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ABSTRACT

In this paper, we present a new multi-branch neural net-
work that simultaneously performs soft biometric (SB) pre-
diction as an auxiliary modality and face recognition (FR)
as the main task. Our proposed network named AAFace
utilizes SB attributes to enhance the discriminative ability
of FR representation. To achieve this goal, we propose an
attribute-aware attentional integration (AAI) module to per-
form weighted integration of FR with SB feature maps. Our
proposed AAI module is not only fully context-aware but also
capable of learning complex relationships between input fea-
tures by means of the sequential multi-scale channel and spa-
tial sub-modules. Experimental results verify the superiority
of our proposed network compared with the state-of-the-art
(SoTA) SB prediction and FR methods.

Index Terms— Face Recognition, Attribute Prediction,
Convolutional Neural Networks, Attention Mechanism, Fea-
ture Integration.

1. INTRODUCTION

FR has been one of the most popular research areas in com-
puter vision due to its vital role in safety and security ap-
plications. In the last decade, the introduction of convolu-
tional neural networks (CNNs), and different margin-based
loss functions [1, 2] considerably improved the performance
of FR. However, the SoTA FR methods experience severe per-
formance degradation in unconstrained scenarios due to sev-
eral factors such as variances in the head pose, inherent sensor
noise, and illumination conditions.

There are several multi-task learning frameworks in bio-
metrics that use shared parameters of CNN and build synergy
among the highly related tasks to boost their individual per-
formances [3, 4, 5, 6, 7, 8]. For instance, [3, 9] enjoyed the
advantage of a multi-task learning structure to perform FR in
addition to facial attributes prediction and some other face-
related tasks. However, they do not directly employ attribute
information to enhance FR performance while intrinsically
humans analyze facial attributes to recognize identities. Even
police usually ask witnesses about gender, the shape of the
nose, and many other identity-related attributes to reconstruct
convicts’ faces.

In this work, we utilize SB information as an auxiliary

modality to boost the discriminative ability of our model for
FR. To this end, we rely on the facial attributes of a subject
which stay the same for different images of the same iden-
tity. For instance, the gender and shape of the eyes remain
the same in different situations such as various illuminations
or poses while some attributes like the color of hair may vary
in different images of the same person. Thus, as an auxiliary
modality, in this work, five SB attributes are considered which
are gender, big nose, chubby, narrow eyes, and bald.

Our model employs an attentional feature-level inte-
gration strategy to fuse feature representations of SB and
FR. Most existing feature integration methods are partially
context-aware and incapable of capturing the inconsistency in
the semantic or scale level of the input feature representations
[10, 11]. Also, some integration studies such as [12] empha-
size informative features only across the channel dimension.
To address these issues, we propose a fully context-aware
integration module that utilizes both input features to com-
pute the attention weights along the channel and also spatial
dimensions. Moreover, unlike integration studies that yield a
scalar fusion weight [13], our proposed AAI module produces
an integration weight that matches the size of the input feature
maps. This would lead to the generalization improvement of
our model to identify relevant features across the input feature
maps. To the best of our knowledge, the proposed AAFace
method is the first work that employs SB attributes through an
attention mechanism to enrich the FR feature representations.
In summary, the contributions of this paper include:
1. We propose a multi-branch neural network that simulta-

neously performs SB prediction and FR in order to en-
hance the performance of the FR. To effectively leverage
SB information for FR, we adopt a feature-level integra-
tion strategy through our AAI module.

2. Our context-aware AAI module employs novel multi-scale
attention sub-modules to highlight informative features
through both channel and spatial dimensions. Our evalu-
ations exhibit the advantage of our proposed AAI module
over other integration methods.

3. Extensive experiments prove that utilizing SB information
through the AAI module boosts the performance of FR.
Experimental evaluations also demonstrate that our pro-
posed AAFace method outperforms the SoTA SB predic-
tion and FR methods.
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Fig. 1: Proposed attribute-aware attentional network for face recognition.

2. PROPOSED METHOD

As shown in Fig. 1, the proposed architecture consists of two
branches (BrFR and BrSB) with the shared backbone which
contains convolutional layers of ResNet-50. BrFR is ded-
icated to perform FR and BrSB is designed to predict SB
attributes. Moreover, to enrich the embedding of the FR, an
attention mechanism is used to integrate the SB data as auxil-
iary information with the FR feature maps.

