
AICT: AN ADAPTIVE IMAGE COMPRESSION TRANSFORMER

Ahmed Ghorbel1 Wassim Hamidouche1,2 Luce Morin1

1 Univ Rennes, INSA Rennes, CNRS, IETR – UMR 6164, F-35000 Rennes, France
2 Technology Innovation Institute P.O.Box: 9639, Masdar City Abu Dhabi, UAE

ABSTRACT

Motivated by the efficiency investigation of the Tranformer-based
transform coding framework, namely SwinT-ChARM, we propose
to enhance the latter, as first, with a more straightforward yet ef-
fective Tranformer-based channel-wise auto-regressive prior model,
resulting in an absolute image compression transformer (ICT). Cur-
rent methods that still rely on ConvNet-based entropy coding are
limited in long-range modeling dependencies due to their local con-
nectivity and an increasing number of architectural biases and pri-
ors. On the contrary, the proposed ICT can capture both global
and local contexts from the latent representations and better param-
eterize the distribution of the quantized latents. Further, we lever-
age a learnable scaling module with a sandwich ConvNeXt-based
pre/post-processor to accurately extract more compact latent repre-
sentation while reconstructing higher-quality images. Extensive ex-
perimental results on benchmark datasets showed that the proposed
adaptive image compression transformer (AICT) framework signifi-
cantly improves the trade-off between coding efficiency and decoder
complexity over the versatile video coding (VVC) reference encoder
(VTM-18.0) and the neural codec SwinT-ChARM.

Index Terms— Neural Image Compression, Adaptive Reso-
lution, Spatio-Channel Entropy Modeling, Self-attention, Trans-
former.

1. INTRODUCTION

Visual information is crucial in human development, communica-
tion, and engagement, and its compression is necessary for effec-
tive data storage and transmission. Thus, designing new lossy image
compression algorithms is a goldmine for scientific research. The
goal is to reduce an image file size by permanently removing less
critical information, specifically redundant data and high frequen-
cies, to obtain the most compact bit-stream representation while pre-
serving a certain level of visual fidelity. Nevertheless, the high com-
pression rate and low distortion are fundamentally opposed objec-
tives involving optimizing the rate-distortion (RD) cost.

Conventional compression standards, including JPEG, JPEG2000,
H.265/HEVC, and H.266/VVC, rely on hand-crafted creativity to
present module-based encoder/decoder block diagram, i.e., Intra
prediction, transform, quantization, arithmetic coding, and post-
processing. Traditional coding algorithms have a lot of advantages,
including mature technology with SW/HW-friendly implementa-
tions, low decoding complexity, and strong generalization on differ-
ent contents. Nevertheless, all of them mainly rely on hand-crafted
coding techniques; thus, it is quite challenging to directly optimize
RD cost for all types of image content due to the rapid devel-
opment of new image formats and the growth of high-resolution
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Fig. 1. BD-rate (%)↓ versus decoding time (ms)↓ on the Kodak
dataset. Left-top is better. Star and diamond markers refer to de-
coding on GPU and CPU, respectively.

mobile devices. On the other hand, neural coding has gained
wide attention from research and industry, yielding promising end-
to-end neural image compression (NIC) solutions outperforming
their conventional counterparts in coding efficiency. NIC leverages
autoencoders (AEs) to carry out a non-linear coding from the signal
domain to a compact representation. Such AE-based system con-
sists of three modular parts: transform, quantization, and entropy
coding, which can be trained in an end-to-end fashion to minimize
the distortion between a source image and its reconstruction, and the
rate needed to convey the latent representation bit-stream.

Since the early recurrent neural network (RNN)-based method
[1] for lossy image compression, significant advancements have
been made in integrating tailored modules for NIC. Previous works
use local context [2–4], or additional side information [5–7] to cap-
ture short-range spatial dependencies, and others use non-local
mechanisms [8–11] to model long-range spatial dependencies.
Recently, Toderici et al. [12] proposed a generative compression
method achieving high-quality reconstructions, Minnen et al. [13]
introduced channel-conditioning taking advantage of an entropy-
constrained model that uses both forward and backward adaptations,
Zhu et al. [14] replaced the ConvNet-based transform coding in the
Minnen et al. [13] approach with a Transformer-based one, Zou
et al. [15] combined the local-aware attention mechanism with the
global-related feature learning and proposed a window-based atten-
tion module, Koyuncu et al. [16] proposed a Transformer-based con-
text model, which generalizes the standard attention mechanism to
spatio-channel attention, Zhu et al. [17] proposed a probabilistic vec-
tor quantization with cascaded estimation under a multi-codebooks
structure, Kim et al. [18] exploited the joint global and local hyper-
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priors information in a content-dependent manner using an attention
mechanism, and He et al. [19] adopted stacked residual blocks as
nonlinear transform and multi-dimension entropy estimation model.

