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ABSTRACT 

Have you ever thought that you can be an intelligent painter? 

This means that you can paint a picture with a few expected 

objects in mind, or with a desirable scene. This is different 

from normal inpainting approaches for which the location of 

specific objects cannot be determined. In this paper, we 

present an intelligent painter that generate a person’s 

imaginary scene in one go, given explicit hints. We propose 

a resampling strategy for Denoising Diffusion Probabilistic 

Model (DDPM) to intelligently compose unconditional 

harmonized pictures according to the input subjects at 

specific locations. By exploiting the diffusion property, we 

resample efficiently to produce realistic pictures. 

Experimental results show that our resampling method favors 

the semantic meaning of the generated output efficiently and 

generates less blurry output. Quantitative analysis of image 

quality assessment shows that our method produces higher 

perceptual quality images compared with the state-of-the-art 

methods.  

Index Terms— Deep learning, Image processing, 

Diffusion model, Intelligent painting, Image synthesis 

1. INTRODUCTION 

Our minds are good at fabricating scenes. However, it is 

difficult to show our pictured mind to other people with 

words, which is implicit. Some people could draw the picture 

from their minds, but drawing is a skill that not everyone has 

expertise. It is always easy to imagine a single image object. 

One or a few objects can form the landmark information of a 

picture. For example, if we know a scene to have a house and 

a tree next to the house, we can imagine that the ground is 

grassland, and the sky is located above the house. We, 

therefore, can compose a picture when explicit hints are 

given. 

For scene composition, it involves scene generation. This 

makes us to recall different Generative Adversarial Networks 

(GANs) [1] methods, including iGAN [2], GANBrush [3], 

and PoE-GAN [4]. However, the above methods make uses 

of image priors which limit the user inputs into certain types. 

In this paper, we work on an image completion problem, 

since we are filling the unknown pixels according to our 

known components which are the landmarks. Early image 

completion approaches either rely on a large image database 

for matching image regions [5] or make use of the neighbor 

pixels to approximate the missing region [6]. They were only 

effective when repairing small patches. However, in later 

approaches researchers started to use deep learning methods 

[7-13] which have the generalization ability to support large 

incompletion area. 

The following gives contributions of this paper. 1) We 

initially suggest that every reader can be an intelligent Painter 

for compositing an ideal picture with key items from his/her 

mind, which should be a big future direction in deep learning 

applications. 2) We propose a resampling strategy to fill out 

large empty space to form high-quality pictures with 

unconditional DDPM. 3) Our inference time is much faster, 

with better picture appearance and quality metric scores when 

comparing with RePaint [7] which also uses DDPM.  

2. PROBLEM FORMULATION AND BACKGROUND 

CONCEPTS 

Basically, our model is able to take user’s input items as keep 

components and guide the missing area such that the filled 

area seamlessly matches with the input. This is done by 

encoding the known input information x 
known  into latent 

z 
known and combine it with the existing trained latent z 

unknown. 

Then by decoding the merged latents, we are able to obtain 

the seamless picture y.  

z 
known = 𝐸𝑛𝑐𝑜𝑑𝑒(x 

known) (1)  

y = Decode(z 
known  +  z 

unknown ) (2)  

In order to achieve our formulation, we need a model for 

which the latent has the same dimension with our output to 

allow combination. In this case diffusion model may be a 

possible choice as its latent variable has the same dimension 

as the data and output. 

