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ABSTRACT
Low-light image enhancement task is essential yet chal-
lenging as it is ill-posed intrinsically. Previous arts mainly
focus on the low-light images captured in the visible spec-
trum using pixel-wise loss, which limits the capacity of re-
covering the brightness, contrast, and texture details due
to the small number of income photons. In this work, we
propose a novel approach to increase the visibility of im-
ages captured under low-light environments by removing
the in-camera infrared (IR) cut-off filter, which allows for
the capture of more photons and results in improved signal-
to-noise ratio due to the inclusion of information from the
IR spectrum. To verify the proposed strategy, we collect a
paired dataset of low-light images captured without the IR
cut-off filter, with corresponding long-exposure reference
images with an external filter. The experimental results on
the proposed dataset demonstrate the effectiveness of the pro-
posed method, showing better performance quantitatively and
qualitatively. The dataset and code are publicly available at
https://wyf0912.github.io/ELIEI/

Index Terms— Low-light enhancement, infrared photog-
raphy, computational photography

1. INTRODUCTION

Due to the small number of photons captured by the cam-
era, the images captured under low-light environments usu-
ally suffer from poor visibility, intense noise, and arti-
facts. To enhance the visibility of the images captured in
low-light environments, previous works mainly focus on
modelling the mapping relationship between low-light im-
ages and corresponding normally-exposed images. Specifi-
cally, current deep learning based methods have the follow-
ing paradigms: learning an end-to-end model using paired
datasets in [1, 2, 3, 4, 5]; GAN-based networks in [6, 7];
encoder-decoder based models in [8, 9, 10, 11]. However,
the aforementioned methods are all based on existing visible
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Fig. 1: The visibility of low-light images is enhanced by in-
creasing the number of income photons. (a) and (b) are cap-
tured under the same settings, except whether the IR cut-off
filter exists. (The right sides of (a) and (b) are amplified by a
factor of 3.5 for better visualization.)

information of the corrupted inputs on RGB space, i.e., even
if they can achieve pleasant perceptual quality, they can not
perform reliably due to the lack of incident photons [12]. Be-
sides, there are various limitations of the current mainstream
methods, e.g., end-to-end training using pixel reconstruc-
tion loss leads to a regression-to-mean problem; GAN-based
training requires careful hyper-parameter tuning and lacks
enough supervision for noise removal.

Recently, infrared-light-based methods have attracted
great attention in low-level computer vision tasks as they in-
troduce extra information from infrared spectroscopy. There
are several works explored the usage of infrared light in
computation photography previously. Specifically, Zhuo et
al. [13] propose to use additional Near-Infrared (NIR) flash
images instead of normal flash images to restore the details
of noisy input images that require the user to take two photos
of the same scene in a static environment, causing the mis-
alignment of the inputs easily; Zhang et al. [14] propose a
dual-camera system to capture a NIR image and a normal vis-
ible image of the same scene concurrently, while increasing
the cost of devices during the acquisition of data.

In this paper, we propose a novel prototype that utilizes in-
formation from the infrared spectrum without the need for ad-
ditional devices. Most solid-state (CCD/CMOS) based digital
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cameras are equipped with IR cutoff filters to avoid color dis-
tortion caused by the high sensitivity to IR light. Conversely,
we remove the IR cutoff filter so that the CMOS can receive
more incident photons located on the infrared spectrum, re-
sulting in increased brightness, higher signal-noise ratio, and
improved details as shown in Fig. 1. A paired dataset, namely
IR-dataset, of IR-RGB images captured under low-light en-
vironments and their reference normally-exposed RGB im-
ages, is collected under different scenes. We further propose
a novel flow-based model that can enhance visibility by mod-
elling the distribution of normally-exposed images and ad-
dress color distortion caused by the lack of IR cutoff filter
through our proposed color alignment loss (CAL).