In order to improve image-level prediction while minimiz-
ing computation costs, learned sampling techniques have been
developed for several vision tasks. Spatial transformer networks
(STNs) [20] introduce a layer that estimates a parametrized affine,
projective, and splines transformation from an input image to re-
cover data distortions. Based on the latter, Chen et al. [21] proposed
a straightforward learned downsampling module that can be jointly
optimized with any neural compression kernels in an end-to-end
fashion. Talebi et al. [22] jointly optimize pixel value interpolated at
each fixed downsampling location for classification. Jin et al. [23]
introduced a deformation module and a learnable downsampling
operation, which can be optimized together with the given segmen-
tation model.

One of the main challenges of NIC is the ability to identify the
crucial information necessary for the reconstruction, knowing that
information overlooked during encoding is usually lost and unre-
coverable for decoding. Another main challenge is the trade-off be-
tween coding performance and decoding latency. While the existing
approaches improve the transform and entropy coding accuracy, they
still need to be improved by the higher decoding runtime and exces-
sive model complexity leading to an ineffective real-world use. To
cope with those challenges, we present in this paper three contribu-
tions summarized as follows:

• We propose the image compression transformer (ICT), a non-
linear transform coding and spatio-channel auto-regressive
entropy coding. These modules are based on swin trans-
former (SwinT) blocks for effective latent decorrelation and
a more flexible receptive field to adapt for contexts requiring
short/long-range information.

• We further propose the adaptive image compression trans-
former (AICT) model that adopts a scale adaptation mod-
ule as a sandwich processor to enhance compression effi-
ciency. This module consists of a neural scaling network
and ConvNeXt-based pre/post-processor to jointly optimize
differentiable resizing layers and a content-dependent resize
factor estimator.

• We conduct experiments on four widely-used benchmark
datasets to explore possible coding gain sources and demon-
strate the effectiveness of AICT. In addition, we carried out a
model scaling analysis and an ablation study to substantiate
our architectural decisions.

Extensive experiments reveal the impacts of the spatio-channel en-
tropy coding, the sandwich scale adaptation component, and the joint
global structure and local texture learned by the self-attention units
through the nonlinear transform coding. These experiments validate
that the proposed AICT model achieves compelling compression
performance, as illustrated in Fig. 1, outperforming conventional and
neural codecs in both coding efficiency and decoder complexity.

The rest of this paper is organized as follows. First, the pro-
posed AICT framework is described in detail in Section 2. Next, we
dedicate Section 3 to describe and analyze the experimental results.
Finally, Section 4 concludes the paper.

2. PROPOSED AICT FRAMEWORK

2.1. Overall Architecture

The overall pipeline of the proposed solution is illustrated in Fig. 2.
The framework includes three modular parts. First, the scale adapta-

tion module, composed of a tiny ResizeParamNet [21], a ConvNeXt-
based pre/post-processor, and a bicubic interpolation filter. Second,
the analysis/synthesis transform (ga, gs) of our design consists of
a combination of patch merging/expanding layers and SwinT [24]
blocks. The architectures of hyper-transforms (ha, hs) are simi-
lar to (ga, gs) with different stages and configurations. Finally, a
Transformer-based slice transform under a ChARM design is used
to estimate the distribution parameters of the quantized latent. These
resulting discrete-valued data (ŷ, ẑ) are encoded into bit-streams
with an arithmetic coder.

2.2. Scale Adaptation Module

Given a source image x ∈ RH×W×C , we first determine an adaptive
resize factor M estimated by the ResizeParamNet module, which
consists of three stages of residual blocks (ResBlocks). Indeed, the
estimated resize parameter M is used to create a sampling grid τM
following the convention STNs, and used to adaptively down-scale
x into xd ∈ RH′×W ′×C through the bicubic interpolation. The lat-
ter is then encoded and decoded with the proposed ICT. Finally, the
decoded image x̂d ∈ RH′×W ′×C is up-scaled to the original res-
olution x̂ ∈ RH×W×C using the same, initially estimated, resize
parameter M . The parameterization of each layer is detailed in the
ResizeParamNet and ResBlock diagrams of Fig. 3 (a) and (b), re-
spectively. In addition, a learnable depth-wise pre/post-processor is
placed before/after the bicubic sampler to mitigate the information
loss introduced by down/up-scaling, allowing the retention of infor-
mation. This neural pre/post-processing method consists of concate-
nation between the input and the output of three successive Con-
vNeXt [25] blocks. The ConvNeXt block diagram is also illustrated
in Fig. 3 (c). For a better complexity-efficient design, we decided to
skip the scale adaptation module where M ∼= 1.