Denoising Diffusion Probabilistic Model (DDPM) is a 

generative model that could perform high-quality image 

synthesis [16]. It only learns the decode stage. To be specific, 

it denoises an image in a scheduled manner, starting from a 

pure noise image which is similar to latent. The setup of 
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DDPM consists of a fixed forward process 𝑞  which holds 

similar idea to encoding, and a learned reverse process pθ to 

decode. Both processes are indexed by 𝑡  in the finite 

timesteps 𝑇 and formed a Markov chain. In each step of the 

fixed forward process 𝑞, a different scale of noise according 

to the timestep is applied to the input image 𝑥0. The noise 

accumulates for each timestep until the image forms complete 

random noise image 𝑥𝑇, which can be viewed as an encoding 

process. A step of the forward process is a conditional 

probability defined as a normal distribution function 

𝒩(𝑥; 𝜇, 𝜎2). 

q( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = 𝒩(𝑥𝑡; √1 − β𝑡𝑥𝑡−1, β𝑡𝐈) (3) 

Given image 𝑥𝑡−1, we can find the probability of image 

𝑥𝑡. Schedule β is a 𝑇-shaped vector with interval from 0.0001 

to 0.02. Since normal distributions with any mean and 

variance can be represented as a scaled and translated 

standard normal distribution 𝒩(0,1) , we could use 

reparameterization trick [17] to convert 𝒩(𝜇, 𝜎2) → 𝜇 + 𝜎 ⋅
𝜖 , where 𝜖  is the noise sampled from 𝒩(0, 𝐈)  and I is an 

identity matrix. Thus, the formula can be simplified as:  

𝑥𝑡 = √1 − 𝛽𝑡𝑥𝑡−1 + √𝛽𝑡𝜖 (4) 

To efficiently apply accumulated noise to a specific time 

step from the initial image, we can make use of the gaussian 

distribution property and calculate the total noise variance. 

We can derive the formula for apply any number of forward 

steps as one step: 

√α𝑡α𝑡−1 … α1α0𝑥0 + √1 − α𝑡α𝑡−1 … α1α0 ϵ̅   

= √α𝑡̅𝑥0 + √1 − α𝑡̅  ϵ̅ (5) 

where 𝛼𝑡̅̅ ̅ = ∏ 𝛼𝑠
𝑡
𝑠=1 . We note that a merged gaussian 

ϵ̅ can be represented as a gaussian 𝜖. Therefore, the equations 

of the forward process can be simplified as:  

q( 𝑥𝑡 ∣∣ 𝑥0 ) = 𝒩(𝑥𝑡; √𝛼𝑡̅̅ ̅𝑥0, (1 − 𝛼𝑡̅̅ ̅)𝐈) (6) 

𝑥𝑡 = √𝛼𝑡̅̅ ̅𝑥0 + √(1 − 𝛼𝑡̅̅ ̅) 𝜖 (7) 

For the learned reverse process pθ, a U-Net [18] with 

learnable parameter set 𝜃  and the time embedding [19] is 

trained to predict the noise added at specific timestep 𝑡, such 

that given image 𝑥𝑡, image 𝑥𝑡−1 can be derived by removing 

one step of noise. To generate meaningful content for our 

intelligent painter, we can sample a pure noise image xT and 

chain all the reverse processes until xT  become a 

semantically meaningful image x0 . A step of the reverse 

process is also a conditional probability which can be 

formulated as a parameterized distribution function. This can 

be simplified with reparameterization trick as well. 

𝑝𝜃( 𝑥𝑡−1 ∣∣ 𝑥𝑡 ) = 𝒩(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡 , 𝑡), Σ𝜃(𝑥𝑡 , 𝑡)) (8) 

𝑥𝑡−1 = 𝜇𝜃(𝑥𝑡 , 𝑡)  + √Σ𝜃(𝑥𝑡 , 𝑡) 𝜖 (9) 

where the mean 𝜇𝜃(𝑥𝑡 , 𝑡) and variance Σθ(xt, t) are the 

output of the trained U-Net. 

