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ABSTRACT
The visual scanpath represents the fundamental concept upon
which visual attention research is based. As a result, the ability
to predict them has emerged as a crucial task in recent years.
It is represented as a sequence of points through which the
human gaze moves while exploring a scene. In this paper,
we propose an inter-observer consistent adversarial training
approach for scanpath prediction through a lightweight deep
neural network. The proposed method employs a discrimina-
tive neural network as a dynamic loss that better models the
natural stochastic phenomenon while maintaining consistency
between the distributions related to the subjective nature of
scanpaths traversed by different observers. The competitive-
ness of our approach against state-of-the-art methods is shown
through a testing phase.

Index Terms— Visual Attention, scanpath prediction, ad-
versarial training, inter-observer consistency.

1. INTRODUCTION

The human retina receives around 1010bits/sec of visual in-
formation. Most of this information represents high-definition
receptors located in the fovea, which covers approximately 1◦

of the visual field. This gigantic amount of information is fur-
ther reduced to 3 × 106bits/sec before traveling through the
optical nerve, and further reduced afterward while traveling
through the visual cortex [1]. The mechanism called ”Visual
attention” is ruled by the previously mentioned anatomical
constraints and other further neurological and psychologi-
cal ones. The observer is induced to only pay attention to
some scene’s specific regions. This phenomenon is mani-
fested through saccadic eye movements, representing the gaze
shifting from one region to another for a visual stimulus. As
eye movements focus on an area, the gaze fixates on specific
points, namely ”fixation points”. The latter can be collected
with eye trackers, allowing the projection of fixation points
from multiple observers onto a binary map, better known as a
”fixation map”. On top of that, a ”saliency map” is generally
obtained with smoothing filters to give a blob-shaped spatial
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distribution of fixation points over visual stimuli. Saliency
maps are usually represented as normalized heatmaps, with
each pixel value representing the probability of the pixel
catching viewers’ attention. The above-depicted mechanism
provides the human visual system with outstanding efficiency.
The prediction of scanpaths/saliency map is helpful to a lot
of computer vision applications like indoor localization [2],
quality assessment [3, 4, 5], image watermarking [6], im-
age compression [7], perception [8], and retrieval [9], CVD
detection [10] .

The interest of the scientific community in saliency [11,
12] and scanpath prediction has risen lately. For instance, the
winner-take-all (WTA) principle was used by Itti et al. [13] in
their first work, where the scanpath is extracted from the most
salient regions. In [14], the authors generated scanpaths from a
saliency map through statistical features derived from several
datasets. In [15], LSTM layers and the VGG model were em-
ployed with adversarial training. In [16], the saliency map was
modeled as a gravity field where the gaze mass travels using
physical laws. A foveated saliency map was used along with
inhibition of return maps to predict scanpaths in [17]. The au-
thors of [18] presented an end-to-end model to simultaneously
predict the scanpath and the saliency map of an image [18],
later generalized for 360◦ images [12].

The authors of [19] proposed a self-supervised training ap-
proach to train the model for painting image scanpath predic-
tion. While in [20] they used a domain adaptation approach to
generalize the predictive ability from natural scenes to paint-
ings.

Through these previous works, we found that this task still
presents some fundamental and interesting challenges. The
stochastic nature of scanpaths is a function of the subjectivity
of observers, and modeling this inter-observer distribution in
a consistent manner proves to not be an evident task. At the
same time, modeling multiple observers induces difficulty for
neural networks in generating results that emulate the quali-
tative properties of the real data. So, the main concern man-
ifests itself in how to train a neural network to predict scan-
paths while maintaining consistency between the subjectivities
of multiple observers.

The proposed method presents the following contribution
to solving the aforementioned challenges:
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Fig. 1. Generator model architecture.
• We employ an adversarial training approach with a min-

max game. This dynamic method helps better empha-
size the complex nature of scanpaths.

• We condition the learning on the probabilistic distribu-
tion of all users, forcing the network to distill the sub-
jective properties of observer population.

• We prove the validity and competitiveness of the pro-
posed method through testing of our model on 2 large
datasets.

In the rest of this paper, Section 2 describes the proposed
method in detail along with training details. In Section 3, we
present the experimental protocol as well as discuss the quan-
titative and qualitative results obtained. Section 4 ends the
paper with conclusions.

2. PROPOSED METHOD

To solve the challenges mentioned in Section 1, we designed
an adversarial training architecture with a thought-out fully
convolutional generator model and a discriminator model that
is used as a dynamic progressive loss. This later refines the
predictive ability of the generator during training by improv-
ing its own discriminative ability. This section presents the
proposed models (i.e. generator and discriminator) and the
training strategies applied.

