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ABSTRACT

This paper explores the use of score-based diffusion models
for Bayesian image reconstruction. Diffusion models are an
efficient tool for generative modeling. Diffusion models can
also be used for solving image reconstruction problems. We
present a simple and flexible algorithm for training a diffu-
sion model and using it for maximum a posteriori reconstruc-
tion, minimum mean square error reconstruction, and poste-
rior sampling. We present experiments on both a linear and a
nonlinear reconstruction problem that highlight the strengths
and limitations of the approach.

Index Terms— image reconstruction, inverse problems in
imaging, Bayesian inference, generative modeling, diffusion
models

1. INTRODUCTION

The goal of image reconstruction (also called inverse prob-
lems in imaging) is to recover an image, x ∈ RN , from its
measurements, y ∈ RM . Image reconstruction problems
arise in a wide variety of fields. For example, the table of
contents for the IEEE Transactions on Computational Imag-
ing (2022, volume 8) shows applications of image reconstruc-
tion algorithms in biomedical imaging, nondestructive test-
ing, computational photography, remote sensing, astronomy,
and more. Approaches to image reconstruction have focused
on either using hand-designed priors (e.g., in compressive
sensing [1, 2] and model-based image reconstruction [3, 4]),
learning simple models for images or their patches (e.g., dic-
tionary learning [5, 6]), or using neural networks to learn pri-
ors [7, 8], usually in an implicit way. Recent advances in
generative modeling—the process of learning a distribution of
images from a training set and generating novel samples from
it—including variational autoencoders [9], generative adver-
sarial networks [10], flows [11], and diffusion models [12]
provide new opportunities to explicitly learn complex priors
and use them for image reconstruction.

Here, we focus on the use of diffusion models for image
reconstruction. Diffusion models [12, 13], learn a data distri-
bution by training a neural network to approximate its score
function, which is the gradient of the log density. Most ap-
proaches involve using a sequence of noisy approximations to

{mccann, mklasky}@lanl.gov, {hj.chung, jong.ye}@kaist.ac.kr

the target density, learning a score function at each noise level
(or, in the continuous case, as a function of the noise level).
These score functions can then be used to draw a new sample
from the target distribution via an interactive process where
the noise level is slowly decreased towards zero (sometimes
called annealing).

Several works leverage diffusion models to solve image
reconstruction problems when the measurement y, and the
corresponding likelihood fY |X is given. However, due to
intractability arising from multiple noise scales, some form
of approximation is necessary. One line of works [13, 14, 15,
16] propose to alternate sampling steps with data consistency
projections. A more recent line of works [17, 18] attempt to
approximate the intractable likelihood to achieve a form of
posterior sampling.

In this work, we explore a simplified diffusion model
scheme that uses only a single noise level. This approach al-
lows the model to be used in Bayesian image reconstruction,
i.e., for maximum a posteriori reconstruction, minimum mean
square error reconstruction, and posterior sampling, without
resorting to additional approximations.

2. BACKGROUND: BAYESIAN RECONSTRUCTION

Maximum a posteriori (MAP) image reconstruction com-
bines a model of the measurement process with a model of the
images to be reconstructed. We model the measurements as
realizations of a random variable Y , with PDF fY |X(y |x).
We model images as realizations of a random variable X with
PDF fX(x). This prior need not represent the actual distri-
bution of images (which may or may not even exist); it is
something that we design (or learn from data) to represent our
beliefs about what images we expect. MAP seeks the image
that is most likely conditional on the observed measurements:
x̂MAP(y) = argmaxx̂ fX |Y (x̂ |y). It can be convenient to
use Bayes’ theorem to express this as

x̂MAP(y) argmin
x̂

− log fY |X(y | x̂)− log fX(x̂). (1)

Minimum mean square error (MMSE) image recon-
struction seeks the image that will, on average conditional
on the measurement, be the closest to the ground truth:

x̂MMSE(y) = argmin
x̂

E(∥x̂−X∥22 |Y = y). (2)
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One can show that (2) implies that x̂MMSE(y) = E(X |Y =
y), and, further, that E(∥x̂MMSE(Y ) −X∥22) ≤ E(∥x̂(Y ) −
X∥22) for all reconstruction algorithms x̂. Therefore, in the
limit of an infinitely-large test set, MMSE image reconstruc-
tor is the algorithm that performs the best (in terms of aver-
age MSE) among all possible algorithms. Put another way,
when papers compare methods in terms of signal-to-noise ra-
tio (SNR) or mean square error (MSE) on a testing set, they
are implicitly seeking an MMSE reconstruction algorithm.

