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ABSTRACT

We present a machine learning approach that uses a custom Con-
volutional Neural Network (CNN) for estimating the depth of wa-
ter pools from multispectral drone imagery. Using drones to obtain
this information offers a cheaper, timely, and more accurate solu-
tion compared to alternative methods, such as manual inspection.
This information, in turn, represents an asset to identify potential
breeding sites of mosquito larvae, which grow only in shallow water
pools. As a significant part of the world’s population is affected by
mosquito-borne viral infections, including Dengue and Zika, iden-
tifying mosquito breeding sites is key to control their spread. Ex-
periments with 5-band drone imagery show that our CNN-based ap-
proach is able to measure shallow water depths accurately up to a
root mean square error of less than 0.5 cm, outperforming state-of-
the-art Random Forest methods and empirical approaches.

Index Terms— Bathymetry Retrieval, Multispectral Imagery,
Convolutional Neural Networks, Drones.

1. INTRODUCTION

Dengue fever and Zika are two arboviruses that affect a significant
proportion of the world’s population [1]. The main vector species of
both infections are Aedes aegypti and Aedes albopictus mosquitos,
which breed in shallow and slow-moving water pools. Reducing and
controlling potential breeding sites is key to limit their spread.

Identifying potential breeding sites requires rapid and accurate
estimations of water depths over potentially large areas [2, 3, 4].
Satellite imagery only provides depth measurements at meter level,
not to count the relatively high cost, the complex image processing
required, and the high latency to deliver the estimates. Therefore,
we explore the use of drones equipped with high-resolution multi-
spectral cameras in order to estimate the depth of slow-moving wa-
ter pools. Compared to satellites, drones can provide near real-time
estimates with centimeter accuracy at low operational costs. These
estimates can then be used to classify aquatic environments likely to
harbor breeding larvae.

The outline of the paper is as follows: After discussing the limi-
tations of the current state of the art in Sec. 2, we illustrate in Sec. 3
the design and training of a custom Convolutional Neural Network
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(CNN) for estimating shallow water depth using multispectral im-
ages acquired from drones. Our design is novel in that the network
is robust to noisy multispectral images from drones, that the network
adapts to various water bottom types, and that a very good accuracy
is achieved in the centimeter range. Sec.4 presents our obtained re-
sults for multispectral drone imagery in five datasets. Using 5-band
drone imagery, we can estimate shallow water depths with a root
mean square error (RMSE) of less than 0.5 cm and R? values of up
to 0.99, outperforming state-of-the-art Random Forest methods and
empirical approaches. Moreover, we study the impact of larvae in
the water when estimating water depth. We observe, that the larvae
in the water make the depth measurements slightly less accurate. Fi-
nally, we analyze the impact of selected spectral bands toward the
model’s depth estimation performance. In particular, the additional
information in the Red Edge band is valuable.

2. RELATED WORK

A large body of literature exists on bathymetry retrieval models, es-
pecially using remote imagery. Available methods are of analytical
or empirical nature. Analytical methods examine the relationship be-
tween the spectrum values of images and water depth [5, 6], allowing
bathymetry inversions without ground truth data. However, the com-
plexity of models increases as a result of the numerous unidentified
physical parameters that influence the spectrum measurements [7].

In contrast to analytical techniques, empirical methods rely on
the availability of in-situ bathymetry data for model validation. Sev-
eral papers are based on the work by Lyzenga [8, 9] and consider
various applications [10, 11, 12, 13, 14]. Empirical approaches do
not always need absolute radiometric or atmospheric adjustments
[11, 15]. Moreover, they can handle different datasets as long as
the bottoms of the water pools are similar [16].

For example, Yu et al. [17] use three different ratios of re-
flectance band pairs from multispectral images to reduce the impact
of the bottom material and the type of water body. This way,
an empirical model using the ratio of band pairs can be used to
obtain the water depth. However, Yu’s method considers only a
depth-dependent linear relation between reflectance and depth. Un-
fortunately, this linear relation is not sufficiently accurate due to the
diversity of bottom types and the noise in drone images.

Mahima et al. [4, 18] experiment with the bathymetric log-ratio
algorithm [9] for estimating shallow water depths in the centimeter
range using multispectral drone images. Also this empirical method



Table 1: Bands and corresponding sensor range data.

