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ABSTRACT
This paper concerns the research problem of point cloud reg-
istration to find the rigid transformation to optimally align the
source point set with the target one. Learning robust point
cloud registration models with deep neural networks has
emerged as a powerful paradigm, offering promising perfor-
mance in predicting the global geometric transformation for a
pair of point sets. Existing methods first leverage an encoder
to regress the global shape descriptor, which is then decoded
into a shape-conditioned transformation via concatenation-
based conditioning. However, different regions of a 3D shape
vary in their geometric structures which makes it more sense
that we have a region-conditioned transformation instead of
the shape-conditioned one. In this paper, we define our 3D
registration function through the introduction of a new design
of 3D region partition module that is able to divide the input
shape to different regions with a self-supervised 3D shape
reconstruction loss without the need for ground truth labels.
We further propose the 3D shape transformer module to effi-
ciently and effectively capture short- and long-range geomet-
ric dependencies for regions on the 3D shape Consequently,
the region-aware decoder module is proposed to predict the
transformations for different regions respectively. The global
geometric transformation from the source point set to the tar-
get one is then formed by the weighted fusion of region-aware
transformation. Compared to the state-of-the-art approaches,
our experiments show that our 3D-URRT achieves superior
registration performance over various benchmark datasets
(e.g. ModelNet40).

Index Terms— 3D registration, unsupervised registration

1. INTRODUCTION

Point set registration is a challenging but meaningful task,
which has wide application in many fields. This task re-
quires us to find the rigid transformation to optimally align
the source point set with the target one. In recent years,
deep-learning-based algorithms have been implemented in
various industries and achieved great success, researchers
are increasingly interested in bringing deep-learning-based
solutions to the field of point set registration. These methods

Fig. 1. Comparison between the shape-conditioned transfor-
mation and region-conditioned transformation.

usually leverage modern feature extraction technologies for
feature learning and then regress the transformation matrix
based on the mutual information and correlation defined on
the extracted features of source and target shapes. The most
representative model, deep closest point (DCP) [1], lever-
ages DGCNN [2] for feature learning and a pointer network
to perform soft matching. To refine the soft matching re-
sults to predict the final rigid transformation, the DCP model
further proposes a singular value decomposition layer for
fine-tuning. However, it is still challenging to design an ex-
plicit module for learning both the features from unstructured
point clouds and their “geometric relationship”. The learning
of robust point cloud registration models with deep neural
networks [3, 4] has emerged as a powerful paradigm, offering
promising performance in predicting the global geometric
transformation for a pair of point sets.

As shown in Figure 1, previous approaches firstly encode
the 3D point to a high-dimensional global shape descriptor
and use the shape-conditioned decoder to regress the trans-
formation for the given pair 3D shapes. In this paper, we
start with our argument that the performance of the previous
registration models might be affected by the fact that only
the global shape descriptor is used to predict the transforma-
tion for a paired 3D shapes. This observation motivate us to
develop our proposed 3D Unsupervised Region-Aware Reg-
istration Transformer, denoted as 3D-URRT, with the hope
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to fully utilize both local and global geometric features for
more robust 3D shape registration learning. In addition, dif-
ferent regions of a 3D shape vary in their geometric structures
which makes it more sense that we have a region-conditioned
(in contrast to shape-conditioned) transformation estimation.
Note that our proposed 3D-URRT is only trained by a self-
supervised 3D shape reconstruction loss and an unsupervised
alignment loss without the need of any annotated region la-
bels or transformation ground truth information.

In this paper, as illustrated in Figure 2, we present 3D
region-aware unsupervised registration transformer to predict
transformation for pairwise point sets in a self-supervised
learning fashion. Our proposed 3D-URRT framework con-
tains three main components. The first component is a 3D
region partition module that is responsible to divide the given
shape to different 3D regions with a self-supervised 3D shape
reconstruction loss without the need for region labels. The
second component is the 3D shape transformer module with
position encoding that is able to capture short-and long-range
geometric dependencies for regions on the 3D shape. The
third component is a region-aware decoder module which
maps the region-aware transformer features to a set of region-
specific transformations. The global geometric transfor-
mation from source point set to target one is then formed
by weighted fusion of region-aware transformations. Our
contribution is as follows: 1) We introduce a new concept
of region-conditioned transformation that contributes to a
novel 3D region-aware unsupervised registration transformer
(3D-URRT) as the learning approach for robust point set
alignment. Our 3D-URRT is a novel unsupervised learning
model for point cloud registration without the need of train-
ing on labeled datasets. 2) We define our 3D registration
function through the introduction of a new design of trans-
former which is able to efficiently and effectively capture
short- and long-range geometric dependencies for regions on
the 3D shape. 3) Experimental results demonstrate the ef-
fectiveness of the proposed method for point set registration,
our 3D-URRT achieved superior performance compared to
unsupervised and supervised state-of-the-art approaches even
without labeled data for training.