2.3. Transformer-based Analysis/Synthesis Transform

The analysis transform ga contains four stages of patch merging
layer and SwinT block to obtain a more compact low-dimensional
latent representation y. In order to consciously and subtly balance
the importance of feature compression through the end-to-end learn-
ing framework, we used two additional stages of patch merging layer
and SwinT block in the hyper-analysis transform to produce an ad-
ditional latent representation z. During training, both latents y and
z are quantized using a rounding function to produce ŷ and ẑ, re-
spectively. The quantized latent variables ŷ and ẑ are then entropy
coded regarding an indexed entropy model for a location-scale fam-
ily of random variables parameterized by the output of the ChARM,
and a batched entropy model for continuous random variables, re-
spectively, to obtain the bit-streams. Finally, quantized latents ŷ and
ẑ feed the synthesis and hyper-synthesis transforms, respectively, to
generate the reconstructed image. The decoder schemes are sym-
metric to those of the encoder, with patch-merging layers replaced
by patch-expanding layers.

2.4. Transformer-based Slice Transform

Although there are strong correlations among different channels in
latent space, the strongest correlations may come from the spatio-
channel dependencies. Thus, to better parameterize the distribution
of the quantized latents with a more accurate and flexible entropy
model and without increasing the compression rate, we propose a
Transformer-based slice transform inside the ChARM. Unlike pre-
vious works, ours considers spatio-channel latent correlations for
entropy modeling in an auto-regressive manner. As a side effect,
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Fig. 2. Overall AICT framework. We illustrate the image compression diagram of our AICT with hyperprior and SwinT-based ChARM, and
scale adaptation module. The ResizeParamNet and ConvNeXt block diagrams are illustrated in Fig. 3 (a) and (c).
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Fig. 3. Adaptation module block architectures.

it also leads to faster decoding speed. The slice transform consists
of two successive SwinT blocks with an additional learnable linear
projection layer, used to get a representative latent slices concatena-
tion. This ChARM estimates the distribution pŷ(ŷ|ẑ) with both the
mean and standard deviation of each latent slice, and incorporates
an auto-regressive context model to condition the already-decoded
latent slices and further reduce the spatial redundancy between adja-
cent pixels.

3. RESULTS AND ANALYSIS

3.1. Experimental Setup

Baselines.1 We compare our solution with the state-of-art neural
codec SwinT-ChARM proposed by Zhu et al. [14], and the Conv-
ChARM proposed by Minnen et al. [13] and conventional codecs,
including better portable graphics (BPG)(4:4:4), and the versatile

1For a fair comparison, we only considered SwinT-ChARM [14] from
the state-of-the-art models [14–19], due to the technical feasibility of models
training and evaluation under the same conditions and in an adequate time.

video coding (VVC) official Test Model VTM-18.0 in All-Intra
configuration.

Implementation details. We implemented all models in Ten-
sorFlow using tensorflow compression (TFC) library, and the ex-
perimental study was carried out on an RTX 5000 Ti GPU and
an Intel(R) Xeon(R) W-2145 @ 3.70GHz CPU. All models were
trained on the same CLIC20 training set with 2M iterations using
the ADAM optimizer with parameters β1 = 0.9 and β2 = 0.999.
The initial learning rate is set to 10−4 and drops to 10−5 for the last
200k iterations, and L = D + λR is used as a loss function. L is
a weighted combination of bitrate R and distortion D, with λ being
the Lagrangian multiplier steering RD trade-off. Mean squared error
(MSE) is used as the distortion metric in RGB color space. Each
training batch contains eight random crops ∈ R256×256×3 from the
CLIC20 training set. To cover a wide range of rate and distortion
points, for our proposed method and respective ablation models,
we trained four models with λ ∈ {1000, 200, 20, 3} × 10−5. We
evaluate the image codecs on four datasets [26], including Kodak,
Tecnick, JPEG-AI, and the testing set of CLIC21. For a fair com-
parison, all images are cropped to the highest possible multiples of
256 to avoid padding for neural codecs.

