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ABSTRACT
End-to-end image/video codecs are getting competitive com-
pared to traditional compression techniques that have been
developed through decades of manual engineering efforts.
These trainable codecs have many advantages over traditional
techniques such as easy adaptation on perceptual distortion
metrics and high performance on specific domains thanks to
their learning ability. However, state of the art neural codecs
does not take advantage of the existence of gradient of entropy
in decoding device. In this paper, we theoretically show that
gradient of entropy (available at decoder side) is correlated
with the gradient of the reconstruction error (which is not
available at decoder side). We then demonstrate experimen-
tally that this gradient can be used on various compression
methods, leading to a 1−2% rate savings for the same quality.
Our method is orthogonal to other improvements and brings
independent rate savings.

Index Terms— Neural compression, gradient of entropy.

1. INTRODUCTION

Lossy Image and video compression is a fundamental task in
image processing. Thanks to the community’s decades long
efforts, traditional methods (e.g. VVC) have reached current
state of the art rate-distortion (RD) performance and domi-
nate current codecs market. Recently, end-to-end trainable
deep models have emerged with promising RD performances
by learning the informative latents and modeling the latent
distribution.

End-to-end deep compression methods are generally rate-
distortion autoencoders [1], where the latents are optimized
using a rate-distortion loss function. For perceptual friendly
compression, distortion based on a perceptual metric can also
be used in the loss function [2]. These methods can be seen
as a special case of Variational Autoencoder (VAE) models as
described in [3], where the approximate posterior distribution
is a uniform distribution centered on the encoder’s outputs (la-
tents) at training time and has a fixed variance output distri-
bution and trainable priors [4, 5]. It was shown that minimiz-
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ing the evidence lower bound (ELBO) of this special VAE is
equivalent to minimizing jointly the mean square error (MSE)
of the reconstruction and the entropy of latents w.r.t the priors
[6]. All proposed models differ mainly by the modelling of
priors: using either fully-factorized [5], zero-mean gaussian
[6], gaussian [7, 8] or mixture of gaussian [9], where some
methods predict the priors using an autoregressive schema
[7, 8, 9, 10]. These neural image codecs were extended to the
video compression domain by using two VAEs, one for en-
coding motion information, another one for encoding residual
information in end-to-end video compression [11, 12, 13].

One of the main principle in general compression is to ex-
ploit all information available at the decoder to reconstruct the
data. However, even though the gradients of the entropy w.r.t
latents are available at decoder side, this information remains
unused so far in the literature. Some similar work in the lit-
erature have tried to improve the performance of codec, for
example by using specific parameterization [14], or compu-
tationally heavy fine-tuning solutions [15, 16, 17, 18]. How-
ever, all these methods ignore the gradients of the entropy.

In this paper, we apply the Karush–Kuhn–Tucker (KKT)
conditions on the neural codec, which has never been pro-
posed to the best of our knowledge. More specifically, the
main contributions of our paper are the following:

• We demonstrate that the gradient of the reconstruction
error (unavailable at decoder side) is correlated with the
gradient of entropy (available at decoder side) w.r.t la-
tents. We bring the theoretical proof that holds in aver-
age over the training dataset, and show experimentally
that this also holds for each training sample.

• We show that it is possible to use the available gradient
as a proxy for the unavailable gradient in order to im-
prove the performance of existing neural codecs with-
out re-training.

• We report a rate saving between 1 − 2% at preserved
quality, for several neural codecs architectures and
without the need for retraining. We also demonstrate
that this method can also benefit to network fine-tuning.

2. NEURAL IMAGE COMPRESSION

In end-to-end image compression, the encoder y = ga(x;ϕ)
transforms an input image x ∈ Rn×n×3 into a lower dimen-
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sional continuous latent y ∈ Rm×m×o and quantize it to ob-
tain latent codes ŷ = Q(y) by element-wise quantization
function Q(.). Later, the latent codes are compressed loss-
lessly by the entropy coder using factorized entropy model
pf (ŷ|Ψ) in [5]. However, if the entropy model of the latent
codes ŷ is conditioned with side information to account for
the spatial dependencies, the side latent z = ha(y; Φ) where
z ∈ Rk×k×f (and side codes ẑ = Q(z)) is also learnt. In
this setting, the main codes ŷ is encoded with the hyperprior
entropy model ph(ŷ|ẑ; Θ), and the side code ẑ is encoded
with the factorized entropy model pf (ẑ|Ψ) [6, 7]. The de-
coder x̂ = gs(ŷ; θ) converts back the transmitted latent to the
reconstructed image x̂.

The loss function in (1) consists of three parts: the ex-
pected bitlength of main codes, the expected bitlength of side
codes and the distortion. d(., .) is any distortion loss such as
Mean Square Error (MSE), λ is a trade-off parameter to bal-
ance between compression ratio and reconstruction quality.

