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ABSTRACT
As modern image denoiser networks have grown in size, their re-
ported performance in popular real noise benchmarks such as DND
and SIDD have now long outperformed classic non-deep learning
denoisers such as Wiener and Wavelet-based methods. In this paper,
we propose to revisit the Wiener filter and re-assess its potential per-
formance. We show that carefully considering the implementation of
the Wiener filter can yield similar performance to popular networks
such as DnCNN.

Index Terms— Image Denoising, Wiener Filter

1. INTRODUCTION

Despite advances in camera sensor technologies, image denoising
still remains a key part in many application pipelines. Denoisers,
such as the Wiener [1, 2, 3, 4], Wavelet [5, 6, 7], and BM3D [8] fil-
ters have now been significantly outpaced by neural networks, whose
architectures can easily be trained [9, 10] to achieve blind denois-
ing, without the need to provide estimates of the noise profile, and
which can also be efficiently adapted to operate beyond Gaussian
white noise [11]. On the real-noise DND benchmark [12], it can
be observed that the performance increased from about 35dB on
non-CNN state-of-the-art denoisers (BM3D), to about 37dB using
early CNNs (DnCNN [9], FFDNet [10]), and up to 40+ dB using the
largest, transformer-based networks.

Part of recent performance gains may be attributed to new meth-
ods of synthesising pseudo-real, signal-dependent noise for training
datasets [11], as well as the adoption of UNet [13, 14] and vision-
transformer backbone architectures (Restormer [15], SwirIR [16]).
The network sizes have, however, also steadily increased, with pa-
rameter counts now reaching 44 million, where earlier architectures
such as DnCNN only proposed 0.6 million parameters. The latest
neural networks have thus become slower and impractical to run on
machines without high VRAM and high core count GPUs.

In this paper, we propose to revisit the classic Wiener filter and
show how its baseline implementation (see section 2) can be im-
proved by a number of careful adjustments (see section 3) to bring
its performance in line with more recent deep learning denoisers. In
particular, our ablation studies (section 4.1) show that, by using tiny
ancillary networks to estimate some of the Wiener parameters, we
can propose a hardware-friendly Wiener denoiser that can perform
on par with DnCNN, one of the most popular CNN-based denoisers.

2. BACKGROUND

Given a noisy signal y, composed of the original, unknown signal
x, and additive noise n, y = x + n; the Wiener filter [17] defines a
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Algorithm 1 Baseline Wiener for a Raised Cosine Window

Require: Noisy image, y, noise STD σ, Block Size
1: w(h, k)← RaisedCosine(h, k) . windowing definition
2: for all blocks y in image y, for stride=BlockSize/2 do
3: ȳ ← mean(y) . predicts block mean
4: yw ← (y − ȳ)�w . windowing
5: Y ← FFTn(yw)
6: Pyy ← Y �Y∗

7: Pnn ← σ̂2‖w‖2
8: Pxx ← max(Pyy − Pnn, 0) . coring
9: x̂w ← iFFTn(Y �Pxx �Pyy) + ȳw

10: x̂← overlap add(w � x̂w) . combine blocks

linear, minimum mean square error (MMSE) optimal filter. Assum-
ing that the image and noise signal are second-order stationary and
decorrelated, the optimal IIR Wiener filter is given by the following
transfer function H(ω1, ω2):

H(ω1, ω2) =
Sxx(ω1, ω2)

Syy(ω1, ω2)
, (1)

where Syy(ω1, ω2) and Sxx are the power spectrum densities at spa-
tial frequencies ω1, ω2 for the input signal y and original signal x.
In practice, the PSD of the unknown, clean signal is estimated as
Sxx ≈ Syy − Snn, which leads to the following coring function:

Ŝxx(ω1, ω2) = max(Syy(ω1, ω2)− Snn(ω1, ω2), 0). (2)

If the noise is Additive White Gaussian (AWGN), the PSD is
a constant Pnn ∝ σ2, where σ is the standard deviation (STD) of
the noise. A correcting factor 1.4 × σ is typically applied to better
remove the noise.