Band Range
Blue 475 nm center, 32 nm bandwidth
Green 560 nm center, 27 nm bandwidth

Red 668 nm center, 16 nm bandwidth
Red Edge | 717 nm center, 12 nm bandwidth
NIR 840 nm center, 57 nm bandwidth

(a) DIJI Drone with MicaSense
RedEdge-MX sensor.

(b) Set of water buckets used for
the experiments.

Fig. 1: Experimental setup.

provides depth estimates of limited accuracy. It is not sufficiently
robust to the noise in drone images.

On the other hand, machine learning techniques exist that are
capable of mapping the complex relationship between multispectral
data and depth values. For example, Manessa et al. [19] propose a
Random Forest (RF) algorithm to estimate water depth in shallow
coral reef water bodies based on single beam echo sounder samples
and Worldview-2 satellite images. In this work, they use the surface
reflectance of six visible bands.

Ai et al. [20] explore CNNs to retrieve water depth in marine
water areas from remote sensing images. The authors use the lo-
cal connectivity property of CNNs to exploit the local spatial cor-
relation of image pixels for bathymetry inversion. The accuracy of
various topologies employing various window widths and band com-
binations is further investigated in [21].

However, the majority of existing research in the area is based on
satellite imagery, resulting in estimates in the range of meters. This
is not sufficient for identifying potential mosquito breeding sites.

3. CNN-BASED DEPTH ESTIMATION

We illustrate the datasets we use, the corresponding preprocessing,
and the network architecture.

3.1. Datasets

We use a DJI Phantom 4 drone equipped with a MicaSense RedEdge-
MX sensor [22] to collect multispectral image datasets. RedEdge-
MX provides RGB and multispectral outputs with a resolution of
2 cm per pixel while flying at a height of 60 meters. It records five
multispectral bands at 1.2 MP with the wavelength and bandwidth
ranges as depicted in Table 1.

Each RedEdge-MX camera kit contains a light sensor for irra-
diance and sun angle measurements as well as a reflectance panel
for on-the-ground calibration. These radiometric calibration tools
account for different weather and light conditions and are useful to
obtain more accurate data.

Table 2: Dataset features.

Dataset Height Larvae
Dataset 1 | varying altitudes 5-15 m | with and without
Dataset 2 about 8 m without
Dataset 3 about 8 m without
Dataset 4 about 5 m with and without
Dataset 5 about 10 m with and without

MicaSense calibrated
reflectance panel —_— D —_

Remove distortions
from the raw images

Align and merge
each band images

Stacked image after copping
the non-overlapping pixels
in boundary

Raw images from
5 bands

Fig. 2: Steps to generate stacked 5-band images from the MicaSense
RedEdge-MX sensor.

Our setup is shown in Fig. 1. Since mosquito larvae breed in
shallow water pools, we use buckets of water to emulate the envi-
ronment. To obtain depth-accurate image data, we progressively add
water to the bucket and fly the drone over the bucket to perform sen-
sor measurements using the RedEdge-MX sensor.

We create a total of five datasets, each at varying altitudes, rang-
ing from 5 to 15 m above the ground. We place small stones at the
bottom of the buckets to emulate an urban scenario and to have the
sensor’s spectral reflectance behaviour be consistent across all buck-
ets. Dataset 1, 4 and 5 have buckets with and without larvae. If there
are larvae, they are near the water surface. Table 2 gives an overview.

3.2. Data Preprocessing

Since the MicaSense camera lenses are not aligned mechanically
[23], each spectral image must be aligned with the other bands to cre-
ate meaningful data. Image alignment and stacked image generation
is a three-step process. First, we use the MicaSense Calibrated Re-
flectance Panel (CRP) to remove distortions and get the reflectance
image. Specifically, the reflectance image can be obtained by ex-
tracting the area of the image containing the Lambert panel of the
CRP, determining its radiance to reflectance scale factor, and then
scaling the entire image by that factor. Then, we align each band
to a common band by a two-dimensional (affine) transform between
images. Finally, we merge and crop the aligned images. The process
of aligning raw images from the five spectral bands and producing a
stacked multispectral image is shown in Fig. 2.