In summary, the contributions of our work are threefold:
1. We collect a paired dataset under a novel prototype,

i.e., IR-RGB images captured under low-light environ-
ments and their normally-exposed reference RGB im-
ages, which supports future studies.

2. We propose a flow-based model with our proposed
color alignment loss, which can effectively address the
color distortion caused by removing the IR-cut filter.

3. We conduct extensive experiments on our collected
datasets that demonstrate removing the IR-cut filter can
lead to better-quality restored images in low-light envi-
ronments. Besides, our proposed framework achieves
superior performance compared with SOTA methods.

2. METHODOLOGY

2.1. Dataset Collection
The dataset is collected by a modified Nikon D3300 camera,
in which the internal IR cut-off filter is removed. The paired
images are captured using a stable tripod and remote control
to minimize misalignment. The low-light images are captured
using the aforementioned device without IR cut-off filter. To
capture the normally-exposed reference images in the visible
light spectrum, an external IR filter, which has the same cut-
off wavelength as the internal one, is carefully put in front of
the lens to ensure that no camera shift occurs during the long
exposure. To better explore the effectiveness of removing the
IR cut-off filter in a low-light environment, we also collect a
set of low-light images in the visible light spectrum (e.g., the
example in Fig. 1). We divide our dataset into a training set
and an evaluation set. Specifically, the training set includes
236 pairs of low-light images without cut-off filter and their
corresponding reference images (472 images in total). The
evaluation set has 80 pairs of low-light images with and with-
out the cut-off filter and their corresponding reference images.

2.2. Preliminary
Previously, the mainstream of deep learning based models is
mainly based on pixel reconstruction loss. However, due to
the limited capacity to distinguish the unwanted artifacts with
the real distribution of normally-exposed images, they may
lead to unpleasant visual quality with blurry outputs [15, 16].

Inspired by the extraordinary performance of flow-based
models [17, 18, 19, 16], we found that learning conditional
probability distribution can handle the aforementioned prob-
lem by including possibilities of various distributions of nat-
ural images. Specifically, the recent state-of-the-art LLFlow
model [16] has shown great performance in using normaliz-
ing flow conditioned on corrupted inputs to capture the condi-
tional distribution of normally exposed images. In this work,
we inherited the core idea of conditional flow with the like-
lihood estimation proposed in [16] as the backbone of our
method. The conditional probability density function of nor-
mally exposed images can be modified as follows:

fcond(y|x) = fz(Θ(y;x))|det ∂Θ
∂y

(y;x)|, (1)

where Θ(·) is the invertible network with N invertible layers
{θ1, θ2, . . . , θN}, and the latent representation z = Θ(y;x) is
mapped from the corrupted inputs x normally exposed images
y. By characterizing the model with maximum likelihood es-
timations, the model can be optimized with the negative log-
likelihood loss function:

Lnll(x, y) = − log fcond(y|x)

= − log fz(Θ(y;x))−
N−1∑
n=0

log |det ∂θ
n

∂zn
(zn; gn(xl))|,

(2)
where g(·) is the encoder that outputs conditional features of
the layers θi from the invertible network.

2.3. Color Alignment Loss
Although the benchmarks performed well on the visible light
spectrum, the performance suffered from severe degrada-
tion caused by the additional infrared light in some extreme
cases if we directly apply benchmark methods to the col-
lected dataset. To further alleviate the color distortion caused
by removing the IR filter, inspired by histogram-matching
techniques studies [20, 21, 22], used by remote sensing, we
propose to minimize the divergence of the color distribution
between the generated images and reference images. Specif-
ically, by representing the color information using differen-
tiable histograms in the RGB color channels, we emphasize
more on the color distributions of the generated and refer-
ence images instead of the local details. To further measure
the differences in these distributions, we propose using the
Wasserstein distance, which can provide a more stable gradi-
ent compared with the commonly used KL divergence. The
details are as follows:

2.3.1. Differentiable Histogram
Since the low-light images are taken without the existence of
an IR cut-off filter, they admit more red light, which leads to
color bias in the red channel. To suppress the color distortion,
we propose to minimize the divergence of the channel-wise
differentiable histogram between the generated and reference
images. Assume that x ∈ RC×H×W is an image where C,



(a) Input (b) RetinexNet (c) LIME (d) Zero-DCE (e) KinD

(f) KinD++ (g) EnlightenGAN (h) MIRNet (i) Ours (j) Reference

Fig. 2: Visual comparison with state-of-the-art low-light image enhancement methods on IR-RGB dataset. Our method shows
better performance in controlling color distortion and detail preservation.

