
GPCGC: A GREEN POINT CLOUD GEOMETRY CODING METHOD

Qingyang Zhou 1, Shan Liu 2, C.-C. Jay Kuo 1

University of Southern California, Los Angeles, California, USA1

Tencent Media Lab, Palo Alto, California, USA2

ABSTRACT

A low-complexity point cloud compression method called the
Green Point Cloud Geometry Codec (GPCGC), is proposed to en-
code the 3D spatial coordinates of static point clouds efficiently.
GPCGC consists of two modules. In the first module, point coor-
dinates of input point clouds are hierarchically organized into an oc-
tree structure. Points at each leaf node are projected along one of
three axes to yield image maps. In the second module, the occu-
pancy map is clustered into 9 modes while the depth map is coded
by a low-complexity high-efficiency image codec, called the green
image codec (GIC). GIC is a multi-resolution codec based on vector
quantization (VQ). Its complexity is significantly lower than HEVC-
Intra. Furthermore, the rate-distortion optimization (RDO) tech-
nique is used to select the optimal coding parameters. GPCGC is
a progressive codec, and it offers a coding performance competitive
with MPEG’s V-PCC and G-PCC standards at significantly lower
complexity.

Index Terms— Point clouds, point cloud compression, geome-
try compression, vector quantization

1. INTRODUCTION

Point clouds have been widely used in computer-aided design, vir-
tual reality, autonomous driving, etc. Effective point cloud coding
techniques are critical to the storage and transmission of point cloud
data. This work examines the coding of the spatial coordinates of
3D points of static point clouds, known as geometry compression, at
lower computational complexity while maintaining high coding per-
formance. The proposed solution is named the Green Point Cloud
Geometry Codec (GPCGC).

Point cloud geometry compression has been intensively studied
in recent years, including standardization and non-standardization
activities. V-PCC [1] and G-PCC [2] are two well-known point
cloud coding standards developed by the Moving Picture Experts
Group (MPEG) [3, 4]. V-PCC has the best coding performance
for dense point clouds among conventional (or non-learning-based)
codecs. Emerging learning-based codecs [5, 6, 7, 8, 9, 10] exploit
inter-sequence correlations and offer impressive coding gains at the
expense of higher computational complexity.

In this work, we propose a low-complexity learning-based codec
for point cloud geometry compression and call it the “green point
cloud geometry codec” (GPCGC). It consists of three main ingre-
dients: 1) a hierarchical octree structure, 2) 3D-to-2D projection,
which is similar to V-PCC, and 3) coding of projected geometry

The authors acknowledge the gift support from the Tencent Media Lab
as well as the Center for Advanced Research Computing (CARC) at the Uni-
versity of Southern California for providing computing resources that have
contributed to the research results reported within this publication. URL:
https://carc.usc.edu.

maps via vector quantization (VQ). GPCGC is a progressive and
learning-based codec because of the first and third ingredients, re-
spectively. Experiments show that GPCGC offers a coding perfor-
mance comparable with those of MPEG’s V-PCC at significantly
lower complexity.

2. REVIEW OF PREVIOUS WORK

V-PCC [1] and G-PCC [2] mean “video-based point cloud compres-
sion” and “geometry-based point cloud compression”, respectively.
They are both standards developed by MPEG. V-PCC targets the
coding of dense point clouds. It uses a 3D-to-2D projection that
projects 3D points onto points in a 2D plane to yield a 2D geome-
try/occupancy maps. The latter is then encoded by the HEVC video
codec [11]. G-PCC aims at coding sparse point clouds and it adopts
an octree scheme to encode the 3D coordinates of points.

Motivated by the success of deep-learning-based (DL-based)
image coding [12, 13], researchers have applied the end-to-end op-
timized Auto-Encoder (AE) to point cloud compression in [5, 6, 7].
They use 3D CNN or sparse convolution-based AEs to represent the
3D occupancy model of voxelized point cloud geometry data. Inter-
block and inter-sequence correlations are extracted via block-based
point cloud training. DL-based methods exhibit state-of-the-art cod-
ing performance at the expense of very high computational costs
and model sizes. The sparse convolution operator was proposed in
[14] to reduce the model size. Yet, several inherent problems still
exist (e.g., symmetric complexity of encoders/decoders, one model
for one bitrate.)