Our goal is to estimate the water depth for a given measure-
ment window in a stacked 5-band image. A measurement window
of 1 x 1 pixels is very small and noisy. Large measurement windows
will capture spatially varying effects, such as reflections and shad-
ows. Such extreme sizes of measurement windows are not beneficial.
Therefore, we choose windows smaller than 10 x 10 pixels. To find
the best trade-off between noise and spatial effects, we will explore
the three window sizes 5 x 5, 7 X 7, and 9 x 9 pixels. For simplicity,
we extract multiple measurement windows inside the buckets and la-
bel them with the corresponding water depth to generate the data for
our bathymetric CNN model.



Table 3: CNN architectures.

Model Layer

Model 1 | 2 Conv2D, kernel size =2 x 2
Model 2 | 2 Conv2D, kernel size =3 x 3
Model 3 | 3 Conv2D, kernel size =2 x 2
Model 4 | 3 Conv2D, kernel size =3 X 3

3.3. Network Architecture

In order to exploit the local spatial correlation among neighboring
image pixels, we design a CNN regression network to estimate the
water depth. At least one convolutional layer is needed to remove
the noise. Our experiments show that multiple layers are appropriate
to obtain accurate depth estimates. To build an efficient architec-
ture for accurate depth estimates, we consider different numbers of
convolutional layers and varying kernel sizes.

As discussed in the previous section, our maximum window size
is 9 x 9. Therefore, we explore architectures with two or three con-
volutional layers and kernel sizes less than 3 x 3. In particular, we
evaluate four different architectures. Larger measurement windows
will provide more information to the network, however, entail more
noisy data. More layers seem to be necessary to learn the noise pat-
terns and to remove them. On the other hand, smaller windows will
provide less information and the network has to deal with less noisy
data. Less layers seem to be necessary to learn the noise patterns and
to remove them. Table 3 lists several models and their parameters.

In the network, the first convolutional layer should attenuate the
noise and extract depth features from the input. We use a rectified
linear activation function. Further, we utilize batch normalization
layers to prevent overfitting. More convolutional layers can be
added to improve the quality of the extracted depth features. Then,
the three-dimensional data is flattened and connected to a fully-
connected layer. For the output layer, we use a linear activation
function to accomplish the depth estimation task. An example of the
CNN network is shown in Fig. 3.

Feature Feature
Inputs maps maps Units Units Outputs
SxTx7 32x6x6 32x5x5 800 128 1
2x2 Conv+ 2x2 Conv+
Batch norm Batch norm Flatten Relu Linear

Fig. 3: Example CNN architecture (model 1 and window size=7).

4. EXPERIMENTAL RESULTS

Before we assess various CNN architectures, we discuss the metrics
we use for the evaluation.

4.1. Metrics

Our primary objective is to obtain accurate estimates of water depth.
Thus, we focus on comparing predicted and actual depth values.
For the assessment, we use the Root Mean Square Error (RMSE)

Table 4: Different CNN architectures and measurement windows.

5x5 Tx7 9x9
RMSE | R | RMSE | R> | RMSE | R?
Model 1 1.09 [ 094 ] 08 [097| 071 | 098
Model 2 1.21 093 | 0.86 | 096 | 0.76 | 0.97
Model 3 1.02 | 095| 079 | 097 | 075 | 097
Model 4 NA NA 088 | 096 | 069 | 0.98

Model

of the depth values and the R-squared (R?) value to capture the un-
explained variation of the depth values.

The root mean square error captures the magnitude of the av-
erage prediction error and is a measure of accuracy. On average,
low RMSE values indicate accurate depth prediction values, whereas
high RMSE values entail inaccurate depth prediction values.

The R-square value measures the proportion of the variance in
the dependent variable that can be explained by the independent vari-
able. It captures the quality of the regression model. The closer it
is to one, the more effective is the regression model. When the pre-
diction model makes no errors, the R-square value is 1. On the other
hand, if the R-square value is less than 0, the prediction model fails.

4.2. Assessment of CNN Architectures

In the following, we assess our CNN architectures, including the
choice of the data measurement window. As mentioned above, we
evaluate three measurement window sizes and four distinct CNN ar-
chitectures. For the assessment, we use three datasets, i.e. Dataset
1 (water depth ranges from 1-10 cm), Dataset 2 (water depth ranges
from 1-18 cm) and Dataser 3 (water depth ranges from 1-16 cm).
For these three datasets, we use all five bands of the sensor, where
80% of the data is used for training and 20% for testing. The hy-
perparameters are the same for all configurations. We train with 500
epochs at a learning rate of 0.0001 and a batch size of 500.