3.2. Rate-Distortion Coding Performance

To demonstrate the compression efficiency of our proposed ap-
proach, we summarize, in Table 1, the BD-rate of our models and
the baselines across four datasets compared to the VTM-18.0 as
the anchor. On average, AICT is able to achieve 5.11% BD-rate
reduction compared to VTM-18.0 and 3.93% relative gain from
SwinT-ChARM. Also, we illustrate in Figure 4 a comparison of
compression efficiency on Kodak dataset. Figure 1 shows the BD-
rate (with VTM-18.0 as an anchor) versus the decoding time of
various approaches on the Kodak dataset. It can be seen from the
figure that our ICT and AICT achieve a good trade-off between
BD-rate performance and decoding time.
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Fig. 4. Compression efficiency comparison on the Kodak dataset.

Table 1. BD-rate↓ performance of BPG (4:4:4), Conv-ChARM,
SwinT-ChARM, ICT, and AICT compared to the VTM-18.0.
Image Codec Kodak Tecnick JPEG-AI CLIC21 Average

BPG444 22.28% 28.02% 28.37% 28.02% 26.67%
Conv-ChARM 2.58% 3.72% 9.66% 2.14% 4.53%
SwinT-ChARM -1.92% -2.50% 2.91% -3.22% -1.18%
ICT (ours) -5.10% -5.91% -1.14% -6.44% -4.65%
AICT (ours) -5.09% -5.99% -2.03% -7.33% -5.11%

3.3. Models Scaling Study

We evaluated the decoding complexity of the four considered im-
age codecs by averaging decoding time across 7000 images encoded
at 0.8 bpp. We present the image codecs complexity in Table 2,
including decoding time on GPU and CPU, codec floating point op-
erations per second (FLOPs), and codec total number of parameters.
Compared to the neural baselines, ICT can achieve faster decoding
speed on GPU but not on CPU, which proves the parallel process-
ing ability to speed up compression on GPU and the well-engineered
designs of both transform and entropy coding, highlighting an effi-
cient and hardware-friendly compression model. This is potentially
helpful for conducting high-quality real-time visual data streaming.
Our AICT is on par with ICT in terms of the number of parameters,
FLOPs, and latency, indicating that the scale adaptation module is
not computationally heavy for real scenario applications.

3.4. Ablation Study

To investigate the impact of the proposed ICT and AICT, we con-
duct an ablation analysis according to the reported BD-rate results
in Table 1. The compression performance increases from Conv-
ChARM to SwinT-ChARM on the considered datasets due to the
inter-layer feature propagation across non-overlapping windows (lo-
cal information) and self-attention mechanism (local information)
in the SwinT. With the proposed spatio-channel entropy model,
ICT is able to achieve, on average, -3.47% BD-rate reduction com-

Table 2. Average decoding latency across 7000 images at 256×256
resolution, encoded at 0.8 bpp.

Image Codec Latency(ms)↓ MFLOPs↓ #parameters (M)↓
GPU CPU

Conv-ChARM 133.8 359.8 126.1999 53.8769
SwinT-ChARM 91.8 430.7 63.2143 31.3299
ICT (ours) 80.1 477.0 74.7941 37.1324
AICT (ours) 88.3 493.3 74.9485 37.2304

pared to SwinT-ChARM. Therefore, introducing the Transformer-
based slice transform leads to significant improvement compared to
the ConvNet-based entropy model using only short-range dependen-
cies. In addition, our spatio-channel entropy model is more help-
ful when combined with the Transformer-based transform coding.
AICT performs better than ICT, indicating that the introduction of a
scale adaptation module can further reduce spatial redundancies and
alleviate coding artifacts, especially at low bitrate resulting in higher
compression efficiency.

4. CONCLUSION

In this paper, we have proposed an up-and-coming neural codec
AICT, achieving compelling RD performance while significantly re-
ducing the latency, which is potentially helpful to conduct, with fur-
ther optimizations, high-quality real-time visual data compression.
We inherited the advantages of self-attention units from Transform-
ers to effectively approximate both the mean and standard deviation
for entropy modeling and combine global and local texture to cap-
ture correlations among spatially neighboring components for non-
linear transform coding, achieving -4.65% BD-rate reduction over
the VTM-18.0, by averaging over the benchmark datasets. Further-
more, we presented a lightweight scale adaptation module to en-
hance compression ability, especially at low bitrates, reaching on
average -5.11% BD-rate reduction over the VTM-18.0.
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