L(x) = −log(ph(ŷ|ẑ,Θ))− log(pf (ẑ|Ψ)) + λd(x, x̂). (1)

The training phase aims at finding the optimal network
parameters by minimizing (1), for images sampled from given
train set D:

ϕ∗, θ∗,Ψ∗,Θ∗,Φ∗ = argmin
ϕ,θ,Ψ,Θ,Φ

( E
x∼D

(L(x))). (2)

After offline training, the learned parameters can be de-
ployed to the sender and receiver devices. At test time, the
image is transformed to main ŷ and side ẑ codes by trained
encoder networks. First, ẑ is encoded by shared factorized
entropy model. Then, ŷ is encoded by hyperprior entropy
model with input of ẑ. At the receiver side, first ẑ is decoded
by shared factorized entropy model. Using ẑ into the hyper-
prior model, receiver decode ŷ from the bitstream, leading to
the reconstructed image using trained decoder network.

2.1. Fine-tuning solutions

During offline training, the parameters are optimal in average
for the training set, but sub-optimal for a single test image.
In order to make image specific RD optimization, the codes
can be further fine-tuned at encoding time. In these solutions,
the main and side codes are directly optimized for the same
loss as in (1) while keeping the network parameters fixed as
follows:

ŷ∗, ẑ∗ = argmin
ŷ,ẑ

(L(x)). (3)

It is reported that, albeit a large increase of encoding time
(typically x4000 ), these methods can obtain a 5%−15% rate
saving compared to the baseline model for the same quality
[15, 16, 17].

3. FORGOTTEN INFORMATION: GRADIENT OF
ENTROPY

In this section, we describe how the gradients of the entropy
on receiver side are used to improve the reconstruction. When
the receiver decodes side codes, the gradients of side entropy
w.r.t side codes can be computed. Similarly, when decoding
main codes, the gradients of main entropy w.r.t main codes
can also be computed. Since these gradients are only available
after decoding the codes, they seem not useful at first sight.
Here, we propose to use the gradients through the analysis
of the Karush-Kuhn-Tucker (KKT) conditions, and we claim
that the first gradient is correlated with the gradient of the
main entropy w.r.t side codes and the second one is correlated
with the gradient of the reconstruction error w.r.t main codes.
Thus, the first one can be used to decrease the bitlength of the
main information and using the second one can decrease the
reconstruction error.

3.1. Karush-Kuhn-Tucker (KKT) Conditions

Let us consider the neural codec’s loss function in (1) as an
unconstrained multi-objectives optimization problem, where
the objectives are minimum bitlength of main codes, mini-
mum bitlength of side codes and minimum reconstruction er-
ror. The optimal solution of multi-objective problem is called
Pareto Optimal, when no objective can be improved without
degrading the others [19]. The following remark shows a use-
ful property of a solution of unconstrained multi-objective op-
timization problems.

Remark 1. A solution of the multi-objective optimization
problem is Pareto Optimal, if and only if it satisfies Karush
Kuhn Tucker (KKT) conditions. More specifically, if the aim
of the problem is w∗ = argminw(

∑
i αi.Li(w)); where

αi ≥ 0,
∑

αi = 1 and Li is the i-th objective to be min-
imized, the solution w∗ is Pareto Optimal if and only if it
following condition is met: [20].∑

i

αi∇wLi(w
∗)) = 0.

In plain words, this shows that at the optimal point, all
forces driven by gradients cancel each other out and the so-
lution reaches a saddle point. This property is used to test
the optimality of the candidate solutions. This remark is also
valid for end-to-end compression models. The following the-
orem shows how to use KKT conditions for an end-to-end
image compression models.

Theorem 1. An end-to-end compression model optimized
with λ trade-off is Pareto Optimal, if and only if the following
two conditions are met:

E
x∼D

[∇ẑ(−log(pf (ẑ; Ψ))) +∇ẑ(−log(ph(ŷ; ẑ,Θ)))] = 0 (4)

E
x∼D

[∇ŷ(−log(ph(ŷ; ẑ,Θ))) + λ∇ŷ(d(x, gs(ŷ; θ)))] = 0 (5)



Proof. Let’s define objectives by L1(ẑ) := −log(pf (ẑ; Ψ)),
L2(ŷ, ẑ) := −log(ph(ŷ; ẑ,Θ)) and finally L3(x, ŷ) :=
d(x, gs(ŷ; θ)). The coefficients α1 = α2 = 1/(2 + λ) and
α3 = λ/(2 + λ) satisfy αi ≥ 0 and

∑
αi = 1. We can

rewrite the weighed loss with 1/(2 + λ) as follow:

E
x∼D

[
L(x)
2 + λ

]
= E

x∼D
[α1L1(ẑ) + α2L2(ŷ, ẑ) + α3L3(x, ŷ)] . (6)

