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AFNet-M: Adaptive Fusion Network with Masks
for 2D+3D Facial Expression Recognition

Mingzhe Sui, Hanting Li, Zhaoqing Zhu, and Feng Zhao

Abstract—2D+3D facial expression recognition (FER) can ef-
fectively cope with illumination changes and pose variations by
simultaneously merging 2D texture and more robust 3D depth
information. Most deep learning-based approaches employ the
simple fusion strategy that concatenates the multimodal features
directly after fully-connected layers, without considering the
different degrees of significance for each modality. Meanwhile,
how to focus on both 2D and 3D local features in salient regions
is still a great challenge. In this letter, we propose the adaptive
fusion network with masks (AFNet-M) for 2D+3D FER. To
enhance 2D and 3D local features, we take the masks annotating
salient regions of the face as prior knowledge and design the
mask attention module (MA) which can automatically learn two
modulation vectors to adjust the feature maps. Moreover, we
introduce a novel fusion strategy that can perform adaptive fusion
at convolutional layers through the designed importance weights
computing module (IWC). Experimental results demonstrate that
our AFNet-M achieves the state-of-the-art performance on BU-
3DFE and Bosphorus datasets and requires fewer parameters in
comparison with other models.

Index Terms—2D+3D facial expression recognition, mask at-
tention module, adaptive fusion, AFNet-M.

I. INTRODUCTION

FACIAL expression is a significant means of nonverbal
communication since it can express human cognition and

emotions. In general, facial expression recognition (FER) aims
to help machines infer six basic expressions, which are anger,
disgust, fear, happiness, sadness, and surprise, and figures
prominently in human-computer interaction areas [1]–[3]. Al-
though previous studies based on hand-crafted features [4], [5]
or deep learning [6], [7] have achieved excellent performance
in 2D FER, it is under the premise of good image quality.
The drastic variations in illumination and poses can still have
a great impact on 2D FER [1].

3D scans containing depth information perform better ro-
bustness to illumination and pose changes, and can also
capture subtle muscle deformations [1]. Therefore, comple-
mentary multimodal 2D+3D FER has gradually attracted in-
creasing attention in recent years. Li et al. [8] first introduced
CNN to 2D+3D FER, where they represented each 3D scan as
six attribute maps, and fed them into a deep fusion CNN with
six branches for classification. Benefiting from the powerful
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learning ability of networks, the accuracy of deep learning-
based models [8]–[18] has comprehensively surpassed the
methods based on hand-crafted features [19]–[28].

However, there still exist two issues in 2D+3D FER. First,
most algorithms do not take good advantage of local features
in salient regions (e.g., the neighborhoods of the mouth , nose,
and eyes). Jiao et al. [13] proposed the FA-CNN to localize
the discriminative facial parts, while the receptive fields will
also focus on irrelevant areas such as the forehead, and the dis-
tribution is not stable enough from their visualization of heat
maps. Sui et al. [17] designed the masks to directly enhance
the local features in the whole salient regions, however, diverse
components make various contributions to the judgment of one
expression. For example, the features of the eyes and mouth
are more critical than those of the nose. Thus, learning the
distribution of salient regions discriminately from the masks
is necessary. Another is that many deep models [13], [14],
[17] employ the simple fusion strategy, which concatenates the
multimodal features directly and equally after fully-connected
layers. Nonetheless, at this time, the resolution of the features
with each modality is too low and the ability to perceive
local geometric details is poor, which is not conducive to
the free attention flow among modalities [29]. Furthermore,
each modality places a different emphasis on the current
classification task. We need to consider it before fusion.

To address the above problems, we propose the adaptive
fusion network with masks (AFNet-M) for 2D+3D FER. The
contributions of our model are as follows:

• We design the mask attention module (MA) in the first
half of out AFNet-M, which can automatically learn two
modulation vectors from the masks annotating salient
regions to enhance local features discriminatively.

• We introduce a new fusion strategy that incorporates
depth features into texture features in the second half of
our model. Considering that the contribution rates of the
features with two modalities to the results are different,
we perform adaptive fusion by the designed importance
weights computing module (IWC).

• Our AFNet-M achieves the highest accuracy on BU-
3DFE and Bosphorus datasets and also demands fewer
parameters in comparison with the state-of-the-art meth-
ods in 2D+3D FER.