2. METHODS
In this section, we first introduce the problem statement of
the 3D registration model. Giving a training dataset D =
{(S,G)}, where S,G ⊂ R3. S denotes the input source shape
andG denotes the input target shape. We aim to obtain a para-
metric function gθ(S,G) using a neural network structure that
can predict the rotation matrixR ∈ SO(3) and the translation
vector t ∈ R3 that can deform the source point cloud towards
the target point cloud.

2.1. 3D Region Partition Module
In 2D computer vision, by dividing the 2D image into sev-
eral patches, the transformer is computationally applicable to
exploit the relationship between patches and demonstrate ex-

Fig. 2. Our pipeline. Our proposed 3D-URRT framework
contains three main components: 3D region partition mod-
ule, 3D shape transformer module and region-aware decoder
module.

cellent performance in different 2D vision tasks. In this paper,
we propose the 3D region partition module that is able to di-
vide the 3D shape into different regions with a self-supervised
3D shape reconstruction loss without the need for region la-
bels. Our key idea is to use a set of MLPs to predict proba-
bility scores of all parts for each point on the 3D shape. In
other words, if two points belong to the same part, they have
a stronger response with a higher probability score on the
same MLP. With this design, our 3D region partition module
first takes as input the concatenation of the point coordinate x
and its corresponding shape embedding e extracted by a fea-
ture encoder network. Then, the 3D region partition module
performs a regression that maps the shape embedding from
R(d+3) → Rn outputting the predict probability scores of all
parts for each point, where d denotes the dimension of shape
embedding and n denotes the pre-defined number of 3D re-
gions, respectively. Formally, in this model we define a set
of non-linear multi-layer perceptron (MLP)-based functions
{hk}k=1,...,n with a softmax activation function to predict the
probability score sk that indicates the likelihood that the given
point belongs to a particular region:

sk = Softmax(hk([x, e])) (1)

where e denotes the shape embedding, x denotes a 3D point
in the source or target shape and sk denotes the probability
score of the k-th region.

After we have the probability scores of all regions that the
given point belongs to, we use a max-pooling function to se-
lect the highest probability score among all the pre-defined
regions and output the predicted region label o of the input
point. Note that our model is trained with a self-supervised
reconstruction loss. The model can output an inside-outside
status[5] for each point in the shape. While predicting the re-
gion label, our model is able to naturally estimate the inside-
outside status for each 3D point in the shape. Thus, we can
divide the input source or target shape X to several mean-
ingful regions {Xk}k=1,2,...,n using the predicted region la-
bel o, where n denotes the pre-defined number of 3D regions.
The region feature sequence (RFS) can be also obtained as



l = {lk}k=1,2,...,n by dividing the shape embedding with a
max-pooling operation according to the predicted region la-
bel.

2.2. 3D Transformer Module
Position encoding plays an important role in transformer since
it can retain positional information for sequences so that the
transformer is able to exploit complex relationships amongst
different elements in the sequence [6]. In this paper, we pro-
pose to use the centroid of the region as the position reference
for each region and we utilize a trainable MLP-based position
encoding function δ : R3 → Rd to encode the centroid coor-
dinate. The final input f of the 3D shape transformer mod-
ule is the element-wise summation of the encoding feature p
and region feature sequence l. To efficiently and effectively
capture short- and long-range geometric dependencies for re-
gions on the 3D shape, we define self-attention layers in this
section. Given the region feature sequence, self-attention lay-
ers are able to estimate the relevance of one region to another
region. We can formulate the self-attention layers as:

ai =

n∑
j=1

Softmax(φ(fi)
T
ψ(fj))α(fi) (2)

where φ, ψ and α are linear based feature transformation
function Rd → Rd. The attention weight is the product be-
tween features transformed by φ and ψ. Then we use the
Softmax activation function to normalize the attention weight.
The region transformer feature sequence (RTFS) defined as
a = {ak}k=1,2,...,n (see Figure 2) is the weighted aggrega-
tion between the attention weight and the features.