3. PROPOSED RESAMPLING ON DDPM FOR 

SCENE COMPOSITION 

To make scene composition possible, instead of training a 

DDPM in a conditional input setting, we modify the inference 

process of an unconditional pre-trained DDPM to achieve our 

result. We set our landmark input to guide the denoising 

process. In details, for each reverse step, we encode our 

image 𝑥0 to the noisy image xt−1
known ,  while decodes a random 

noise image 𝑥𝑡  to obtain xt−1
unknown . The two intermediate 

results are masked to keep the landmark region and then 

added together before the next step. In such a way, the 

landmark information encoded could guide the content 

generation in the unknown area. It can be formulated as the 

following equations:  

xt−1
known = √𝛼𝑡̅̅ ̅𝑥0 + √(1 − 𝛼𝑡̅̅ ̅) 𝜖 (10)  

xt−1
unknown = 𝜇𝜃(𝑥𝑡, 𝑡)  + √Σ𝜃(𝑥𝑡, 𝑡) 𝜖 (11)  

xt−1 = m ⊙ xt−1
known + (1 − m) ⊙ xt−1

unknown (12)  

where m is the mask generated from our input as shown 

in Fig. 2, ⊙ means element-wise product. The equations are 

essentially the same as our problem definition in equation (1) 

and (2). However, the above algorithm only considers the 

conditional landmark information and tries to fill in the blank 

parts. The algorithm fails to maintain the perceptual quality 

of the output image for our task as it fails to incorporate the 

semantic information, especially when the conditional 

landmark information is insufficient. 

Therefore, let us add a resampling to help the DDPM to 

consider the generated parts of the image, analogous to those 

proposed in RePaint [7]. Resampling is done by reintroducing 

the forward process that the less noisy image xt−λ is encoded 

back to a noisier image xt, and then denoised back to image 

xt−λ  again. In that case, the generated information xt−λ  is 
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preserved in xt, resulting in a more semantically meaningful 

output. We have found that to make the resampling effective 

for our application, we can set λ  as 10 which means we apply 

10 steps of the forward process before 10 denoising steps. 

The resampling is repeated 10 times for each of the 10 

denoising timesteps across the schedule, as Lugmayr et. al. 

[7] suggested that the higher number of resampling would 

improve the overall image consistency.  

One serious downside is that resampling increases the 

inference time significantly, as it increases the operations. 

Moreover, the resampling approach proposed by RePaint [7] 

often produces image with unclear details. To mitigate this 

issue, we stop the resampling at timestep t = 100. According 

to the property of DDPM fixed forward process xt =

√αt̅x0 + √(1 − αt̅)ϵ,  when the timestep t is small, α̅ is a 

value close to 1. Alternatively, α̅  is close to 0 when the 

timestep is big. Using the linear property of the Fourier 

transform, we perform Fourier analysis on the forward 

process ℱ(xt) = √αt̅ℱ(x0) + √(1 − αt̅)ℱ(ϵ)  and found 

that the high-frequency components of the image such as fine 

details are corrupted at lower timesteps, while at larger 

timesteps the low-frequency components of the image such 

as coarse structures are corrupted, as shown in Fig. 4. 

Therefore, we can assume that the learned reverse process 

first generates the coarse structure at higher timesteps and 

then makes fine details at lower timesteps. The resampling at 

lower timesteps could potentially blur the details because the 

preserved low-level information in the forward steps has 

intervened the denoising process at lower timestep. Since the 

coarse structure harmonized at bigger timesteps has provided 

enough information to generate the fine details, we can 

exploit this property to stop resampling at a smaller timestep, 

therefore improving the image perceptual quality and the 

inference time.  

4. EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Visual comparison with other methods 

We compared our approach with some state-of-the-art 

models including Big-LaMa [8], AOT-GAN [9], MAT [10], 

Co-Mod-GAN [11], and RePaint [7]. All models were trained 

on the Place2 dataset to ensure a fair comparison. We found 

that GAN-based models (AOT-GAN, Co-Mod-GAN) often 

produce blurry artifacts, and Fourier-based model (Big-

LaMa) produces repetitive artifacts. Transformer-based 

model (MAT) produces better results, but sometimes failed 

to consider the semantic meaning. Our diffusion-based 

models result in higher perceptual quality as illustrated in Fig. 

3.  

