to retain positional information. It
can also be understood as a Laplacian theory L=D-A, where
L is the Laplacian matrix, D is the degree matrix and A is the
adjacency matrix. Position-aware attention is equivalent to
replacing D by positional encoding and replacing A by point
features. Their combination forms the matrix representation
of a graph. By using deep learning, both degree and adjacency
matrices can be learned end-to-end. Mathematically, we can
describe the process as follows,

y = ω{softmax (θ(z)ϕ(zT ))g(z)}+ x (2)

where z = x+Epos is the position-aware encoding. It is the
sum of point feature x and positional encoding Epos. For at-
tention computation, the input data are separately transformed
by MLPs and multiplied for autocorrelation. We also add a
skip-connection to further improve the learning ability, where
ω is the weighting process to finetune the amount of attention
values.
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Fig. 5: 4× upsampling results from 2048 input points (uni-
formly and non-uniformly) and reconstructed mesh.

Loss functions To keep data fidelity, the full loss function is
defined as L = LCD+λLuni, where λ is the weighting factor
used to balance the Chamfer loss (LCD) [2, 3] with respect to
the uniform loss (Luni) [1].

4. EXPERIMENTS

Training dataset and Implementation details. For training
data, we used the same database as PUNet [1], consisting of
60 different 3D models from the Visionary repository [21].
For each 3D model, we used farthest point sampling to select
seeds. Then we employed the Poisson disk sampling [22]
to generate target dense patches Q. Different from [4, 2],
we used random sampling to generate input sparse patches
P from Q. The number of input and target patches is N and
αN with N=256 and α=16. Therefore, our training task is
to map the non-uniformly distributed sparse P to the uni-
formly distributed dense points Q. Note that we only trained
16× upsampling model. The reason is that if a 16× result
can represent the underlying surface well, a simple uniform
downsampling process can faithfully represent the same 3D
structure. Hence, it is not necessary to train the same model
for smaller upsampling scenarios. We thus used the furthest
sampling approach to downsample the 16× results, in order
to achieve 2×, 4× and 8× results, respectively. For testing
data, we used the same data as PUGAN [3], consisting of
27 different 3D models with a wide variety of simple and
complex objects. From each model, 2048 random points
were extracted to form the input sparse point cloud. To better
demonstrate the robustness of our method, we tested four
different scenarios: clean uniformly sampled points, clean
non-uniformly sampled points, noisy non-uniformly sampled
points and real points collected from LIDAR. Our compari-
son includes EAR [8], PUNet [1], MPU [2] and PUGAN [3].



Table 1: Quantitative evaluation of state-of-the-art point
clouds upsampling approaches for scales 2×, 4×, 8× and
16×. Red indicates the best.

No. of sparse point clouds 2048
Sampling Uniform Non-uniform

Eval. (10−3) CD HD P2F Uniformity CD HD P2F Uniformity

2x

EAR [8] 0.471 2.912 2.896 1.749 0.705 7.027 2.481 3.748
PUNet [1] 0.822 4.089 4.974 1.579 1.009 7.331 9.776 2.296

PUGAN [3] 0.433 4.133 1.550 1.189 0.499 4.420 3.801 2.001
MPU [2] 0.446 2.096 1.546 1.937 0.712 6.234 1.968 3.234

PU-GCN [11] 0.355 1.967 1.533 1.870 0.660 5.742 1.955 3.077
Ours 0.409 2.904 1.531 1.154 0.426 3.762 1.966 1.166

4x

EAR [8] 0.372 4.027 5.370 1.160 0.577 8.356 5.430 2.017
PUNet [1] 0.525 4.601 5.900 1.123 0.544 6.072 6.841 0.773

PUGAN [3] 0.224 3.973 1.907 1.014 0.243 4.394 2.341 0.892
MPU [2] 0.251 1.624 1.669 1.086 0.528 6.243 2.112 1.685

PU-GCN [11] 0.220 1.611 1.581 0.966 0.333 4.303 2.115 0.829
Ours 0.120 1.606 1.562 0.807 0.238 3.511 2.009 0.760

8x

EAR [8] - - - - - - - -
PUNet [1] 2.527 7.078 4.261 0.958 2.438 6.971 4.441 1.039