Since it is an unconstrained multi-objective optimization
problem, RHS should meet Ex∼D [

∑
i αi∇wLi(w

∗))] = 0
(KKT conditions). When we parameterize (6) with ẑ, L3 is
independent of ẑ, thus ∇ẑL3(x, ŷ) = 0. The first KKT con-
ditions w.r.t ẑ can be equivalent to (4):

E
x∼D

[α1∇ẑL1(ẑ) + α2∇ẑL2(ŷ, ẑ)] = 0. (7)

When we parameterize (6) with ŷ, L1 is independent of
ŷ, thus ∇ŷL1(ẑ) = 0. The second KKT conditions w.r.t ŷ
can be equivalent to (5):

E
x∼D

[
α2∇ŷL2(ŷ, ẑ) + α3∇ŷL3(x, ŷ)

]
= 0. (8)

The proof is straight-forward, but the result of this the-
orem is significant. One can interpret the theorem that if
an existing end-to-end models is optimal (at least in terms
of training performance, not in terms of compression per-
formance), gradient of side information’s entropy w.r.t side
latents ∇ẑ(−log(pf (ẑ; Ψ))) and gradient of main informa-
tion’s entropy w.r.t side latents ∇ẑ(−log(ph(ŷ; ẑ,Θ))) can-
cel themselves out in expectation. It is the same for the
second condition as well. We can claim that main informa-
tion’s entropy w.r.t main latents ∇ŷ(−log(ph(ŷ; ẑ,Θ))) and
weighted gradient of reconstruction error w.r.t main latents
λ∇ŷ(d(x, gs(ŷ; θ))) cancels themselves out in expectation.

If these conditions were valid for every single image, a
given test image’s available gradient would be the opposite
of the unavailable gradient, thus they would have −1 corre-
lation coefficient. These conditions are valid in average on
the training set. However, we claim that this relationship still
holds somehow for any single test image. Let us verify ex-
perimentally that this assumption is true. Figure 1a shows the
correlation between a sample image’s gradients w.r.t the main
latents and gradients w.r.t reconstruction error. In this specific
case, the correlation coefficient of the gradients is−0.65. Ac-
cording to our test on several neural codecs, we have found
quite a strong correlation between gradients as it is shown on
histogram in Figure 1b.

3.2. Latent Shift w.r.t Gradients

In this section, we explain how the relationship between these
gradients can be used at decoding side to improve the perfor-
mance of the codec. The main intuition is to shift the latents
in the direction of the known gradient, as it should have a

positive influence on the bitrate of the side latent and the re-
constructed image with negligible cost in decoding time.

By definition of gradient based optimization, ẑ needs to
take a step in the negative direction of∇ẑ(−log(ph(ŷ; ẑ,Θ)))
in order to decrease the main information bitlength that
is −log(ph(ŷ; ẑ,Θ). However ∇ẑ(−log(ph(ŷ; ẑ,Θ))) is
not available before decoding ŷ, but the correlated gradient
∇ẑ(−log(pf (ẑ; Ψ))) is known after decoding ẑ. We claim
that there is a step size ρ∗f that decrease the bitlength of
main information. ρ∗f can be obtained by brute force or any
optimization method to find the optimal such that:

ρ∗f = argmin
ρf

(−log(ph(ŷ; ẑ+ ρf∇ẑ(−log(pf (ẑ; Ψ)))),Θ)). (9)

For the second condition, ŷ needs to take a step in the
negative direction of ∇ŷ(d(x, gs(ŷ; θ))) in order to decrease
reconstruction error d(x, gs(ŷ; θ)). Since∇ŷ(d(x, gs(ŷ; θ)))
is not available at decoding, we use the correlated gradient
∇ŷ(−log(ph(ŷ; ẑ,Θ))) which is known after decoding ŷ and
ẑ. We claim that there is a step size ρ∗h that decrease the re-
construction error. ρ∗h can be found by brute-force search or
any optimization method to find the optimal such that:

ρ∗h = argmin
ρh

(d(x, gs(ŷ + ρh∇ŷ(−log(ph(ŷ; ẑ,Θ))); θ))). (10)

In summary, our proposal can be seen as shifting the side la-
tent by ẑ← ẑ+ρ∗f∇ẑ(−log(pf (ẑ; Ψ))) after decoding ẑ and
shifting the main latent by ŷ← ŷ+ρ∗h∇ŷ(−log(ph(ŷ; ẑ,Θ)))
after decoding ŷ while the best step sizes ρ∗f , ρ

∗
h ∈ R are to

be found at encoding time and signaled in the bitstream. It is
noted that during the encoding, the main latents ŷ is encoded
w.r.t entropy model predicted by the shifted side latent. We
show that the shifted side latents shortens the main infor-
mation’s bitlength and shifted main latents results to obtain
better reconstruction performance.