II. METHODOLOGIES

A. Overview of AFNet-M

The framework of our AFNet-M is illustrated in Fig. 1. The
whole network is based on dual-branch ResNet18s [30]. In
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Fig. 1. The pipeline of our AFNet-M. STEM means all the operations before the first residual block in ResNet18, including a 7× 7 convolutional layer and
a max pooling layer. The softmax function is utilized to predict the expression.
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Fig. 2. The structure of the proposed MA module at Layer1.

preprocessing, we execute gridfit algorithm [31] to generate
aligned texture and depth images from each 3D scan and
perform surface processing [17] containing outlier removal,
hole filling, and noise removal to improve their quality. We
also generate the masks annotating salient regions at two scales
(Mask-1 is 56×56 and Mask-2 is 28×28) as [17] did. In
feature extraction, we first design the MA module at Layer1
and Layer2 and introduce the generated masks as prior knowl-
edge to enhance depth and texture local features separately in
the spatial dimension. Next, at Layer3 and Layer4, we use
the devised IWC module to perform the adaptive fusion of
depth and texture features with weight coefficients. Finally,
the multimodal representations are used for classification after
three fully-connected layers and the softmax function.

B. Mask Attention

Different from directly enhancing all salient regions [17],
we consider learning the distribution of salient regions dis-
criminately from the masks and propose the MA module, as
shown in Fig. 2. The MA module consists of four convolutions.
Taking the texture branch as an example, we first reshape
the single-channel mask to 64×56×56 at Layer1 to match
the texture feature maps. Two modulation vectors (γ and β)
are automatically learned separately through two independent
convolution groups, which represent the distribution of salient
regions in the masks. To reduce extra parameters, the kernel
size of all convolutions is 1×1. The process of enhancing the
texture feature maps can be expressed as:

X̃t = γ ⊗Xt + β (1)

where X̃t and Xt represent the texture feature maps after and
before enhancement, respectively. ⊗ represents the element-
wise multiplication. The shapes of γ and β are the same as

Xt. It is equivalent that we scale and shift the feature map of
each channel of Xt in the spatial dimension. We do the same
process for the depth images. During the training stage, the
two modulation vectors will be continuously adjusted to make
the network discriminately enhance the depth and texture local
features in salient regions of the face. We do not use the MA
module in the second half in that the landmarks cannot be
detected to generate the mask and the the receptive field of
each pixel has almost covered the entire input image when the
spatial size is too small.

C. Adaptive Multimodal Fusion

The interaction among multimodal features is the key to
multimodal fusion tasks. To fully utilize the multiscale fea-
tures at convolutional layers and form more comprehensive
multimodal representations, we incorporate depth features into
texture features at Layer3 and Layer4, as shown in Fig. 2.
Considering that the contribution rates of the features with two
modalities to the classification are different, inspired by ACM
block [32], we introduce the IWC module to perform adaptive
fusion, as depicted in Fig. 3. We compute an importance
weight for each channel of the feature maps, formulated as:

tiw = Sigmoid(Conv(AvgPool(Xt)) + Conv(MaxPool(Xt))) (2)

where Xt is the texture feature maps at Layer3 or Layer4, tiw
ranging from 0-1 represents the texture importance weights.
Conv represents the shared convolution with the kernel size
of 1×1, which can mine the correlations among channels.
Similarly, we also compute the depth importance weights diw.
The adaptive fusion can be expressed as:

X̂d = diw ⊗Xd

X̂t = tiw ⊗Xt

M = X̂t + X̂d

(3)

where M represents the formed multimodal features after
adaptive fusion. Therefore, the channel features with some
modality that are more crucial to the results will also account
for a larger proportion of the formed multimodal representa-
tions, while those that have a negative impact on the classifi-
cation will be suppressed to a certain extent. The reason why
we choose to perform adaptive fusion at Layer3 and Layer4 is
that the resolution and the ability to perceive local geometric
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Fig. 3. The structure of the proposed IWC module. N , C, H , and W denote
the size of the batch, channels, height and width, respectively.

details of the features with each modality are appropriate. We
also give the ablation studies to prove this in section III.

III. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Protocol

BU-3DFE dataset. The BU-3DFE dataset [33] comprises
100 subjects with ages from 18 to 70. Each subject contains six
prototypical expressions (i.e., anger, disgust, fear, happiness,
sadness, and surprise), which are elicited by various manners
with four levels of expression intensity.