H and W refer to its number of channels, height, and width
respectively.

To calculate its channel-wise histogram bounded by an ar-
bitrary range [a; b], we consider fitting the histogram with uni-
formly spaced bins with size R, noted by nodes ti ∈ {t1 =

m, t2, . . . , tR = n}, where step size ∆ = (a−b)
R−1 . By match-

ing the pixel values of different channels of the image to the
histogram nodes, the value hr of the histogram H at each
node then be calculated as:

hr =
∑
C

1

1 + δ ∗ (pi,j − tr)2
, r = 1, 2, . . . , R (3)

where δ is a constant scaling factor. After collating and
normalizing hr, we could get the final one-dimensional his-
togram H(x) with size R on different channels.

2.3.2. Wasserstein Metric
Inspired by Wasserstein distance (W-distance) to measure the
distance between distributions on a given metric space [23],
we propose to optimize the histograms of images using W-
distance as follows

Wp(Hŷ, Hy) = inf
ŷ∼Hŷ,y∼Hy

(E||ŷ − y||p)1/p, (4)

where Hŷ and Hy denote differentiable histograms of the re-
stored image ŷ and ground-truth image y respectively through
Eq. (3). An explicit formula can be obtained since the dimen-
sion of the variable is 1 as follows,

Wp(Hŷ, Hy) = ||F−1
ŷ − F−1

y ||p

= (

∫ b

a

|F−1
ŷ (α)− F−1

y (α)|pdα)1/p,

where Fy and Fŷ are the cumulative distribution of Hy and
Hŷ respectively. It could be further simplified when p = 1
and the variable is discrete:

LCA = W1(Hŷ, Hy) =
∑
R

|F ŷ(t)− F y(t)|dt. (5)

The negative log-likelihood and the color alignment loss

jointly define the total loss as follows
L = Lnll + λ · LCA, (6)

where λ is a weighting constant to adjust the scales of color
alignment loss for specific settings.

3. EXPERIMENTS
3.1. Experimental settings.
All the captured images are resized to the resolution of 400×
600 for training and testing. For our model, the weighting fac-
tor λ of CAL is set to 0.01 to cast the loss component value
onto a similar numerical scale during training; to simplify the
task, we bound the range of the channel-wise histogram val-
ues to [0.0; 1.0], and the bin size is set to 64 per channel.

3.2. Evaluations results.
To evaluate the performance of different methods on the pro-
posed dataset, we retrain all the methods using the same train-
ing data, i.e., the training set of our proposed dataset. For
a fair comparison, we explore training hyper-parameters of
competitors in a wide range and report the best performance
we obtained. We report the experimental results in Table 1
and visual comparison in Fig. 2. Based on our evaluation
and analysis of the experiment results As we can see in the
table, Retinex-theory-based methods exhibit limited general-
ization ability and unpleasant outputs, e.g., RetinexNet [3],
Kind [24], KinD++ [15]. We conjecture the reason is that the
aforementioned methods assume the existence of an invari-
ant reflectance map across low-light inputs and ground truth
images and require a shared network to extract both illumi-
nation and reflectance maps of them , which is not feasible
in our setting. Besides, our method achieves the best perfor-
mance among all competitors in terms of both fidelity and
perceptual quality.