2.3. Region-Aware Decoder Module
Different regions of a 3D shape vary in their geometric struc-
tures which makes it more sense that we have a region-
conditioned (in contrast to shape-conditioned) transformation
decoder via concatenation-based conditioning. As shown in
Figure 2, the region-conditioned transformation predicts a
set of transformations for different regions, which are then
weighted fused to form a global transformation. With this
design, we define a set of non-linear MLP-based functions
gk : R(2m) → Rc, where c is the dimension of output layer.
We have the predicted rigid transformation matrix ϕk as:
ϕk = gk([a

S
k , a

G
k ]) where [,] denotes the operation of con-

catenation, ϕk denotes the k-th transformation function in
Region-Aware Transformation. fSk and fGk denote the source
point set region feature and the target point set region feature.
We use the region point number as the weight to balance
among the multiple MLPs from the region-aware decoder
module. We define the final transformation matrix ϕ as:

ϕ =

n∑
k=1

Nk

N
ϕk (3)

Table 1. Quantitative result. We conduct the ablation study
on the ModelNet40 dataset.

Models RMSE(R) MAE(R) RMSE(t) MAE(t)
Model A 1.2891 1.0016 0.0170 0.0128
Model B 0.6237 0.5337 0.0097 0.0074
Model C 0.5526 0.4328 0.0080 0.0060

Table 2. Quantitative result. Comparison using shapes with
D.I., P.D. and D.O. noise on the ModelNet40 dataset.

Noise Models RMSE(R) MAE(R) RMSE(t) MAE(t)

D.I.
PR-NET 3.9304 2.9692 0.0229 0.0175
DCP 5.6053 4.4149 0.0310 0.0234
Ours 2.2623 1.6740 0.0187 0.0133

P.D.
PR-NET 2.7431 2.1505 0.0224 0.0177
DCP 3.9905 3.0104 0.0220 0.0170
Ours 1.2238 0.9811 0.0152 0.0115

D.O.
PR-NET 4.6381 3.5596 0.0247 0.0189
DCP 7.1032 5.7792 0.0349 0.0271
Ours 2.3787 1.6398 0.0217 0.0169

Where N is the number of points in source and target shapes
and Nk is the number of points in the k-th region of source
and target shapes.

2.4. Loss Function
There are two terms in the loss function. We adopt Chamfer
Distance, a simple but effective distance metric for alignment
loss. The reconstruction loss is defined as a type of inside-
outside status [5]. In order to obtain the negative points (out-
side) for training, we sampled a collection of 3D points sur-
rounding the input shape and record the inside-outside status
of the sampled points following the sampling method in [7].

3. EXPERIMENTS

3.1. Dataset preparation
We test the performance of our method for 3D point cloud
registration on the ModelNet40 benchmark dataset [8]. For
a fair comparision, we follow the exact same experimental
setting as DCP[1] For the evaluation of point cloud registra-
tion performance, We use the mean squared error (MSE) and
mean absolute error (MAE) to measure the performance of
our model and all comparing methods.

3.2. Ablation study
Experiment setting: For the experimental setting of model
A, without our regional-aware decoder, we use the classical
shape-conditioned decoder (one decoder) for point cloud reg-
istration. For the experimental setting of model B, we uti-
lize the 3D region partition module and 3D shape transformer
module for region partition and region-aware feature learning.
The region-aware decoder is also leveraged to estimate the
region-aware transformation for each region. The global geo-
metric transformation is then formed by the weighted fusion
of region-aware transformation. For the experimental setting
of model C, we further integrate the position encoding feature
as the additional input to 3D shape transformer module.



Fig. 3. Qualitative results. Randomly selected qualitative
results in presence of D.I., P.D., and D.O. noises on the Mod-
elNet40 dataset.
Table 3. Quantitative result. Comparison with SOTA using
shapes on the ModelNet40 dataset.