Bosphorus dataset. The Bosphorus dataset [34] consists of
4666 3D scans from 105 subjects with ages from 25 to 35.
Different from BU-3DFE dataset, only 63 subjects contain six
prototypical expressions with one level of expression intensity.

Evaluation Protocol. To compare equally with other meth-
ods, we follow the standard protocol applied in [8], [13]–[18]
to evaluate our AFNet-M. In this protocol, 60 subjects with
level 3 and level 4 expression intensity from 100 subjects
in BU-3DFE dataset and 60 subjects from 63 subjects in
Bosphorus dataset are selected randomly, which are fixed in
the whole experiments. Then, the average accuracy of 100
times of 10-fold cross-validation is executed to evaluate the
model for more stable and reliable results.

B. Implementation Details

The depth and texture images are resized to 3×224×224
after preprocessing. At the training stage, we initialize two
ResNet18s in the AFNet-M with the pre-trained parameters
on ImageNet [35]. All the convolutions in the MA and IWC
module follow a normal distribution with the mean of 0 and the
standard deviation of 0.02, and the bias is set to 0. The Adam
optimizer with betas (0.9, 0.999) is adopted. In addition, we
set the learning rate to 0.0001 and fix it in 70 epochs for the
cross-entropy loss function. All the experiments are conducted
on one NVIDIA GeForce RTX3070 card with Pytorch.

C. Results

Comparisons with the state-of-the-art methods. Table I
shows the performance comparisons of our model with other
approaches on BU-3DFE and Bosphorus. We can see that our
AFNet-M outperforms state-of-the-art methods with the high-
est accuracy of 90.08% and 88.31%, whether compared with
hand-crafted features or deep networks. Moreover, compared
with the results under single modality input, merging 2D and
3D features can significantly boost the accuracy.

Confusion matrix. To reflect the performance for each
category, we also give the confusion matrices, as shown in

TABLE I
COMPARISON RESULTS ON BU-3DFE AND BOSPHORUS. HC AND DL
REPRESENT HAND-CRAFTED AND DEEP LEARNING-BASED FEATURES.

Method Year Data Feature BU-3DFE Bosphorus

Tang et al. [19] 2008 3D HC 74.51 -
Gong et al. [20] 2009 3D HC 76.22 -

Li et al. [21] 2012 3D HC 80.14 75.83
Yang et al. [22] 2015 3D HC 84.80 77.50

Li et al. [23] 2015 2D+3D HC 86.32 79.72
Fu et al. [24] 2019 2D+3D HC 82.89 75.93

Li et al. [8] 2017 2D+3D DL 86.86 80.28
Wei et al. [9] 2018 2D+3D DL 88.03 82.50
Jan et al. [10] 2018 2D+3D DL 88.54 -

Chen et al. [11] 2018 3D DL 86.67 -
Tian et al. [12] 2019 2D+3D DL - 79.17
Jiao et al. [13] 2019 2D+3D DL 89.11 -
Zhu et al. [14] 2019 2D+3D DL 88.35 -
Jiao et al. [15] 2020 2D+3D DL 89.72 83.63
Zhu et al. [16] 2020 2D+3D DL 88.75 -
Sui et al. [17] 2021 2D+3D DL 89.82 87.65
Ni et al. [18] 2022 2D+3D DL 88.91 85.16

Ours - 2D DL 87.68 85.42
Ours - 3D DL 86.97 82.06
Ours - 2D+3D DL 90.08 88.31

(a) Ours on BU-3DFE (b) Ours on Bosphorus

(c) Ours w/o MA on BU-3DFE (d) Ours w/o MA on Bosphorus

Fig. 4. Confusion matrices on BU-3DFE and Bosphorus. AN, DI, FE, HA,
SA, and SU represent anger, disgust, fear, happiness, sadness, and surprise
expression, respectively.

Fig. 4(a) and (b). We can find that happiness and surprise
have better results, while the accuracies for the remaining are
average, which is because that the features of the former with
exaggerated muscle deformations are more discriminate, and
the latter are easily confused with each other.

D. Ablation Studies

To prove the validity of each component in our AFNet-M,
we conduct extensive ablation studies on two datasets.

Evaluation of the fusion strategy. We evaluate different
fusion strategies without the MA module, as shown in Table II.
S1, S2, and S3(FC) represent the fusion strategy at data level,
decision level, and fully-connected layer at feature level. S4
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TABLE II
ABLATION EXPERIMENTS OF THE FUSION STRATEGY.