Note that our statements about MMSE implicitly assume
that the prior we design, fX , actually matches the distribu-
tion of the testing data, i.e., the distribution over which the
expectation is taken in the definition of the MMSE.

3. SCORE-BASED DATA-DRIVEN PRIORS

In this section, we describe our proposed method to learn an
(approximation of) fX directly from data and use it to per-
form MAP reconstruction, MMSE reconstruction, and poste-
rior sampling. The key idea is that information about fX may
be recovered from an MMSE denoiser that acts on X .

Assume that we can draw samples from the random vari-
able X , which represents the distribution of images we aim
to reconstruct (or we have a sufficiently large training set of
samples), but that we do not know the PDF fX , which we
need to perform MAP and MMSE reconstruction. We begin
by forming a noisy version of X , called Z. Let Z = X+N ,
with N ∼ N (0, σ2I), for a value of σ2 that we choose. We
then seek a function to solve the denoising problem, i.e., to
recover x from z. As already discussed, the best possible de-
noiser (in an MSE sense) is the MMSE denoiser, which is not
known in general. Any actual denoiser, e.g., a trained neural
network, only approximates MMSE denoising for a variety of
reasons: it is trained on a finite training set, training finds only
an approximate minimizer of the training loss, and because
any finite architecture cannot represent all possible functions.

Tweedie’s formula [19] relates the MMSE estimator to the
PDF of the measurements. It states that

x̂MMSE(z) = z + σ2∇ log fZ(z), (3)

where ∇ log fZ(z) is known as the score function. For a well-
trained denoiser, we have r(z) ≈ x̂MMSE(z) and therefore

r(z) ≈ z + σ2∇ log fZ(z). (4)

3.1. Score-based MAP

Recall that MAP reconstruction minimizes

LMAP(x) = − log fY |X(y |x)− log fX(x). (5)

If we are willing to use fZ (the noisy version of the data dis-
tribution fX ) as our prior, we can use (4) to write the gradient

of the loss function as

∇xLMAP(x) ≈ −∇x log fY |X(y |x)− 1

σ2
(r(x)− x).

(6)

We can then use first order optimization methods to solve (1)
and recover a MAP reconstruction.

3.2. Posterior Sampling and Score-based MMSE

The score function also provides a way to sample from the
posterior, fX |Y , which allows us both to estimate the MMSE
reconstruction (which is the posterior mean) and explore the
uncertainty in the reconstruction.

To use the score function for sampling, we use the the-
ory of stochastic differential equations. In particular, the Eu-
ler–Maruyama discretization of overdamped Langevin Itô dif-
fusion (see [20] equations (1), (2), and (4)) yields the iteration

xk+1 = xk + τ∇ log fX(x) +
√
2τE, (7)

where E is a draw from a standard multivariate normal distri-
bution (zero mean, identity covariance) and τ is a small posi-
tive step size. We know that in the limit k → ∞ and τ → 0
this iteration produces a distribution that approaches fX for
any PDF fX for which (7) is well-defined, i.e., the gradient
exists.

Langevin diffusion (7) provides a way to draw samples
from any distribution for which we know the score function.
This is useful both for qualitatively evaluating our prior fZ
and for performing posterior sampling. In the former case,
we substitute a well-trained denoiser for the score function,
resulting in the iteration

xk+1 = xk +
τ

σ2
(r(xk)− xk) +

√
2τE. (8)

Looking at the results of (8) provides a way to explicitly see
what prior we have learned.

To sample the posterior, we note that the score function
for the posterior, fX |Y , is exactly what we have already de-
rived in Section 3.1. Again taking fZ as our prior, we have
the iteration

xk+1 = xk + τ∇x log fY |X(y |xk)+
τ

σ2
(r(xk)− xk) +

√
2τE. (9)

4. EXPERIMENTS AND RESULTS

We now describe our experiments and results, including our
training dataset, design and training of neural networks, sam-
ple generation, and image reconstruction in a linear and non-
linear setting.