Models MSE(R) MAE(R) MSE(t) MAE(t)
ICP [9] 894.8973 23.5448 0.0846 0.2487
PNLK [4] 227.8703 4.2253 0.0004 0.0054
GO-ICP [10] 140.4773 2.5884 0.0006 0.0070
FGR [11] 87.6614 1.9992 0.0001 0.0028
DGMR [12] 7.9106 2.8125 0.0001 0.0100
DCPv1 [1] 6.4805 1.5055 0.000003 0.001451
RPM-Net [13] 4.7284 1.3847 0.000078 0.005367
DCPv2 [1] 1.3073 0.7705 0.000003 0.001195
Ours 0.3223 0.4328 0.000070 0.006012

Results: By comparing results of model A in Table 1, the
performance gain of model B indicates the effectiveness of
3D shape transformer module as a technique to capture short-
and long-range geometric dependencies for region-aware
shape descriptor learning. This results further explain why
it is more sense we have region-conditioned transformation
instead of shape-conditioned one. By comparing the perfor-
mance of model B and model C, we validate the effectiveness
of the proposed position encoding. We observed a good per-
formance improvement that indicates our proposed position
encoding is able to retain the relative position information of
each 3D region.
3.3. Studies on Resistance to Noise
Experiment setting: In this experiment, we conduct the ex-
periments to verify our model’s performance using Data In-
completeness (D.I.) Noise, Point Drifts (P.D.) Noise and Data
Outliers (D.O.) Noise on 3D shapes. As for D.I. noise (par-
tial), we randomly select a point in unit space and keep its
768 nearest neighbor points. As for P.D. noise, we randomly
add Gaussian noise on the entire shapes, which is randomly
sampled from N (0, 0.01) and clipped to [-0.05, 0.05]. As
for D.O. noise, we first remove a certain amount of points
and randomly add the same amount of points generated by a
zero-mean Gaussian to the entire point clouds.
Results: We list the quantitative experimental results about
comparison using shapes with several noises in Table 2. The
table presents that our method achieves remarkably better per-
formance than PR-NET and DCP models regarding the trans-
lation prediction and rotation angle results on the ModelNet40

dataset. In addition, from the qualitative results shown in Fig-
ure 3, we notice that our model achieves remarkable align-
ment result with D.I. noise, P.D. noise and D.O. noise.

3.4. Comparisons with state-of-the-art methods

Experiment setting: In this experiment, we evaluate the
overall registration performance of our proposed model on
multiple shape categories and yield the performance com-
pared to well applied and current state-of-the-art methods.
For a fair comparison, following exactly DCP’s setting, we
split the dataset into 9,843 models for training and 2,468
models for testing. Note that our model is trained without
using any ground-truth information and our model does not
require the SVD-based fine-tuning processes.
Results: We list the quantitative experimental results in
Table 3. The data demonstrate that our model, as an unsu-
pervised method, possesses excellent generalization ability.
Even though our approach does not require label information
for training purposes and an additional SVD layer for fine-
tuning, our model still has significantly better performances
than DCPv2 (supervised) version. Also, our model is more
robust to random point sampling of source and target shapes
by adopting the Chamfer Distance loss, whereas the DCP
would have severe degradation since it by default assumes
the same sampling of points. One may note that the trans-
lation vector prediction performance of our model is inferior
to that of DCPv1, DCPv2. The reason for this gap is that
DCPv2 adopts an additional attention mechanism in its net-
work for enhancement. DCPv1/DCPv2 leverage SVD as an
additional fine-tuning the process to refine their results. Com-
pared to other unsupervised algorithms, like ICP and FGR,
the strength and accuracy of our model could be clearly ob-
served.

4. CONCLUSION

In this paper, we present 3D region-aware unsupervised regis-
tration transformer, denoted as 3D-URRT, to predict transfor-
mation for pairwise point sets in the self-supervised learning
fashion. Compared with previous shape-conditioned transfor-
mation methods, with the proposed region-aware transforma-
tion network, our model can learn the desired geometric trans-
formations for multiple regions in a particular shape which
makes the model has great generalization ability and more
robust to the noises. In addition, we propose the 3D shape
transformer module which is able to efficiently and effectively
capture short- and long-range geometric dependencies for re-
gions on the 3D shape. Our proposed method is trained in an
unsupervised manner without any ground-truth labels.
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