We attempt to leverage the advantages of V-PCC and learning-
based codes in the design of GPCGC. On one hand, GPCGC uses
projection to reduce the sparsity of points in the 3D space and map
them into a 2D plane. On the other hand, GPCGC encodes projected
maps hierarchically with a low-complexity learning-based method.
For the latter, we revisit VQ. The VQ technique can trace back
to 80s [15]. Recent VQ studies include: gain-shape VQ (called
Daala) [16, 17], multi-grid multi-block-size VQ (MGBVQ) [18],
and the green image codec (GIC) [19, 20]. Since VQ provides a
low-complexity learning-based solution, we adopt it in the proposed
GPCGC method.

3. GPCGC METHOD

The proposed GPCGC method consists of two main modules: 1)
octree split and projection and 2) depth map coding, as shown in Fig.
1. In the first module, a voxelized input point cloud scan is split and
projected under an octree structure. Its output is a set of projected
depth maps. In the second module, depth maps are coded by Green
Image Codec Units (GICUs). These two modules are elaborated in
Sec. 3.1 and Sec. 3.2, respectively.

ar
X

iv
:2

30
2.

06
06

2v
1

 [
ee

ss
.I

V
]

 1
3

Fe
b

20
23

2N+1x2N2N+1x2N

8x48x4

2n+1x2n2n+1x2n

Module 1

…

…

Geometry MapsOctree Split

Module 2

Upsampling

Saab

VQ

Recons-

truction

Green Image Codec

Unit (GICU)

…

Input

X

Ĉi

bi

-
+

+

+

R̂i

Îi-1

Ii

Îi

…

…

GICU

GICU

GICU

Grid 2

…

…

…

…

…

GICU

GICU

Grid i

…

GICU

Grid N

GICU

Grid N

Ĉi

bi

ĈN

bN

ĈN

bN

… …

Ĉ2

b2

Ĉ2

b2

Fig. 1. An overview of the proposed GPCGC method. The input point cloud set is split hierarchically and projected into geometry maps in
the first module. The geometry maps are coded by hierarchical GICUs in the second module. The GICU architecture is shown on the right.

- 1 2 3 4
- - - 1 2 3
- - - - - 1 2
- - - - - - 1
- - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -

0 1 2 3 4
1 2 3

1 2
1

0
0

0
0

0

-1
-1

-1
-1
-1
-1

-1
-1-1

-1

-1
-1 -1

-1 -1
-1
-1

-1
-1

-1
-1

-1
-1
-1

-1
-1-1

-1

-1
-1 -1

-1 -1
-1
-1

-1Projection

Direction

0 0
0

0 0
0 0

0
0

0

-1
-1

-1
-1
-1
-1

-1
-1-1

-1

-1
-1
-1

-1
-1

-1
-1

-1
-1
-1

-1
-1-1

-1

-1
-1
-1

-1

-1-1
-1

-1

-1

-1

-1
-1-1

-1-1-1
-1

-1

-1

-1
-1-1

-1-1-1
-1 -1

(a) (b) (c)

Fig. 2. Illustration of the depth map filling process: (a) the original
3D points in a voxel, (b) the original depth map, (c) the modified
depth map, where the depth of empty pixels is labeled with “-1”.
Only the depths of green pixels are reconstructed based on the mode
index in depth decoding. Furthermore, the depth value of -1 is auto-
matically filtered out.