2.1. Multi-Branch Network

For FR, as shown in the BrFR branch of Fig. 1, two convolu-
tional layers are integrated into the backbone. To reduce the
dimensions of the feature map, global average pooling (GAP)
is applied to the output of the convolutional layers. The output
feature representation is then fed to the softmax layer since
this branch is intrinsically considered for face identification.
In the case of the face verification task, we use the output of
the GAP layer as the feature representation of the input data.
The cosine distance between a pair of feature representations
determines whether they belong to the same identity or not.

The architecture of the BrSB branch which is dedicated
to SB prediction is similar to the BrFR. As the BrFR branch
contains the fine-grained face information that can be lever-
aged for other face-related tasks, we keep the first convolu-
tional layer of this branch to accurately predict the SB at-
tributes as well. We train binary classifiers to predict different
facial attributes, each with its cross-entropy loss. The total
classification loss for the BrSB is given by:

LSB =

n∑
i=1

λaiLai , (1)

where each Lai represents a loss for each individual attribute
and λai

is the loss-weight corresponding to the attribute ai.
Also, n denotes the number of SB attributes in BrSB . For
each attribute, Lai

is computed as:

Lai = − (ai log(pai) + (1− ai) log (1− pai)) , (2)

where pai
is the probability that the network computes for ai.

2.2. Attentional Integration of SB Attributes with the FR
Features

As depicted in Fig. 2, the proposed AAI module has two
sequential sub-modules which are channel and spatial atten-
tion, respectively. Given two feature maps, FFR and FSB ,
the channel-based integration weight, Mc, is computed from
the multi-scale channel sub-module and then this integration
weight will be multiplied by FFR feature (i.e., FFR × Mc).
However, when it comes to the other feature map, FSB , the
complementary value of the integration weight will be mul-
tiplied by the FSB feature (i.e., FSB × (1 − Mc)). Then,
the channel-based weighted averaging between FFR and FSB

will be given as input to the multi-scale spatial sub-module.
Similar to the channel sub-module, spatial-based weighted
averaging will be computed between FFR ×Ms and FSB ×
(1−Ms). Therefore, the final fused feature can be formulated
as:

Ffused = Ms (Mc ⊗ FFR)+ (1−Ms)
((

1−Mc

)
⊗FSB

)
,

(3)
where Ffused is the fused feature, and ⊗ denotes the element-
wise multiplication.
Channel sub-module. Considering each channel of a feature
map as a feature detector, channel attention focuses on ‘what’
is meaningful given an input image. As shown in Fig. 2 (CA),
we propose a multi-scale channel attention which captures
both local and global contexts. To effectively compute the lo-
cal context, the spatial dimension of the input feature map is
aggregated using both GAP and global max pooling (GMP)
operations. Then, the two generated local context descrip-
tors are forwarded to a shared bottleneck structure while the
global context descriptor is sent to a separate bottleneck struc-
ture. As point-wise (PW) convolution only exploits channel
interactions for each spatial position, in this work, we utilize it
as the local channel context aggregator. It should be noted that
broadcasting addition is utilized to merge the local and global
contexts. Finally, due to the sigmoid function, Mc consists of
real numbers between 0 and 1, which enables the network to
do weighted averaging between feature representations.
Spatial sub-module. In comparison with channel attention,



spatial attention concentrates on ‘where’ is an informative
part, which is complementary to channel attention. Thus, as
it is illustrated in Fig. 2 (SA), both GAP and GMP operations
are applied along the channel axis and then their outputs are
concatenated to generate an efficient local feature descriptor.
Moreover, similar to the channel sub-module, a convolutional
bottleneck structure is applied to the global context descriptor
to encode where to emphasize or suppress. It is worth not-
ing that both channel and spatial-based integration weights
have the same shape as the input features so that the proposed
module can preserve and highlight the subtle details in the
low-level features.