As images are not stationary signals, the input image needs to be
broken into overlapping blocks (eg. 32×32), followed by a window-
ing function (eg. half-cosine) before applying the FFT. The blocks
are typically overlapped by half a block size, in a 2:1 overlap con-
figuration [18]. In this configuration, using the same half-cosine
window for both analysis and synthesis yields a net effective signal
gain of 1 when the overlap blocks are summed. This baseline im-
plementation is summarised in Alg. 1 (the symbols � and � denote
element-wise multiplication and divisions in the blocks).

The Wiener filter can produce characteristic ringing artefacts
around edges and textures when the parameters (eg. noise PSD) are
incorrect. This is a well-observed effect of Fourier series compres-
sion known as Gibb’s phenomenon [19].

3. A MULTI-SCALE, OVERLAPPING WIENER FILTER

We propose here to optimise some aspects of the baseline Wiener.

ar
X

iv
:2

30
3.

16
64

0v
1 

 [
ee

ss
.I

V
] 

 2
7 

M
ar

 2
02

3



3.1. Block Processing and Windowing

Gaussian Window. In the baseline implementation, the half-cosine
windowing function is used for both FFT analysis and 2D interpola-
tion of the filtered blocks. We first propose that a Gaussian window
is more appropriate as it is isotropic. Results from section 4.1 show
a+ 0.1 dB improvement.
Finer Overlaps. Instead of using half-bock strides between blocks,
we propose that quarter-block or finer overlaps can yield improved
results (+ 0.5 dB). To achieve this, we propose in Alg. 2 to slightly
modify the baseline Wiener implementation so that we can parse
images with denser block overlaps. To make sure that the effective
gain remains 1, we need to keep track of the windowing with a nor-
malisation mask wall (note that this is also required by the use of a
Gaussian window instead of a half-cosine one).
Multi-Scale. Interestingly, this implementation also allows us to ex-
tend the processing to blocks of different sizes. The idea here is that,
by combining blocks from 8×8 to 64×64, we re-enforce the assump-
tion that the decorrelation between the noise and the signal should
happen at all scales. This multi-scale overlap yields consistent gains
of about + 0.3 dB.

3.2. Per-Block Noise Estimation

One issue when working with real ISO camera noise, is that the
assumption that the signal and noise are uncorrelated is no longer
true. In fact, ISO camera noise is better modelled with a Poissonian-
Gaussian signal-dependent distribution. The noise variance is in-
versely proportional to the irradiance incident on the sensor, with
dark areas having greater noise variances than bright areas.

We propose to mitigate this by measuring the noise STD on a
per-channel and per-block basis, instead of the typical per-image ba-
sis. As this cannot be practically done by a user, we propose to train
a lightweight neural network that can predict a per-pixel noise STD.
This network will thus effectively transform the Wiener filter into a
blind denoiser.

With a focus on minimising network size, we will study three
different network depths: 2, 4 and 6 layers; with three different layer
sizes: 16, 32 and 64 channels; making for a total of 9 networks.
Each layer consists of a 2D convolution, a batch-normalisation and
a ReLU activation function (see supplementary material 1).

The network is trained in two stages. First, the network is trained
with a L1 loss on a synthetic dataset, where the ground-truth noise
standard deviation maps are estimated from the generation, for each
clean image of the dataset, of 12 instances of signal-dependent syn-
thetic noise, using the noise model proposed in CDBNet [11].

The model is then integrated into the Wiener filter and fine-tuned
end-to-end using the L1 loss between the Wiener output and the
ground truth image. The Wiener filter is implemented in a differen-
tiable manner to allow for this. In this second stage, both synthetic
and real data can be used.

3.3. Block Mean Prediction

Before FFT analysis in the Wiener filter, the DC offset is subtracted
from the 2D signal (see section 2). In the case of heavy noise, the
Wiener coring will suppress most of the signal, only leaving this DC
offset. Estimating a DC value as close to the ground-truth DC value
is thus critical for the overall performance. The issue is that real
noise is not necessarily zero-mean over the block. This means that
the block average of the noisy signal is not a good estimate of the

1https://github.com/MrBled/ICICP_2023_Wiener
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Fig. 1: Training pipeline for Stage 1 of the standard deviation pre-
diction network. In stage 2, the network is deployed and trained
alongside the Wiener filter.