Table 4 depicts the experimental results for each CNN archi-
tecture and measurement window size. We observe that the perfor-
mance of the CNN model improves with increasing window size.
That is, a larger number of samples within a measurement window
will improve the accuracy of the prediction. Therefore, we choose
a9 x 9 window to generate the network input data for the follow-
ing experiments. Further, we see that a deeper network and a larger
kernel size result in better regression performance. Based on these
observations, we choose a CNN model with three convolutional lay-
ers and 3 x 3 kernels (Model 4). Note, three convolutional layers

RMSE of different datasets
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0.6 4
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Fig. 4: RMSE vs. depth values for Dataset 1, 2, and 3.




Table 5: Depth estimation with or without larvae.

Model i Datase? 4 i Datase? 5
with without with without
larvae larvae larvae larvae

RMSE 1.35 0.73 1.04 0.70
R? 0.89 0.96 0.90 0.98

Table 6: Performance of our CNN model when using subsets of
available bands.

Band Dataset 1 Dataset 2 Dataset 3
RMSE | R | RMSE | R* | RMSE | R?
5 bands 0.23 0.99 0.46 0.99 0.45 0.98
RGB 0.40 0.96 0.74 0.97 0.68 0.97
RGB+R 0.25 0.98 0.53 0.98 0.53 0.98
RGB+N 0.48 0.95 0.71 0.97 0.82 0.95

with 3 X 3 kernels require input windows larger than 5 x 5. There-
fore, the corresponding results cannot be reported.

Finally, we use the chosen CNN (Model 4) and assess the ac-
curacy of depth estimates for given depth values. Fig. 4 shows the
RMSE for given depth values, separately for Dataset 1, 2, and 3.

4.3. Impact of Larvae in the Water

If larvae breed in shallow water, they are usually located near the
water surface. These larvae may actually affect the accurate mea-
surement of the water depth. In recent work, Gabriel et al. [24] ob-
serve that there is a variation in spectral reflectance when comparing
water with and without mosquito larvae.

To study this further, we additionally collect Dataset 4 and
Dataset 5. Note, the former places the drone at an altitude of 5 m,
the later at an altitude of 10 m. Both include water buckets with
water depths from 1 to 15 cm and water buckets with and with-
out mosquito larvae. Then we train a Model 4 network using both
samples with and without larvae.

Table 5 gives the obtained results. For Dataset 4 and 5, the
RMSE is slightly larger for water buckets with larvae when com-
pared to those without larvae. From this data, it appears that the ac-
curacy of the depth measurements is slightly lower for water buckets
with larvae. A similar observation can be made when comparing the
R-squared values. Hence, the observation in [24] may have also a
minor impact on the accuracy of depth measurements. On the other
hand, we have also a slightly different camera angle for the water
buckets with larvae. We will investigate this in future work.

The main goal of our research is to accurately detect potential
mosquito larvae habitats. The current results above suggest that our
CNN estimates the depth of the water with sufficient accuracy to
determine which water pools may contain mosquito larvae.

4.4. Impact of Selected Spectral Bands

The previous experiments use all five available bands of our mul-
tispectral sensor. In the following, we study the impact of using
subsets of the available bands. This may allow us to use cheaper
sensors with less bands. Therefore, we choose selected combina-
tions of bands and analyze Dataset 1, 2, and 3.

The results in Table 6 show that using all five bands produces
the best regression results. This is expected as the availability of

40

N Datasetl
35 Dataset2
BN Dataset3
N Al Datasets

RMSE

CHMN RF Linear Ratio
Bathymetry Method

Fig. 5: Comparison with existing methods.

richer information may result in more accurate estimates. The per-
formance of RGB + Red Edge bands (RGB+R) is almost as good
as that of 5 bands. On the other hand, RGB + Near Infrared (NIR)
bands (RGB+N) perform similar to RGB bands only, or even worse.
This indicates that adding the NIR band to RGB bands will not help
much to improve the accuracy of the depth estimates. Finally, using
only RGB bands comes in around third place in our experiments.

Therefore, 5-band ground data is preferred when accuracy is the
only factor. But if costs have to be considered too, RGB + Red Edge
bands are a good compromise.

4.5. Comparison with Existing Methods

Finally, we benchmark our CNN model and compare with machine
learning and bathymetry regression methods, in particular, Random
Forests as well as linear and ratio bathymetry regression.