2.3. Joint SB Attributes Prediction and the Integrated FR

After feature integration, we utilize the fused feature maps to
improve the performance of FR. Therefore, an average pool-
ing followed by a softmax layer is applied to the enriched
feature map. Also, since SB prediction is relevant to FR,
we train both branches, BrSB and BrFR fused, simultane-
ously. Training the two branches jointly, helps the features
to gain a better understanding of facial characteristics, which
leads to improvements in the performance of individual tasks.
As such, the classification loss from both the BrFR fused

and BrSB branches are backpropagated through the network.
Therefore, the total loss is as follows:

Losstotal = λFRLFR + LSB = λFRLFR +

n∑
i=1

λai
Lai

,

(4)
where LFR and LSB denote the loss from the BrFR fused

and BrSB branches, respectively. Similar to λai
, the weight

parameter λFR is determined empirically by considering the
importance of our main task which is FR. It should be noted
both our BrFR and BrFR fused can be trained by any classi-
fication loss functions. In this work, we have used one of the
recent SoTA margin-based loss functions named AdaFace [1]
for training FR branches.

3. EXPERIMENTS

3.1. Datasets

We separately train our model on two datasets in order to con-
duct a fair comparison with other methods. CelebA [5] is a
large-scale face attributes dataset with 202,559 face images
which covers large variations in pose, background, and illu-
mination. In addition, to demonstrate the generalization of
our proposed AAFace method under other training settings,
we also employ a portion of WebFace12M [14], which in-
cludes more than 5M face images. Since only the gender
facial attribute is provided in this training dataset [15], one
attribute is used as the auxiliary modality in this case. For
evaluation, in addition to the test set of the CelebA dataset,
we have also used the LFW [16], CFP-FP [17], CPLFW [18],
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Fig. 2: Channel attention (CA) and spatial attention (SA) modules.

and AgeDB [19] datasets which are the most popular bench-
marks for FR. Also, we include IJB-B[20] and IJB-C [21]
in our experiments as they are among the most challenging
datasets to evaluate unconstrained FR.

3.2. Implementation and training details

As for FR, it is important to train our model by means of
a large-scale training dataset, in this work, our backbone is
weighted with a pre-trained ResNet-50 on the VGGFace2
dataset [22]. The training process of the proposed method
includes three steps. Firstly, we train BrFR when all the lay-
ers of the backbone are frozen. Then, the SB branch (named
BrSB) is separately trained while the backbone and the first
convolutional layer of BrFR are kept frozen. Finally, having
integrated the feature maps of BrFR and BrSB , we jointly
train both BrFR fused and BrSB branches to efficiently re-
fine feature maps. The weight parameters of the total loss
function are chosen by considering FR as our main task. We
set λFR = 3 , λMale = λBald = 1, and all the rest of the
weight parameters equal to 0.5. The model is trained for
25 epochs using the stochastic gradient descent, the initial
learning rate is set at 0.01, and the scheduling step at 4, 10,
and 17 epochs.

3.3. Results and Analysis

Soft Biometric Prediction. Table 1 shows the performance
of the proposed SB predictor in comparison with the SoTA
methods on the CelebA dataset. Similar to the SoTA methods,
we have followed the same protocol, and the results of the
other methods are directly reported from the original papers.
Table 1 indicates that the performance of the SB predictor
gains considerable improvement when the network is trained
for both FR and SB prediction jointly. Furthermore, it shows
that our proposed multi-head network outperforms most of
the current existing SB prediction methods.
Face Recognition. To evaluate our FR model as a verifier,
we randomly selected 10, 000 pairs from the CelebA dataset
whose identities are not included in the training set. Regard-
ing section 3.2, in the first step of the training process, we
train BrFR separately. Thus, we can consider this branch as
a baseline to better clarify the effective role of integrating SB



Table 1: Reports classification comparison in terms of accuracy (%)
between the proposed SB predictor and the SoTA methods on the
CelebA dataset.