H

Reshape

Intra-block NN

Original Shape Reshape

Inter-block NN

Derived Wiener
Filter in

Optimised
Wiener Filter

Out

5x5 kernel, 3 channel in,
20 channel out

3x3 kernel, 20 channel in,
20 channel out

3x3 kernel, 20 channel in,
3 channel out

Skip
Connection

Fig. 2: The Coring Network Architecture used to optimise the initial
prediction of the coring function H(ω1, ω2).

block average of the clean signal. This is especially true for dark
areas, where the noise creates a positive shift as pixel values are
never negative.

We propose here to study two solutions. Firstly, we replace the
block average with the block median. The median will be more ro-
bust in dark areas, as outlier values will not bias the DC estimate.

The second approach we want to investigate, is to train a ded-
icated ancillary CNN. While the variance-predicting CNN was
trained using a shallow network, predicting the mean of a noisy
image block requires a greater receptive field. As such, we cus-
tomise a UNet, by reducing the trainable parameters to a fraction of
the original network, replacing skip connection concatenations with
summations and removing a downsampling layer.

3.4. Coring Refinement Network

Finally, we explore the possibility of refining the default coring func-
tion with a small frequency-domain CNN. After applying coring on
all blocks at a particular block size, we can collate all the values for
H(ω1, ω2) into a single 4D tensor of size Mx×My×N×N , where
Mx and My are the numbers of blocks in each direction, and N is
the block size. We aim here to train a CNN to fine-tune this tensor.

We could potentially employ 4D convolutions filters, by combin-
ing across all frequencies of each of the neighbouring blocks, but to
keep the computations reasonable, we separate the convolutions into
a block of 2D convolutions operating on the frequencies within a sin-
gle block (intra-block NN), and then on a block of 2D convolutions
operating on frequencies across the neighbouring blocks (inter-block
NN). Skip-connections are added between each stage of the network
(see Fig.2). The network is kept simple, as we use the same 2D con-
volution, batch normalisation, ReLU activation structure as in our
STD estimation network. We have 20 channels per layer, with 5 lay-
ers in stage 1, and 4 layers in stage 2. The final number of trainable
parameters in the network is 22,506. As with the STD estimation
network, the Wiener filter is integrated into the network, and the loss
is taken as the L1 loss for the resulting estimated denoised image.

https://github.com/MrBled/ICICP_2023_Wiener


Algorithm 2 Proposed Wiener Filter Implementation

Require: Noisy image, y
1: σ̂ ← CNNσ(y) . noise STD prediction
2: w(h, k)← exp

(
−α(h2 + k2)

)
. windowing definition

3: for all block sizes ∈ [8, 16, 32, 64, 96] do
4: for all blocks y in image y, for stride=BlockSize/4 do
5: ȳ ← median(y) . predicts block mean
6: yw ← (y − ȳ)�w . windowing
7: Y ← FFTn(yw)
8: Pyy ← Y �Y∗

9: Pnn ← σ̂2‖w‖2
10: Pxx ← max(Pyy − Pnn, 0) . coring
11: x̂w ← iFFTn(Y �Pxx �Pyy) + ȳ
12: xall ← overlap add(w� x̂w) . combine image blocks
13: wall ← overlap add(w �w) . combine all windows
14: x̂← xall

wall

Block Stride 1/2 1/3 1/4 1/5 1/6 1/7

PSNR 35.06 35.33 35.42 35.46 35.47 35.48

Table 1: Block Overlap. Results are obtained using Hamming win-
dows for a 38×38 block with 1/x block overlaps. The 1/4 block
overlap yields the best compromise between gains (+ 0.36 dB) and
computation complexity.

4. EXPERIMENTAL RESULTS

4.1. Evaluation Datasets

All of our results are evaluated on 50 128x128 patches from the
4k Smartphone Image Denoising Dataset (SIDD) [20]. During the
period of research, both online benchmarking services: SIDD and
DND were offline. We measure our performance using peak-signal-
to-noise ratio (PSNR) in decibels (dB).