Fig. 5 depicts the RMSE for Dataset 1, 2, 3, and their union.
We observe that our CNN model achieves the lowest RMSE. The
Random Forest (RF) outperforms both linear and ratio bathymetry
regression. Linear and ratio bathymetry regression assume a lin-
ear relationship between log-reflectance and depth, whereas RF and
CNN are machine learning algorithms that can also consider other
dependencies. In addition, CNNs can exploit the local spatial corre-
lation of image pixels for more accurate water depth estimation. The
adaptive attenuation of noise in the multispectral images appears to
be beneficial too. Both observations may give our CNN an advan-
tage over the Random Forest.

5. CONCLUSION

We have proposed a water depth retrieval model based on CNNs.
We have conducted an experimental evaluation to explore the extent
to which CNNs can be used for bathymetry in shallow water areas
when using multispectral 5-band drone imagery. Our CNN-based
approach is able to measure shallow water depths accurately up to a
root mean square error of less than 0.5 cm, outperforming state-of-
the-art Random Forest methods. Further, we have analyzed the im-
pact of using subsets of available multispectral bands. Here, we have
noticed the significance of the Red Edge band. Finally, we have ex-
plored the impact of larvae in the water when estimating water depth.
Here, we have found that the impact is small enough to still allow us
to estimate the water depth with sufficient accuracy. According to
our observations, CNNs are advantageous for our problem as they
exploit the local spatial correlation in images as well as attenuate
adaptively the noise in the measurement windows.



(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

6. REFERENCES

Mosquito Reviews, “Statistics for mosquito-borne diseases
and deaths,” Online, Accessed on 2023-01-31, Avail-
able at https://mosquitoreviews.com/learn/
disease-death-statistics.

Michelle C. Stanton, Patrick Kalonde, Kennedy Zembere,
Remy Hoek Spaans, and Christopher M. Jones, “The appli-
cation of drones for mosquito larval habitat identification in
rural environments: a practical approach for malaria control?,”
Malaria Journal, vol. 20, no. 1, pp. 1-17, 2021.

Andrew Sutherland, “Mosquito management for ponds, foun-
tains, and water gardens,” UC IPM Retail Nursery & Garden
Center IPM News, vol. 3, no. 2, Jun 2013.

KTY Mahima, Malith Weerasekara, Kasun De Zoysa,
Chamath Keppitiyagama, Markus Flierl, Luca Mottola, and
Thiemo Voigt, “MM4Drone: A multi-spectral image and
mmwave radar approach for identifying mosquito breeding
grounds via aerial drones,” in International Conference on
Pervasive Computing Technologies for Healthcare. Springer,
2022, pp. 412-426.

Zhongping Lee, Kendall L. Carder, Curtis D. Mobley,
Robert G. Steward, and Jennifer S. Patch, “Hyperspectral re-
mote sensing for shallow waters: 2. Deriving bottom depths
and water properties by optimization,” Appl. Opt., vol. 38, no.
18, pp. 3831-3843, Jun 1999.

David Lyzenga, “Remote sensing of bottom reflectance and
water attenuation parameters in shallow water using aircraft
and Landsat data,” International Journal of Remote Sensing,
vol. 2, pp. 71-82, 01 1981.

Jakob J Assmann, Jeffrey T Kerby, Andrew M Cunliffe, and
Isla H Myers-Smith, “Vegetation monitoring using multispec-
tral sensors—best practices and lessons learned from high lat-
itudes,” Journal of Unmanned Vehicle Systems, vol. 7, no. 1,
pp. 54-75, 2018.

David R. Lyzenga, “Passive remote sensing techniques for
mapping water depth and bottom features,” Applied Optics,
vol. 17, no. 3, pp. 379-383, 1978.

Richard P. Stumpf, Kristine Holderied, and Mark Sinclair,
“Determination of water depth with high-resolution satellite
imagery over variable bottom types,” Limnology and Oceanog-
raphy, vol. 48, no. lpart2, pp. 547-556, 2003.

Emily C. Geyman and Adam C. Maloof, “A simple method
for extracting water depth from multispectral satellite imagery
in regions of variable bottom type,” Earth and Space Science,
vol. 6, no. 3, pp. 527-537, 2019.