PUGAN [3] - - - - - - - -
MPU [2] 0.160 3.821 1.665 0.732 1.676 6.084 2.727 0.859

PU-GCN [11] 0.162 3.833 1.650 0.741 1.700 6.079 2.790 0.891
Ours 0.081 2.338 1.414 0.539 0.142 3.727 2.447 0.528

16x

EAR [8] - - - - - - - -
PUNet [1] 0.460 4.561 5.891 0.658 0.480 6.143 4.112 0.804

PUGAN [3] 0.093 4.552 2.578 0.491 0.107 4.594 3.030 0.430
MPU [2] 0.138 1.914 1.804 0.489 0.294 6.182 2.472 0.519

PU-GCN [11] 0.106 1.845 1.776 0.479 0.288 5.887 2.456 0.495
Ours 0.047 1.692 1.578 0.440 0.097 3.519 2.170 0.421

Table 2: Quantitative comparison of the network using with
or without proposed key components. Baseline is the vanilla
simple network. Full pipeline is the proposed network.

Metric(10−3) CD HD P2F Uniformity
Feature BP 0.256 6.113 3.234 0.667

Coordinate BP 0.137 4.122 3.001 0.486
Position Embeddings 0.238 5.879 3.112 0.640

Baseline 0.322 6.547 3.556 0.714
Full pipeline 0.097 3.519 2.170 0.427

For evaluation, we use Chamfer distance (CD), Hausdorff
Distance (HD), Point-to-Surface distance (P2F) mean value
and uniformity value.
Comparison with State-of-the-art Methods. Table 1 sum-
marizes the quantitative comparison results. We have two sets
of input data: uniform (input points are evenly distributed)
and non-uniform (input points are randomly distributed). Our
DBPnet achieves the best performance with the lowest val-
ues consistently for different evaluation metrics. Specifically,
it can be observed that our new method achieves the lowest
P2F and Uniformity values on every task, indicating that it
achieves the generation of uniform, dense point cloud that
remain close to the underlying surface. For visual compar-
ison (Figure 5), we applied surface reconstruction to the up-
sampled point sets by using PCA normal estimation (number
of neighborhood=20) [23] and screened Poisson reconstruc-
tion (depth=9) [24]. Results show that our method is able to
fill holes and robustly generate uniformly-sampled point sets,
while former methods, such as EAR, PUNet and MPU, ade-
quately handle uniform point sets but fail on non-uniformly
sampled regions.

(a) Inputs Ours  

(b) Inputs Ours  

Fig. 6: 16× upsampling results on real 3D points. (a) KITTI
data [25] of the driving screen and (b) Paris-Lille-3D data [26]
of the city view of Paris.

Ablation studies. As introduced in Section 2, the coordinate-
based back-projection works as a second-stage refinement.
To make a comparison, we define the baseline as our network
without the coordinate-based back-projection and feature-
based back-projection blocks. Next, we define Feature BP
as the baseline network using feature-based back-projection
for upsampling; Coordinate BP as the baseline network using
coordinate-based back-projection for upsampling; Position
Embedding as the baseline network using position-aware at-
tention and full pipeline as the complete proposed network.
Table 2 shows the evaluation results. The full pipeline per-
forms the best. Removing any key components can reduce
the performance, hence it indicates the contributions of each
component.
Real World Point cloud. To evaluate our model on real
scans, we tested it on the KITTI [25] dataset and the Paris-
Lille-3D [26] dataset. Figure 6 It can be found that using our
method can upsample the point sets to better represent ob-
jects, like cars and pedestrians.

5. CONCLUSION

In this work, we introduced a Dual Back-Projection net-
work (DBPnet), specially designed for point cloud upsam-
pling. Combining both Coordinate and Feature-based back-
projections, this model is able to reveal detailed geometric
structures from sparse and noisy input point clouds. We also
proposed a position-aware attention mechanism, to comple-
ment the non-local representation with positional informa-
tion. Overall, we formed a network enabling both global co-
ordinate refinement and local feature refinement. The such an
adaptive patch-based network learns point distributions and is
able to handle both uniformly and non-uniformly distributed
point sets. Extensive experiments and studies demonstrated



that the proposed solution outperforms state-of-the-art meth-
ods in both quantitative and qualitative comparisons.
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