3.1. Module 1: Octree Split and Projection

Octree Split. Unlike V-PCC which decomposes a point cloud into
connected patches and generates global atlas maps, GPCGC adopts
a voxelization step that splits an input point cloud set into 3D coarse-
to-fine voxels hierarchically. A parent voxel can be split into 8 child
voxels by partitioning its side along the x, y, and z axes into two
halves. A recursive split operation can yield an octree representa-
tion. An octree can be non-symmetric; namely, some branches can
go to a finer voxel level while others can stay at a coarser level. The
coarsest voxel number is Nx × Ny × Nz , where Nx, Ny , and Nz

are user-selected parameters. The split level can be determined by
the rate-distortion optimization technique as discussed in Sec. 3.3.
The projection from 3D spatial coordinates of a point to its 2D coor-
dinates is only conducted at each leaf node of the octree. This is the
first major difference between our scheme and V-PCC.

Projection. By comparing orthographic projections along the
x-, y-, or z-axes, we choose the one that has the largest projection
area. To measure the area, we discretize the projected 2D plane with
a uniform grid of p × p = p2 blocks. If a block does not contain
any projected point, its value is set to zero. Otherwise, its value is
set to one. The projection area is defined to be the total number
of blocks whose value is equal to one. The distances between 3D
points in a leaf voxel and the selected projection plane define a depth

map. A larger project area is preferred since the corresponding depth
map is flatter and easier to encode. The depth map is also called a
depth image. The projection direction at each leaf voxel is coded
and included in the bitstream.

Projection Ambiguity Resolution. It is desirable that one block
has only one projected point. If this is the case, we can use the block
center location and the quantized depth to represent the correspond-
ing 3D point. However, we may encounter two projection ambiguity
problems. First, we may see self-occlusions and hidden surfaces in
a coarse voxel. For this case, the voxel should be further split into
8 child voxels. This process continues until such problems are re-
solved or the minimum voxel size is reached. Second, two or more
points are projected to the same 2D blocks. The “thickness” con-
cept is introduced to handle the situation. That is, we generate two
depth maps to store the maximum and minimum distance values.
V-PCC treats the two maps as a two-frame video to exploit of the
inter-frame coding of HEVC. We concatenate two maps into a larger
map for coding in GPCGC.

3.2. Module 2: Block Occupancy and Depth Coding

Block Occupancy Coding. Some blocks in a geometry map may
have no projected points. V-PCC encodes the occupancy map loss-
lessly. It is expensive. To save the bit rate, we adopt a lossy cod-
ing scheme. It classifies block occupancy patterns into full-occupied
and 8 half-occupied cases (namely left/right, up/down, up-left/lower-
right, and up-right/lower-left), leading to 9 modes. We encode the
optimal mode that gives the best approximation to the underlying
pattern at each leaf node and include it in the bit stream. One ex-
ample is given in Fig. 2, where we choose the upper-right triangle
mode and fill empty blocks with dummy depth value “-1” to simplify
the depth encoding/decoding procedure. After depth decoding, only
the depths of green pixels are reconstructed based on the mode index
and the dummy depth value is automatically filtered out. When the
range of depth value lies in [0, Dmax], the dummy depth value is set
to−1 orDmax+1 so as to maintain a smooth depth map defined on
a squared region.

The lossy coding of block occupancy allows a very small bit
rate but could introduce distortion. This is the second major differ-
ence between our scheme and V-PCC. The depth value of an empty
block that is surrounded by non-empty blocks partially or fully can
be inferred from the value of its nearest non-empty block (or the av-

eraged value if there are multiple ones). This is equivalent to adding
a new point to the point cloud set. The occupancy distortion can be
mitigated by such a process.

Depth Coding. Since a depth map is fundamentally a gray-scale
image, it can be coded by any image codec such as JPEG, H.264-
Intra, HEVC-Intra. We adopt a low-complexity learning-based im-
age codec known as the GIC method [19]. Its complexity is sig-
nificantly lower than HEVC-Intra, which meets our low complexity
requirement. However, its coding gain is worse than that of HEVC-
Intra. The poorer coding gain can be compensated by the effective-
ness of block occupancy coding as described above. It is shown in
Sec. 4 that the RD performance of our GPCGC is comparable with
V-PCC.