2.1. Generator Architecture

The proposed model utilizes lightweight components to pre-
dict scanpaths with variable lengths. Fig. 1 illustrates the over-
all architecture of our generator model, which takes an input
image and generates a scanpath. To encode the input into a dif-
ferent representational space, we use a pre-trained MobileNet
network as a lightweight feature extractor.To enhance the rep-
resentational ability of our model related to our downstream
task, we introduce the use of domain-specific priors through
a learnable set of spatially Gaussian distributions, which is a
generalization of the ”Central bias” theory for visual attention
[21]. We model these priors using Eqs. 1 and 2, where µx,y ,
σx,y and and S represent the mean of the distribution, the stan-
dard deviation and the set of Gaussian priors, respectively.

G(x, y) =
1

2πσxσy
exp

−(
(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

)
(1)

S = {G1(x, y), G2(x, y), ..., G16(x, y)} (2)

In this study, we modeled 16 different Gaussian priors,
each with two parameters. The information contained in
the set S is then integrated with the features resulting from
MobileNet through concatenation followed by a 2D con-
volution. AS we can consider the scanpaths as an ordinal
sequence, we added a positional encoding feature and use a
1D convolutional-based architecture to predict the succession
of fixations. More precisely, we used 2 branches of 1D con-
volutions in order to disentangle the representations of the
multi-variable sequence (i.e. the two spatial dimensions).

2.2. Discriminator Architecture

The second component of the architectural setup is the dis-
criminator network, illustrated in Fig. 2. Its purpose is to dis-
criminate between the distributions of the ground-truth scan-
paths and generated ones. During the training, this model en-
hances its ability to represent the ground-truth scanpath dis-
tribution, acting thus as a gradually improving and dynamic
loss function for the scanpath generator model. Inspired by
the generator performance, we separated the sequences repre-
senting the coordinates into two different spatial dimensions,
enabling the disentanglement of the features of the two di-
mensions. Each branch of the discriminator model consists of
a succession of 1D convolutions activated by a Leaky ReLU
function with a slope of 0.2. The extracted features are gradu-
ally increased in proportion to the depth of the network. At the
end of each branch, a global Max Pooling Layer is employed
on each of the feature vectors. The resulting vectors are then
concatenated to build a global representation of the scanpath.
Finally, we employed three fully connected layers for discrim-
inating the features and thus classifying the scanpaths.

2.3. Adversarial Training

In order to model with greater accuracy and maintain consis-
tency of the predicted scanpath with multiple users, we opted
to use the min-max game between the classifier discriminator



Fig. 2. Discriminator model architecture.

and the predictive generator networks, represented through the
following equation:

min
G

max
D

V (G,D) = Eŷ∼pdata(y)[logD(ŷ|p(y))]+

Ex∼px(x)[1− logD(G(x|p(y))]
(3)

where x represents the input image, p(y) is the distribution of
different random ground truth scanpaths from multiple users
changed periodically during the training, and ŷ represents the
predicted scanpath. G and D are the generator and discrimi-
nator models, respectively.

This training approach aims to reduce the distance between
the predicted scanpath and the whole set of users, allowing
to the integration of the cognitive biases of multiple view-
ers while maintaining good qualitative shapes for the scan-
path. Therefore, this forces the network to learn a non-user-
specific representation of the perceptual function. The model
was trained for 246 epochs with a learning rate equal to 10−5.

3. EVALUATION

3.1. Datasets

We evaluated our method on two widely-used datasets, namely
Salicon [22] and MIT1003 [23]. Salicon [22] consists of 9000
images for training, 1000 images for validation, and 5000 im-
ages for testing with the corresponding saliency maps and
scanpaths data for all users.

MIT1003 [23] is usually presented along with the MIT300
dataset [24] benchmark. It consists of 1003 natural scene im-
ages with the corresponding saliency maps and fixation points
gathered throughout eye-tracking sessions. Each image has 15
observers, resulting in 15045 scanpaths.

3.2. Experimental Protocol

In our work, we test on the 5000 images on Salicon dataset
with approximately 250000 scanpaths, which ensures the em-
pirical soundness of the results. It is worth noting that in this
study our model was trained only on the training set of this
dataset. We then used the entire MIT1003 dataset for testing
in a cross-dataset evaluation manner without fine-tuning our

model on this dataset. Similarly to the first dataset, the signif-
icant number of scanpaths ensures empirically sound results.