3.3. Ablation Study
1) Effectiveness of removing IR cut-off filter. To further
verify the effect of removing the internal IR cut-off filter,



PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet [3] 11.14 0.628 0.586

LIME [25] 11.31 0.639 0.560
Zero-DCE [26] 11.40 0.592 0.443

KinD [24] 14.73 0.714 0.357
EnlightenGAN [7] 16.95 0.715 0.357

KinD++ [15] 17.84 0.830 0.249
MIRNet [27] 22.23 0.833 0.224
LLFlow [16] 25.46 0.890 0.130

Ours 26.23 0.899 0.116

Table 1: Quantitative comparison of existing SOTA methods
and our method on the proposed dataset. We adapt PSNR,
SSIM, and LPIPS to measure the reconstruction quality, struc-
tural similarity, and perceptual quality respectively; ↑ (↓)
means higher(lower) values stand for better quality.

(a) Input on RGB space (c) Input on IR-RGB space (b) Ground truth

(d) Output on RGB space (f) Output on RGB space (e) Details comparison

Fig. 3: Visual comparisons of pretrained benchmark RGB-
model with our IR-model. (a), (c) are images captured from
RGB and IR-RGB space separately under low-light condi-
tions, (d), (f) are respective high-light outputs.

we compare both quantitative and visual results that were
restored from standard RGB space and IR-RGB space sepa-
rately. For the models evaluated on the visible light spectrum,
we utilize the pretrained/released models from SOTA meth-
ods trained on a large-scale dataset so that they have good
generalization ability to different scenarios. As shown in Ta-
ble 2, the quantitative results calculated from IR light encoded
image with our model are much higher than those directly re-
stored from standard visible light spectrum. Besides, for the
same method, especially for the method utilizing fully super-
vised training manner, there exists an obvious performance
gap by converting the input space from IR-visible spectrum
to only visible spectrum, which demonstrates that removing
the IR cut-off filter may lead to the higher noise-signal ratio
in extreme dark environment. Besides, as shown in Fig. 3, the
reconstructed image with IR light performs better in recover-
ing local features and details of the image.
2) The effectiveness of color alignment loss. To validate
the assumption of using color alignment loss can improve the
imaging quality, we compare the visual quality difference of
the usage of color alignment loss. As shown in Fig. 4, the

(a) Input (b) Reference

(c) w/o CAL (d) w/ CAL
Fig. 4: Comparison of the effectiveness of using CAL. (c) is
the result of our model trained directly w/o adding CAL, and
(d) is the output from the same architecture but w/ CAL.

PSNR ↑ SSIM ↑ LPIPS ↓
LIME [25] 12.17 0.585 0.552

Zero-DCE [26] 12.62 0.637 0.474
EnlightenGAN [7] 13.07 0.603 0.566

KinD [24] 14.01 0.668 0.421
RetinexNet [3] 14.05 0.554 0.640
KinD++ [15] 14.35 0.701 0.366
MIRNet [27] 16.46 0.737 0.370
LLFlow [16] 19.02 0.778 0.354

Ours 26.23 0.899 0.116

Table 2: Quantitative comparison of pretrained SOTA meth-
ods on a large-scale visible light spectrum with our method
trained on the proposed dataset. ↑ (↓) means higher(lower)
values stand for better quality.

result with CAL shows better perceptual quality with aligned
color correctness and higher contrast. However, the original
method without CAL appears to have obvious color distortion
and blurry edges.

4. CONCLUSION

In this paper, we present a novel strategy for tackling low-
light image enhancement tasks which introduces more in-
come photons in the IR spectrum. The proposed prototype
leads to a higher noise signal ratio in the extreme-dark envi-
ronment. Based on the proposed prototype, a paired dataset is
collected under different scenarios. Experimental results on
the proposed dataset show our method achieves the best per-
formance in both quantitative results and perceptual quality.
Our prototype shed light on the potential new designs for the
digital cameras by exploiting the spectroscopic information
captured from infrared light spectrum, providing better image
quality with more practical solutions for customers.
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