GIC downsamples an input image into several spatial resolutions
from fine-to-coarse grids and computes image residuals between two
adjacent grids. Then, it encodes the coarsest content, interpolates
content from coarse-to-fine grids, encodes residuals, and adds resid-
uals to interpolated images for reconstruction. All coding steps are
implemented by VQ while all interpolation steps are conducted by
the Lanczos interpolation. To facilitate VQ codebook training, a
data-driven transform, called the Saab transform [21, 22] is applied
for energy compaction and, thus, dimension reduction. We can ex-
press the whole GIC framework as the cascade of multiple GIC units,
where each GIC unit (GICU) is applied at a fixed grid level. The
structure of each GICU is shown in the right of Fig. 1. This is the
third major difference between our scheme and V-PCC.

3.3. Rate Control via RDO

We revisit the octree decomposition problem in Module 1. Suppose
no projection problem is encountered. A larger voxel size demands a
lower coding bit rate but has a higher distortion. The rate-distortion
optimization (RDO) technique is used to determine the optimal split.
The RDO cost function can be expressed as

Cn = Dn + λnRn, (1)

where Cn, Dn, Rn, and λn denote the cost, the bit rate, the distor-
tion, and the Lagrangian multiplier at the nth split, respectively.

Rate Modeling. The bit rate is mainly determined by VQ’s cod-
ing indices. Let Rn denote the total number of bits to encode the
depth map at the nth split level. Then, we have

Rn =
∑
i

log2 Cn,i, (2)

where Cn,i is the codebook size of the ith grid GICU at the nth split
level.

Distortion Modeling. V-PCC uses depth coding distortion to
evaluate the local distortion. Here, we use the point-to-point Haus-
dorff distance to measure the local distortion:

Dn = max(
1

NP1

∑
i

‖E(i, j)‖2,
1

NP2

∑
j

‖E(j, i)‖2), (3)

where P1 and P2 denote the input and reconstructed point cloud
sets at the n split, i and j are points of P1 and P2, respectively, and
‖E(i, j)‖2 is the Hausdorff distance between points i and j.

To allow various trade-offs between Rn and Dn, we can adjust
λn flexibly. The value of λn is larger for a smaller n. This is dif-
ferent from end-to-end DL-based coding methods that have a fixed
λ in the loss function. We compare the two cost functions, Cn and
Cn+1, and choose the optimal one. The RDO process is the fourth
major difference between our scheme and V-PCC.

4. EXPERIMENTS

Experimental Setup. The coarsest input voxel size is 32x32x32. The
split number ranges from n = 0 to 3. When n = 3, the voxel size
is 4x4x4. The Lagrangian multipliers, λn, in Eq. (2) are empirically
set to λ3 = λ, λ2 = 2.5λ, λ1 = 4.6λ, λ0 = 8.0λ. The coding
bit rate is controlled by λ. We use mesh models from ShapeNet [23]
and SHREC’19 [24] as the training data. They are converted to point
clouds by uniform sampling and voxelized on a 512x512x512 occu-
pancy space. Then, point clouds are split into cubes of various sizes
(e.g., 32x32x32, 16x16x16, 8x8x8, and 4x4x4). 20,000 cubes are se-
lected to train our model, and each GICU is trained by 2000 samples
on average. The training process is implemented from coarse to fine
grids. The VQ module in the GICU is trained using the faiss.KMeans
method [25]. The testing set includes single frames from the 8iVFB
[26] and the Owlii [27] point cloud datasets. The experiment follows
the MPEG Common Test Condition [28].