4.1. Dataset and Neural Network Training

We designed a synthetic dataset to test our algorithms. Our
intent was to use a simple generative model so that exam-
ples could be generate on-the-fly during network training, but
to include enough structure so as to learn a nontrivial prior.
We achieved these goals by generating IID Gaussian images,
filtering them repeatedly with a square averaging filter, and
thresholding the result. This approach is efficient on a GPU
and provides control over the smoothness of the resulting im-
ages. For our experiments, we used 64 × 64 images with 10
rounds of 3 × 3 averaging and a threshold set at 0. We refer
to this as the Gaussian blobs dataset.

To learn a score function as described above, we trained
neural network denoisers on the Gaussian blobs dataset. To
explore the effect of the noise level, we trained one network
for a low noise level (σ2 = 10−2) and one for a medium
noise level (σ2 = 10−1). Networks were convolutional neu-
ral networks (CNNs) using the ReLU linearity, a residual con-
nection (i.e., r(x) = rCNN(x) + x) and with zero-padding at
every layer. We trained the networks using stochastic gradient
descent using PyTorch [21]. We performed a hyperparameter
search over the learning rate (10−

4
2 , 10−

3
2 , . . . , 10

0
2 ), momen-

tum (0, 0.9), number of network layers (10, 15, 20), number
of network channels (16, 32, 64, 128), and presence or ab-
sence of skip connections from the input to each hidden layer.
The batch size was 20. Each of the 240 networks in the hy-
perparameter sweep was trained for 4 hours on an NVIDIA
GeForce RTX 2080 Ti. We evaluated each network in terms
of MSE loss on a validation set of 100 images.

In the low noise setting (σ2 = 10−2), the best network
had a validation loss of 2.06 × 10−8 and trained for over 1.5
million steps. It included skip connections, had a depth of
15, 16 channels, a learning rate of 10−

1
2 , and momentum of

0.9. Four other networks had validation losses below 10−7,
they differed in terms of depth (10, 15, 20) and number of
channels (16, 32, 64).

In the medium noise setting (σ2 = 10−1) , the best net-
work had a validation loss of 4.06×10−3 and trained for over
1.2 million steps. It included skip connections, had a depth
of 10, 32 channels, a learning rate of 10−

3
2 , and momentum

of 0.9. Twelve other networks had validation losses below
4.2−3, they differed in terms of depth (10, 15, 20), number
of channels (16, 32, 64, 128), and learning rate (10−

3
2 , 10−

2
2 ,

10−
1
2 ).
These results suggest that skip connections and momen-

tum promote good denoising performance. We did not see
good performance from the same architecture at two different
learning rates, which indicates that finding the correct learn-
ing rate for a given architecture is important.

4.2. Score-based Sampling

We used our trained denoisers in the context of score-based
sampling to evaluate qualitatively what distribution each had

learned. We ran the iteration (8) for 2,000 steps with τ set
such that τ/σ2 = 0.1. We initialized the sampling with an
IID Gaussian image with mean 0.5 and variance equal to the
σ2 used during training. To generate multiple samples, we
repeated this process with different random initializations.

Fig. 1: Left column: sample of target prior fZ . Right
columns: results of sampling from learned prior using (8).
Top row, σ2 = 10−2; bottom row, σ2 = 10−1.

The results (Figure 1) show that the denoiser trained on
the low noise level does not produce reasonable samples of
its target distribution, while the denoiser trained at the mod-
erate noise level does. We believe this difference occurs be-
cause the network trained at a moderate noise level must learn
learn to combine information for neighboring pixels to de-
noise well, while the one trained at a low noise level acts
mostly locally. Based on these results, we use the model
trained with σ2 = 10−1 in all subsequent experiments.

4.3. Image Reconstruction

We first evaluated our method on a image inpainting prob-
lem. We drew a sample x from the Gaussian blobs dataset
and formed the measurement by drawing from Y = Ax +
Nη2 , where A is a linear operator that crops away the cen-
ter pixels of x (see Figure 2) and Nη2 ∼ N (0, η2I), with
η2 = 0.2. The gradient of the log likelihood was there-
fore 1

η2 (A
TAx − ATy). To perform MAP reconstruction,

we solved the MAP objective (5) using gradient descent (500
steps, step size 0.1) with the gradient given by substituting
this log likelihood into (6). To perform posterior sampling,
we substituted the log likelihood into (8) and ran 500 iterates
with τ = 10−3, restarting 500 times to generate 500 samples.
We formed the MMSE reconstruction by taking the pixelwise
average of these samples. We also computed the pixelwise
standard deviation of the samples as a measure of uncertainty
of the MMSE reconstruction, we we call σMMSE.