Methods
Bald Big Nose Chubby Male Narrow Eye
(B) (BN) (CH) (M) (NE)

Z. Liu [5] 98.00 78.00 91.00 98.00 81.00
Moon [6] 98.77 84.00 95.44 98.10 86.52
HyperFace [4] - - - 97.00 -
R. Ranjan [3] - - - 99.00 -
MCFA [7] 99.00 84.00 96.00 98.00 87.00
L. Mao [8] 99.03 84.78 95.86 98.29 87.73
Ours 98.14 83.27 95.48 98.74 85.26
Ours (jointly) 99.10 84.84 96.09 99.16 87.56

in FR. Experimental results included in Table 2 validate that
our proposed model improves FR performance by leveraging
identity facial attributes. We have also employed different in-
tegration strategies instead of our proposed AAI module to
demonstrate its advantage over them. Experiments show that
by replacing the AAI module with simple operations like ad-
dition or concatenation, the performance of the network even
underperforms the baseline in some of the false acceptance
rates (FARs). Moreover, results prove that among recent fea-
ture integration methods, the AAI module builds the most ef-
fective integration for improving the performance of FR. We
have also considered different aggregation scales in our at-
tention module to find out the best scale for aggregating the
channels. As shown in Table 2, the proposed model achieves
the best performance with setting r = 8. Further, more exper-
iments are implemented to explore the effect of the number
of attributes utilized for FR. Regarding the last three rows of
Table 2, utilizing more identity facial attributes helps the net-
work to perform more accurately.

As mentioned before, for all the experiments in Table 1
and Table 2, the CelebA dataset is used as the training set.
However, to gain a better insight into the advantage of uti-
lizing attributes for FR, we have also used a portion of Web-
Face12M [14], which includes more than 5M face images as
a training set. We have followed all the settings in AdaFace
including the same backbone (resnet101), loss function, and
training data. Table 3, verifies that despite the availability of
only one attribute for this training set, our proposed method
outperforms AdaFace in most of the benchmarks. It is worth
noting that the reason some other methods have slightly bet-
ter performance than our model in some benchmarks is due
to their different FR loss functions. Regarding the flexibil-
ity of our model to use any loss function for training the FR
branches, we believe that incorporating other loss functions
into our model can also improve the performance of those
other methods.

Table 2: Performance comparison between the proposed method
(AAFace), the baseline, and other SoTA feature integration methods.
Also, different settings for the proposed AAFace method are ablated.
Results are based on TAR@FAR, in which TAR and FAR stand for
True Acceptance Rate, and False Acceptance Rate, respectively.

Methods 10−5 10−4 10−3 10−2 10−1

Baseline (without SB) 87.98 89.47 91.23 92.64 93.92
Concatenation 87.62 89.03 91.19 92.95 94.14
Addition 87.33 89.41 90.89 92.82 94.03
SENET [11] 89.73 90.91 92.77 94.27 95.53
AFF [12] 89.85 91.60 92.86 94.39 95.72
AAFace (r = 4) 89.87 91.63 92.84 94.32 95.67
AAFace (r = 16) 90.12 92.02 92.93 94.50 95.71
AAFace (r = 8) 90.21 92.11 93.09 94.52 95.81
AAFace (M) 88.86 90.51 91.68 93.71 94.93
AAFace (M & B) 89.13 90.66 92.01 93.91 94.99
AAFace (M & B & Ch) 89.27 90.89 92.34 94.20 95.53

Table 3: Performance comparison of our proposed method
(AAFace) with recent SoTA FR methods. TAR is reported at FAR =
0.01%.

Methods
Verification Accuracy TAR

LFW CFP-FP CPLFW AgeDB IJB-B IJB-C
CosFace[23] 99.81 98.12 92.28 98.11 94.80 96.37
ArcFace[2] 99.83 98.27 92.08 98.28 94.25 96.03
MV-Softmax[24] 99.80 98.28 92.83 97.95 93.60 95.20
MagFace[25] 99.83 98.46 92.87 98.17 94.51 95.97
SCF-ArcFace[26] 99.82 98.40 93.16 98.30 94.74 96.09
AdaFace[1] 99.82 98.49 93.53 98.05 95.67 96.89
AAFace 99.82 98.56 93.71 98.24 95.70 96.93

4. CONCLUSION

In this work, we proposed a multi-branch neural network that
uses shared CNN feature space for two related tasks which are
SB prediction and FR. The proposed architecture, not only
predicts SB attributes and identifies face images simultane-
ously but also utilizes SB attributes as auxiliary information
to improve the performance of FR. Results demonstrate that
training both tasks jointly improves their performance in com-
parison with separate training. Moreover, experiments prove
that integrating FR with SB features through our AAI mod-
ule is the most effective strategy among existing integration
methods.
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