4.2 Quantitative metric comparison 

Validating the effectiveness of this approach is challenging 

because our task has no ground truth. Common image quality 

assessment metrics such as SSIM [20] and PSNR are not 

usable. To quantitatively validate our approach, we make use 

of NR-IQA (No-Reference Image Quality Assessment) 

methods [21-24] to access the quality of the output image. 
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From Table I, we can see that our method achieves the lowest 

FID [21] and NIQE [22], which indicates the best image 

quality. 

4.3 Ablation study on resampling strategies  

In Fig. 5, we compare the output images among various 

resampling methods. We can find that without resampling the 

outputs are inconsistent and lack of semantic meaning, 

especially when the unknown area is large. With the 

resampling technique, the output is more harmonized and 

consistent. However, we also found that for full resampling 

setting the results suffer from unclear details problem. We 

found the unclear details problem is similar to the stochastic 

variation technique problem in StyleGANv1 [25]. We have 

identified the problem and found that performing resampling 

at lower timesteps tends to yield blurry images. These blurry 

artifacts appeared frequently on the approach “resampling 

starts as t = 150” and “full sampling”. With this observation, 

we stop resampling at t = 100 to harmonize the coarse 

structures while keeping the detailed information untouched. 

Our resampling method not only shortens the inference time 

but also improves the perceptual quality of the output images. 

To further analyze the number of operations, we note that 

multiple steps of the forward process can be done in one step. 

From Table II, we can see that even though the accumulated 

forward process can be done in 1 step, the operating steps 

increase linearly. The inference time comparison is shown on 

Table III. Diffusion models are generally slow due to the time 

of sampling but provide better diversity. Our method is 40% 

faster than RePaint [7] while achieving better perceptual 

quality in our task as shown in Table I.  

5. CONCLUSIONS 

Controllable image synthesis is a hot topic nowadays, and 

researchers have designed novel approaches to generate high-

quality image components, allowing users to produce their 

desire images. However, researchers ignored the possibility 

of fabricating images by injecting real-life images. In this 

paper, we propose the use of explicit landmarks and a 

resampling strategy to perform content-guided image 

synthesis using DDPM. Our resampling strategy significantly 

reduced the inference time while perceiving the perceptual 

quality of the image. In details, we exploit the frequency 

property of DDPM and force the model to only resample the 

low-level content, efficiently yielding the outputs that are 

semantically harmonized. Our method also tends to produce 

a less blurry result as compared with the full resampling 

strategy by RePaint and has a faster inference time. 

Compared with the state-of-the-art approaches, our proposed 

method achieves better NIQE and FID scores which imply 

better image quality. To further improve this work and 

provide more controllability, we will research the multimodal 

intelligent painter. Program codes are available at 

github.com/vinesmsuic/ipainter-diffusion. 
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TABLE I. Quantitative evaluation 

Method FID 

[22](↓) 

NIQE  

[21](↓) 

HyperIQA 

[23](↑) 

NIMA 

[24](↑) 

AOT-GAN[9] 277.83 5.96 44.75 5.22 

CoModGAN[11] 225.62 5.30 46.42 5.28 

Big-LaMa[8] 243.55 4.95 45.41 5.10 

MAT[10] 231.15 5.65 44.66 5.24 

RePaint[7] 238.88 5.56 47.86 5.38 

Ours 221.20 4.86 47.64 5.33 

 

TABLE II. number of operations of resampling strategies 

 𝑁𝑑𝑛 𝑁𝑓𝑤𝑑  𝑁𝑡𝑜𝑡𝑎𝑙  

Resampling All 2410 216 2626 

Start resampling at T = 150 1600 135 1735 

Stop resampling at T = 100 1510 126 1636 

No Resampling 250 0 250 

 
TABLE III. Inference time comparison on a RTX 3090 GPU 

Method Inference time in seconds () 

AOT-GAN[9] 0.4961 

CoModGAN[11] 0.5331 

Big-LaMa[8] 0.0353 

MAT[10] 0.0694 

RePaint[7] 321.6836 

Ours 201.8138 

 

 
Fig. 5 Visual comparison on resampling strategies 
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