Method
Fusion Strategy

IWC BU-3DFE Bosphorus
Data Feature Decision

S1 X 86.54 85.08
S2 X 86.28 84.36

S3(FC) X 87.61 85.54
S4 X 88.12 86.17

Ours X X 88.89 87.11

(a) Fusion positions on BU-3DFE (b) Fusion positions on Bosphorus

Fig. 5. Ablation experiments of choosing the fusion positions.

TABLE III
ABLATION EXPERIMENTS OF THE MA MODULE.

Data MA Fusion BU-3DFE Bosphorus

2D 85.06 82.69
2D X 87.68 85.42
3D 84.37 80.58
3D X 86.97 82.06

2D+3D X 88.89 87.11
2D+3D X X 90.08 88.31

is our proposed fusion strategy without the IWC module.
Compared with the first three strategies, S4 achieves the
highest accuracy, indicating that fusing the features of the
convolutional layers can obtain multimodal features with better
representations. From the last two rows in Table III, we can
see that the IWC module calculates the importance weights for
the features with each modality to perform adaptive fusion,
which can further improve the performance. Moreover, we
also give the ablation experiments of choosing the fusion
positions, as pictured in Fig. 5. The results in both subfigures
prove the correctness of choosing Layer3 and Layer4 for
fusion. For Layer1234, it begins since the first residual block.
The receptive field of the underlying convolution kernel is
relatively small, too much edge information may be extracted,
which is not conducive to multimodal fusion.

Evaluation of the MA module. We evaluate the MA
module with different modalities, as illustrated in Table III.
From the last two rows, we can see that using the proposed
MA module to enhance local features discriminatively can
improve the accuracy by 1.19% and 1.2% on BU-3DFE and
Bosphorus under multimodal input. Furthermore, it can also
boost the performance for a single 2D or 3D modality. From
the comparisons of Fig. 4(c) and (a), (d) and (b), we can find
that the masks annotating salient regions can help improve
the recognition accuracies for almost all six categories, which
fully shows the effectiveness of the designed MA module.

To reflect the distribution of the region of interest after

Fig. 6. Visualization of heat maps with six basic expressions. The 1st and
2nd rows are texture heat maps w/o and with the MA module. The 3rd and
4th rows are depth heat maps w/o and with the MA module.

TABLE IV
COMPARISONS OF THE PARAMETERS

Method Year Data Parameters

VGG-M-DF [10] 2018 2D+3D ≈ 327
DA-CNN [14] 2019 2D+3D ≈ 463
FFNet-M [17] 2021 2D+3D ≈ 93

Ours w/o MA - 2D+3D 90.51
Ours w/o IWC - 2D+3D 86.53

AFNet-M - 2D+3D 91.54

employing the MA module, we also visualize the depth and
texture heat maps with Grad-CAM [36], as given in Fig. 6.
The 2nd and 4th rows obviously show that our AFNet-M
has a more stable and concentrated region of interest for all
expressions. More importantly, the masks enable the network
to utilize the features of multiple facial parts (such as the eyes
and mouth) to jointly determine the classification, rather than
depending on a single part (see the anger expression in the 1st
column in Fig. 6).

E. Parameters Analysis

To analyze the scale of the network, Table IV illustrates
the comparison results of parameters. We can see that our
AFNet-M achieves the highest accuracy with relatively mini-
mal parameters (91.54 MB) compared with the state-of-the-art
methods. And the incorporation of the designed MA module
and IWC module only need tiny extra parameters.

IV. CONCLUSION

In this letter, we propose a novel adaptive fusion network
with masks (AFNet-M) for 2D+3D FER. Based on the gen-
erated masks annotating salient regions, we design the MA
module which can automatically learn two modulation vectors
to discriminatively enhance the 2D and 3D local features. To
form better multimodal representations, we introduce a new
fusion strategy that compute the importance weights for each
modality through the devised IWC module to perform adaptive
fusion. Extensive experimental results show that our AFNet-
M has superior performance compared with the state-of-the-art
methods on BU-3DFE and Bosphorus datasets, requiring fewer
parameters and less memory costs simultaneously.
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In the future, we will directly use the original 3D data
and explore an end-to-end framework without the complicated
preprocessing for multimodal 2D+3D FER.
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