Results for the inpainting problem are shown in Figure 2.
We found that, due to the nonconvexity of the MAP objec-
tive (5), the solution depended on the initialization. By us-
ing different random initializations, we could produce differ-
ent MAP reconstructions. These may have similar values of
the MAP objective or not; our framework does not allow us



(a) x (b) y (c) MAP reconstructions, x̂MAP

(d) posterior samples (e) x̂MMSE (f) σMMSE

Fig. 2: Inptainting results.

to check because we only have access to the gradient of the
MAP objective, with no way to compute its value. Each MAP
reconstruction reflected the properties of the forward model:
there is no information in the measurement about the center of
the image x, therefore the center of the MAP reconstructions
differ more than the edges. On the edge, the MAP recon-
structions look noisy; careful comparison between the mea-
surement and reconstruction reveals that this noise reflects the
noise in the measurement—not the noisy prior; this makes
sense because the data fidelity term draws x̂MAP close to y.
The posterior samples are also more similar to each other on
the edge, but they exhibit noise as a result of the noisy prior.
The MMSE reconstruction is constant in the center, because
MMSE reconstruction is equivalent to the expectation of the
prior when there is no information coming from the measure-
ment. The pixel-wise standard deviation of x̂MMSE reveals
that most of the variability in the posterior samples is along
the edges of blobs and in the center.

The PSNRs (with respect to the ground truth, peak = 1.0)
of the posterior samples ranged from 4.72 dB to 6.29 dB;
the MAP PSNRs were 5.80 dB and 6.19 dB, and the MMSE
PSNR was 9.79. The MAP data fidelities (PSNR of Ax̂ with
respect to y) were 10.77 dB and 10.99 dB; the MMSE data
fidelity was 12.84 dB. Note that the MMSE reconstruction is
quantitatively the best despite it looking qualitatively blurry.

We also solved a nonlinear Fourier magnitude re-
trieval problem, using the nonlinear operator A(x) =
F−1(F(x)/|F(x)|), where F denotes the Fourier transform
and | · | is applied elementwise. We set the measurement noise
η2 = 10−4 and computed the log likelihood using automatic
differentiation (although it can also be derived by hand). For
MAP reconstruction, we used 5,000 steps with a step size of
10−3; for posterior sampling, we used the same parameters
as for the linear problem.

Results for the magnitude retrieval problem are given in
Figure 3. Here, the MAP reconstructions look smooth, but
they do not do a good job of capturing the edge locations in
the data. The posterior samples do capture the edges well, and

MMSE reconstruction is a good match to the ground truth.
The PSNRs of the posterior samples ranged from -7.88 dB
to 8.92 dB; the MAP PSNRs were 4.82 dB and 5.14 dB, and
the MMSE PSNR was 11.40. The MAP data fidelities were
41.84 dB and 41.61 dB; The MMSE data fidelity was 42.93
dB. These results show that, while the MAP reconstructions
do not visually resemble the ground truth, the provide a high
data fidelity, meaning that they are reasonable solutions to the
reconstruction problem.

(a) x (b) y (c) MAP reconstructions, x̂MAP

(d) posterior samples (e) x̂MMSE (f) σMMSE

Fig. 3: Magnitude retrieval results.

5. DISCUSSION AND CONCLUSIONS

We have presented a method for using score-based diffusion
models in the context of Bayesian image reconstruction. The
advantage of our approach is that it is simple and relies on
only two approximations: the trained denoiser approximates
the MMSE denoiser and the noisy prior fZ approximates the
data prior fX . The first approximation is tightened in part by
training the best possible denoiser, but further work is needed
to train denoisers that mimic the MMSE result on all possible
inputs, rather than just those that it is likely to see during train-
ing. The second approximation can be made tighter by reduc-
ing the noise level during training; however our work estab-
lishes that reducing this too much causes the model to fail to
sample properly. Future work will explore schemes for reduc-
ing this noise while maintaining the ability to solve inverse
problems in a straightforward way. Our work also serves as
a reminder that MMSE reconstructions, while they maximize
quantitative metrics such as MSE and SNR, may not be qual-
itatively desirable, e.g., consider the blurry MMSE result in
Figure 2. This fact points towards using task-driven metrics
such as segmentation or classification accuracy to evaluate the
results of image reconstruction algorithms.
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