4.2. Window-Based Optimisations Results

Window Overlap. We first evaluate the effect of increasing the
overlap between blocks. Using a half-cosine window and a block
size of 38×38, we increased the block overlap from the default 1⁄2-
block overlap, to 1⁄7 of a block stride overlap. Results in Table 1
indicate an improvement in performance when reducing the stride.
From the original half-block overlap filter, a maximum improvement
of + 0.42 dB is made at 1⁄7 of a block stride. We choose to keep a
quarter-block overlap for our implementation as a finer overlap re-
turns a performance gain too small for the gain in computational
complexity.
Analysis and Interpolation Windows. Setting the overlap to 1⁄4 of
a window and the block size to 38×38, we found that replacing the
half-cosine window with a Gaussian window with STD α = 0.3,
improves our output PSNR to 35.52dB on our dataset, a + 0.1 dB
improvement from the equivalent half-cosine window. Note that, as
with most of these results, although improvements across the dataset
are small, the improvement is still noticeable to the eye, with fewer
blocky artefacts, as shown in figure 3.

4.3. Per-Block Noise Estimation

Training. The ground-truth std maps are generated for 800 images
of the DIV2k dataset [21], using the noise model of CBDNET [11].

Noise STD Prediction Scope PSNR(dB) #params

Fixed to σ = 10 Global 35.61 -
CNN, 4 layers, 16 channels Per Image 36.72 5.6k
CNN, 4 layers, 16 channels Per Channel 36.91 5.6k
CNN, 2 layers, 16 channels Per Block 36.72 0.9k
CNN, 2 layers, 32 channels Per Block 36.69 1.8k
CNN, 2 layers, 64 channels Per Block 36.70 3.6k
CNN, 4 layers, 16 channels Per Block 37.07 5.6k
CNN, 4 layers, 32 channels Per Block 37.11 20.4k
CNN, 4 layers, 64 channels Per Block 37.11 77.0k
CNN, 6 layers, 16 channels Per Block 37.12 10.0k
CNN, 6 layers, 32 channels Per Block 37.12 39.0k
CNN, 6 layers, 64 channels Per Block 37.20 152.0k

Table 2: Effect of the Noise STD prediction on Wiener denoising re-
sults. Quarter-overlap Gaussian windows on 38×38 blocks are used.
The underlined method corresponds to our best compromise choice.

An additional 320 real-noise images from the SIDD training set [22]
are included for the fine-tuning stage. Each of the 9 CNNs, described
in section 3.3, is trained for 4000 epochs with a cosine annealing
learning rate which decays from 1× 10−3 to 1× 10−5 every 300
epochs. We use a mini-batch size of 24 and randomly select 128×128
image patches for every image.
Results. In Table 2, we first evaluate our 4 layer, 16 channel STD
CNN against the Wiener filter with a baseline standard deviation es-
timation of σ = 10. The performance steadily increases when pro-
gressing from per-image to per-channel and finally per-block estima-
tion. We also include results when using larger networks. We see a
+ 1.2 dB (36.72 dB) improvement over our previous model with our
smallest network (2 layer, 16 channel) and a maximum denoising
performance of 37.20 dB (+ 1.68 dB) with our largest network. We
choose to use our 4-layer networks for future experiments due to a
more appealing performance to parameter count ratio.

4.4. Block Mean Prediction

In Table 3, we report the results for the different block mean estima-
tion methods proposed in section 3.3. Results are obtained from our
current best Wiener configuration (ie. Gaussian window, 1⁄4 block
overlap, 38×38 and 4×16 standard deviation network). Using the
median filter yields a PSNR of 37.55 dB (+ 0.48 dB over the mean).
Use of other quantiles is discussed in the supplementary material.

We also implement three custom U-Nets style networks to pre-
dict the mean values: UNet-L, UNet-M and UNet-S with 2M, 0.3M
and 0.12M parameters respectively. Layer concatenations are re-
placed with summations to make relationships between skip con-
nections easier to learn. The same training scheme is followed as
the fine-tuning step section 4.3. We obtain the results 37.24 dB,
37.48 dB and 37.41 dB for the small medium and large networks re-
spectively, and thus did not outperform the simple median filter.