To evaluate the performance of our method, we employed
three commonly used metrics: MultiMatch, NSS, and Congru-
ency. MultiMatch (MM) metric [25] compares the similar-
ity of two vectors using five characteristics (Shape, Direction,
Length, Position, and Duration). Since the model predicts only
spatial coordinates, we use only the first four characteristics
and measure the overall performance with their mean value.
Two hybrid metrics that compare the predicted scanpaths with
a general saliency map for a given image are also employed:
NSS and Congruency. NSS calculates the mean saliency
value of the scanpath fixation locations over the ground truth
saliency map, while Congruency computes the ratio of the
predicted fixation points which are in the salient regions af-
ter thresholding and binarizing the ground truth saliency map.
The hybrid metrics allow to measure the accordance and con-
sistency between the predicted scanpath and the users.

3.3. Quantitative Results

Tables 1 and 2 show the results obtained after testing our
model according to the protocol described in Section 3.2 on
the Salicon and MIT1003 datasets, respectively. The perfor-
mance reached by our method is compared to state-of-the-art
methods.

The results achieved on Salicon (see Table 1) show that
our model outperformed state-of-the-art methods on the shape
and length components of the multimatch metric. More
precisely, we notice a significant improvement in the shape
and length components, while the overall mean multimatch
shows an improvement compared with the other models. We
also achieved the top results for the congruency metric,
which indicates that predicted fixations are mostly located in
salient regions, maintaining thus a certain consistency with
the distribution of users on the Salicon dataset. This is fur-
ther emphasized and supported by the state-of-the-art results
obtained on other metrics.

As we tested the model on the MIT1003[23] dataset with-
out any kind of fine-tuning, the results obtained in Table 2
show a natural decrease compared to those obtained on Sal-
icon. Nonetheless, the results achieved are still quite high



Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan[15] 0.9608 0.5698 0.9530 0.8172 0.8252 -0.2904 0.0825
Le Meur[14] 0.9505 0.6231 0.9488 0.8605 0.8457 0.8780 0.4784
G-Eymol[16] 0.9338 0.6271 0.9521 0.8967 0,8524 0.8727 0.3449

SALYPATH [18] 0.9659 0.6275 0.9521 0.8965 0,8605 0.3472 0.4572
our model (Adversarial) 0.9745 0.6246 0.9642 0.8892 0.8631 0.9762 0.5226

Table 1. Results of scanpath prediction on Salicon.

Model MM Shape MM Dir MM Len MM Pos MM Mean NSS Congruency
PathGan[15] 0.9237 0.5630 0.8929 0.8124 0.7561 -0.2750 0.0209

DCSM (VGG)[17] 0.8720 0.6420 0.8730 0.8160 0,8007 - -
DCSM (ResNet)[17] 0.8780 0.5890 0.8580 0.8220 0,7868 - -

Le Meur[14] 0.9241 0.6378 0.9171 0.7749 0,8135 0.8508 0.1974
G-Eymol[16] 0.8885 0.5954 0.8580 0.7800 0,7805 0.8700 0.1105

SALYPATH [18] 0.9363 0.6507 0.9046 0.7983 0,8225 0.1595 0.0916
our model 0.9614 0.6529 0.9423 0.7862 0.8357 0.7523 0.1797

Table 2. Cross dataset evaluation: Results of scanpath prediction on MIT1003.

Fig. 3. Visualisation results.

and competitive with the state-of-the-art. This shows the gen-
eralization ability of our approach to data distributions com-
ing from different sources. This is especially true, knowing
that some of the comparative models trained on the MIT1003
dataset like DCSM [17] and Le Meur[14]. The results show
a large improvement in the shape and length components of
multimatch compared to other models, while maintaining
competitive results for direction. The overall result is com-
petitive compared to the other models. The results on the
hybrid metrics (i.e. NSS and congruency) maintain close
margins with the state-of-the-art since our model was not train
on any subset of MIT1003, which has a different distribution
of observers. We can also notice that Le Meur[14] and G-
Eymol[16] models were able to maintain a slightly better per-
formance because they rely on a saliency map generation step
before sampling the scanpath.

3.4. Qualitative results

Fig. 3 depicts some qualitative results of predicted scanpaths
(i.e. in the center) compared to ground truth scanpaths (i.e.

on both sides). Our model’s predictions show high fidelity to
the original scanpaths while maintaining consistency between
scanpaths originating from different users, making each pre-
dicted scanpath highly plausible.

4. CONCLUSION

In this paper, we introduced an adversarial training method
that uses a discriminative network as a dynamic loss for grad-
ually improving the representative ability of our model, while
maintaining inter-observer consistency originating from the
subjective nature of scanpaths. We tested our model on the two
most used datasets for visual attention modeling and achieved
outstanding competitive results on several hybrid and vector-
based metrics. The qualitative results showed that our method
succeeded to emulate scanpath obtained in the real world. This
confirms that substituting traditional loss functions with adver-
sarial training methods would yield better results for complex
tasks of perception and attention.
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