Mehdi Gholamalifard, Tiit Kutser, Abbas Esmaili-Sari, Ali A.
Abkar, and Babak Naimi, “Remotely sensed empirical mod-
eling of bathymetry in the southeastern Caspian Sea,” Remote
Sensing, vol. 5, no. 6, pp. 2746-2762, 2013.

Sheng Ma, Zui Tao, Xiaofeng Yang, Yang Yu, Xuan Zhou,
and Ziwei Li, “Bathymetry retrieval from hyperspectral re-
mote sensing data in optical-shallow water,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 52, no. 2, pp.
1205-1212, 2013.

Dimosthenis Traganos, Dimitris Poursanidis, Bharat Aggar-
wal, Nektarios Chrysoulakis, and Peter Reinartz, “Estimating

[14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

[22]

(23]

[24]

satellite-derived bathymetry (SDB) with the Google Earth En-
gine and Sentinel-2,” Remote Sensing, vol. 10, no. 6, pp. 859,
2018.

Chunzhu Wei, Qianying Zhao, Yang Lu, and Dongjie Fu, “As-
sessment of empirical algorithms for shallow water bathymetry
using multi-spectral imagery of Pearl River delta coast, China,”
Remote Sensing, vol. 13, no. 16, pp. 3123, 2021.

Jared Kibele and Nick T. Shears, “Nonparametric empirical
depth regression for bathymetric mapping in coastal waters,”
1IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 9, no. 11, pp. 5130-5138, 2016.

Isabel Caballero and Richard P. Stumpf,  “Retrieval of
nearshore bathymetry from Sentinel-2A and 2B satellites in
South Florida coastal waters,” Estuarine, Coastal and Shelf
Science, vol. 226, pp. 106277, 2019.

Yu Rui-hong, Xu You-peng, Liu Ting-xi, and Li Chang-you,
“Reversing water depth in shallow lake of arid area using
multi-spectral remote sensing information,” Advances in Water
Science, vol. 20, no. 1, pp. 111-117, 2009.

K.T.Y. Mahima, Malith Weerasekara, Kasun De Zoysa,
Chamath Keppitiyagama, Luca Mottola, Thiemo Voigt, and
Markus Flierl, “Poster: Fighting dengue fever with aerial
drones,” in Proceedings of the 2022 International Conference
on Embedded Wireless Systems And Networks, 2022, pp. 206—
207.

Masita Dwi Mandini Manessa, Ariyo Kanno, Masahiko
Sekine, Muhammad Haidar, Koichi Yamamoto, Tsuyoshi Imai,
and Takaya Higuchi, “Satellite-derived bathymetry using ran-
dom forest algorithm and worldview-2 imagery,” Geoplanning
J Geomatics Plan, vol. 3, no. 117, pp. 117-126, 2016.

Bo Ai, Zhen Wen, Zhenhua Wang, Ruifu Wang, Dianpeng Su,
Chengming Li, and Fanlin Yang, “Convolutional neural net-
work to retrieve water depth in marine shallow water area from
remote sensing images,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 13, pp.
2888-2898, 2020.

Yustisi Ardhitasari Lumban Gaol, “Convolutional neu-
ral networks for satellite-derived bathymetry,” Tech.
Rep., TU Delft Architecture and the Built Environment,
July 2021, Available at https://repository.
tudelft.nl/islandora/object/uuid:
662ac71f-6373-4128-8eeb-163b8e727b72.

MicaSense, “MicaSense RedEdge-MX integration guide,”
Online, Accessed on 2022-01-15, Available at https://
support.micasense.com/hc/en-us/articles/

360011389334-RedEdge—MX-Integration—Guide.

MicaSense, “Why are the images from the camera not aligned
to each other?,” Online, Accessed on 2022-03-04, Available
at https://support.micasense.com/hc/en-us/
sections/4420292047895-General-FAQs.

Gabriel Carrasco-Escobar, Edgar Manrique, Jorge Ruiz-
Cabrejos, Marlon Saavedra, Freddy Alava, Sara Bickersmith,
Catharine Prussing, Joseph M Vinetz, Jan E Conn, Marta
Moreno, et al.,, “High-accuracy detection of malaria vec-
tor larval habitats using drone-based multispectral imagery,”
PLoS Neglected Tropical Diseases, vol. 13, no. 1, 2019, doi
10.1371/journal.pntd.0007105.