4. EXPERIMENTAL RESULTS

We use CompressAI library [21] to test our contribution
on 5 pre-trained neural image codecs named bmshj2018-
factorized in [5], mbt2018-mean and mbt2018 in [7],
cheng2020-attn in [9] and invcompress in [10]. For the
evaluation, we use Kodak dataset [22] and Clic-2021 Chal-
lenge’s Professional dataset [23].

Table 1. Average BD-Rate gains of Latent Shift for different
baseline image codecs on 2 image datasets.

Baseline Codec Kodak Test Set Clic-2021 Test Set

bmshj2018-factorized -0.49% -0.69%
mbt2018-mean -1.27% -1.21%
mbt2018 -1.44% -1.71%
cheng2020-attn -0.46% -0.72%
InvCompress -0.55% -0.63%

The codecs are taken off the shelf and are not retrained.
The rate is calculated from the final length of the compressed



Fig. 1. a) Correlation between gradients of the entropy and the reconstruction error. b) Histogram of correlation between
gradients w.r.t main latents. c) Correlation between improvement on reconstruction quality and correlation of gradients.

Table 2. Computational complexity and Latent Shift performance over Finetuning solutions
Model Encoding Time Decoding Time Bd-Rate (Kodak) Corr. (Kodak) Bd-Rate (Clic) Corr. (Clic)

bmshj2018 baseline x1 +0.0% 0.0% 0.0%
Only Latent Shift x12 +0.7% -0.49% -0.108 -0.69% -0.0952
Only FineTuning x4800 +0.0% -6.52% -6.73%
FineTuning + Latent Shift x4812 +0.7% -7.88% -0.165 -8.06% -0.1578

mbt2018-mean baseline x1 +0.0% 0.0% 0.0%
Only Latent Shift x10.1 +0.7% -1.27% -0.1805 -1.21% -0.1465
Only FineTuning x4380 +0.0% -5.77% -5.53%
FineTuning + Latent Shift x4390 +0.7% -7.47% -0.2212 -7.16% -0.1796

data and RGB PSNR is used for distortion metric. We assess
the performance using the bd-rate [24] on the rate range of
0.1bpp-1.6bpp used in compressAI.

In Table 1, we show the results of our Latent Shift
method for different datasets and codecs. Even though the
bd-rate gains are moderate, it constantly saves bit from wide
variety of the neural architectures. The Latent Shift’s per-
formance depends on how the gradients are correlated. To
assess this correlation, we show the scatter plot between
Latent Shift’s individual gains in dB and actual correlation
coefficient between gradients for all test images and for all
quality level in Figure 1c. We found a correlation of −0.76
where this correlation is independent from datasets, recon-
struction quality or model.

We have evaluated complexity of Latent Shift over the
selected two baseline models with and without fine-tuning
solutions in Table 2. Since we fine-tune the latents for
1000 iterations during encoding time, it needs 1000 forward
pass and 1000 backward gradient calculations that results to
around 4000 times more complexity without parallelization.
On the other hand, our Latent Shift needs to test the best
step size (ρf , ρh) out of 8 predefined candidates. Thus (9)
and (10) need 8 forward pass and one single gradient calcu-
lation whose closed form solution is available. It explains
why Latent Shift gives around 10 times encoding complex-
ity without parallelization. However, both approaches have
negligible decoder complexity. We report the complexities
on single thread as opposite to the previous researches with
massive paralellization in order to understand their necessary

number of clock cycle as a proxy of energy consumption.
An important result can be seen when Latent Shift is ap-

plied after fine-tuning solutions. Since fine-tuning solution
applies the minimization of the loss without averaging im-
ages in train set as in (3), KKT conditions get strength and
existed correlations between gradients are increased. For in-
stance the average gradients correlation for Kodak set be-
comes −0.2212 after fine-tuning while it was −0.1805 in
mbt2018-mean codec. The improvement on the correlations
results improvement of the performance as it can be seen that
fine-tuning solution only has 5.77% rate saving while together
with Latent Shift, it increases to−7.47% for Kodak dataset.

5. CONCLUSION

In this work, we have proposed Latent Shift to improve fur-
ther the latent representation of compressive variational auto-
encoders (VAE). We have demonstrated the correlation be-
tween the entropy gradient and the distortion gradient, and
show that this can be used to bring significant gains on top
of several state-of-the-art compressive auto-encoders, without
any need of retraining. From these results, several improve-
ments can be foreseen. First, the correlation of the gradients
depends on the training set according to the definition of the
KKT conditions. However, even though different models use
the same training set and training procedure, their gradients’
correlation coefficient may be different. Thus, it would be in-
teresting to explore the connection of certain type of model
architectures with the correlation of the gradients.
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