Lastly, we fed the ground-truth image block means to the Wiener
filter in an attempt to establish an upper bound of the potential gains
that can be made by choosing better DC offsets. We record a bench-
mark result of 38.55 dB, outlining the performance possible with fur-
ther optimisation in that space.

4.5. Multi-Scale Wiener Filtering

Next, we evaluate the Wiener filters performance as an average of
images filtered at different window sizes, specifically: 8×8, 16×16,



(a) noisy (b) W0 (c) W1 (d) W2 (e) W3 (f) W4 (g) DnCNN (g) CBDNet (i) SUNet (j) GT

Fig. 3: Crop results for methods presented in Table 4. W3 and W4 correspond to our optimised Wiener without and with NN coring.

Method Mean Median UNet-S UNet-M UNet-L GT

PSNR 37.07 37.55 37.24 37.43 37.42 38.55

Table 3: Comparison of Block Mean Estimation Methods.

38×38, 64×64 and 96×96. We measured a + 0.32 dB gain, with a
practical best result of 37.87 dB. Note that, with ground-truth values
for the mean estimates, this performance could be raised to 38.82 dB,
showing that significant further gains should be attainable here.

4.6. Coring Refinement Network

Our final experiment explores the possibility of a frequency-CNN
to fine-tune the derived Wiener coring function H (see section 3.4).
The network is trained using the same real-synthetic dataset as in our
STD-CNN and using the same training parameters. For this experi-
ment, we take the 4×32 STD-CNN predictor with frozen weights and
the median DC-offset removal strategy. Our trained coring network
yields an increased performance to 38.13 dB, making a significant
+ 0.58 dB gain over the non-optimised coring result.

4.7. Comparison with the State of the Art

In Table 4 and Fig. 3, we compare our different optimisation levels
of Wiener W0-4. W0 and W1 refer to the typical baseline Wiener
scenarios, where σ is either set arbitrarily or manually tuned on a
per-image, per-channel basis. W2 refers to the improved window-
ing, with the use of median and per-block noise σ estimation. W3
adds the quarter stride and multi-scale overlap, and W4 includes the
coring network. These are compared to DnCNN [9], CBDNet [11]
and SUNet [23], a Swin-based transformer architecture. We use the
bias-free version of DnCNN [24], and as it was originally trained for
Gaussian noise, we re-trained it on our training set.

Method PSNR (dB) #params

W0: Original Wiener 35.06 n/a
W1: (W0) + per-channel σ 36.58 n/a
W2: (W0) + median + Gauss. + per-block σ 36.99 20k
W3: (W2) + 1⁄4 stride & multi-scale overlaps 37.87 20k
DnCNN* 37.94 640k
W4: (W3) + Coring NN 38.17 43k
CBDNet 39.32 4.36 M
Swin/SUNet 39.60 99.00 M

Table 4: Comparison of some of our optimisation levels of Wiener
on our real-noise benchmark. W3 and W4 optimisation levels are on
par with a real-noise trained and bias-free DnCNN (DnCNN*).

Results in Table 4 suggest that W3 and W4 levels compare
favourably with the much larger DnCNN. Interestingly, we can see
in Fig. 3-(c) that the coring network noticeably helps reduce the
typical Wiener ringing artefacts.

5. CONCLUSIONS

We demonstrate that with careful consideration, the Wiener filter can
perform on par, or even outperform popular CNNs such as DnCNN.
We have put forward a novel method of automating STD selection
using a small CNN, creating a blind Wiener denoiser. Artefacts such
as ringing and blocking have been improved upon and the optimisa-
tion of window functions and finer overlapping allows for increased
results. While we take advantage of neural networks to improve fil-
tering performance, the final Wiener filter uses only 43k combined
trainable parameters, while outperforming popular CNN-backbone
denoisers which require millions of parameters. We note also that
there is still much to gain from creating hybrid signal processing-
CNN denoisers, adopting a best-of-both-worlds approach.
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