Performance Analysis. We compare our codec with seven other
codecs: V-PCCv18.0 with HM video encoder[29] , G-PCCv14.0
(trisoup)[30], G-PCCv14.0 (octree)[30], ADL-PCC [6], GeoCNNv2
[9], PCGCv2 [14], and SparsePCGC [10]. The last four are DL-
based methods. The bit rate is calculated using bits per input point
(bpp). We use the BD-rate to evaluate the coding performance. The
distortion metrics are the mean-squared error (MSE) of the point-
to-point (p2point or D1) and the point-to-plane (p2plane or D2) dis-
tances. Their RD curves for four test sequences are shown in Fig.
4. We categorize the eight methods based on their RD performance
from the best to the worst RD into four groups: 1) SparsePCGC and
PCGCv2, 2) GPCGC (ours) and V-PCC, 3) GeoCNNv2 and ADL-
PCC, and 4) G-PCC (trisoup) and G-PCC (octree). Although there
is a performance gap between our codec and two state-of-the-art DL
methods, SparsePCGC and PCGCv2, the model size and complex-
ity of our codec are significantly lower than those of the two as dis-
cussed below. Two coded point cloud sets and their zoom-in views of
GPCGC, V-PCC, G-PCC (trisoup), and G-PCC (octree) are shown
in Fig. 3 for visual comparison. Our method offers a smooth tran-
sition from a higher bit rate (i.e., 0.18bpp) to a lower bit rate (i.e.,
0.12bpp) in terms of subjective quality.

Model Size and Complexity Analysis. We compare the model
size and the encoding/decoding floating-point operations (FLOPs)
of the top four performers (i.e., SparsePCGC, PCGCv2, V-PCC, and
our GPCGC) in Table 1. V-PCC is not a learning-based codec. Its
model size is negligible. Our method can handle multiple coding
rates with a single model. It has a size of 0.33 million parameters. In
contrast, DL-based codecs need multiple models to handle multiple
bit rates. The table only lists the size of one model. If there are
K models in the model zoo, the actual model sizes are 0.78 × K
and 2.88 × K million parameters for PCGCv2 and SparsePCGC,
respectively.

The encoding/decoding FLOPs are computed under the follow-
ing setting. The input point clouds are voxelized into 1024x1024x1024
voxels. The occupancy ratios of the vox10 test sequences range from
0.071% to 0.101% with an average value of 0.084%. For V-PCC,
we use the Intel VTune software to measure their FLOPs in the
geometry coding process over the same sequences with 10-bit pre-
cision. For DL-based methods, we make an estimation based on
their network structure. We report the averaged encoding/decoding
FLOPs in the last two columns of Table 1. As shown in the table,
our codec has 4G and 64M FLOPs on average for the encoding and
decoding of a point cloud set, respectively. In comparison, DL-based
methods have significantly higher encoding/decoding complexity.
Their decoding complexities are about 1000x of ours. Moreover, the

Ground

Truth

V-PCC

0.192 bpp

Ours

0.186 bpp

Ours

0.123 bpp

G-PCC (octree)

0.185 bpp

G-PCC (trisoup)

0.186 bpp
Ground Truth

V-PCC

0.191 bpp

Ours

0.190 bpp

Ours

0.121 bpp

G-PCC (octree)

0.182 bpp

G-PCC (trisoup)

0.183 bpp

Fig. 3. Visual Comparison of soldier vox10 0690 and loot vox10 1200: the whole PC view and two zoom-in views (from top to bottom) of
ground truth, GPCGC at two bitrates, V-PCC, G-PCC (trisoup), and G-PCC (octree) (from left to right).

Fig. 4. RD Performance comparison of eight coding methods: V-PCC, G-PCC (octree), G-PCC (trisoup), ADL-PCC, GeoCNNv2, PCGCv2,
SparsePCGC, and GPCGC (ours).

encoding/decoding FLOPs of our codec are smaller than those of V-
PCC. The savings are 60% and 64%, respectively. We should point
out that FLOPs only account for a very small percentage of micro-
Operations in traditional codecs such as V-PCC and G-PCC. If we
take the non-floating-point operations into account, our codec has
even more significant savings in complexity. The low FLOPs of our
decoder come from the simple structure of GIC [19]. Only look-up
tables are required for VQ decoding and some matrix multiplications
are needed for the inverse-Saab transform.

5. CONCLUSION

A low-complexity point cloud geometry compression method, called
the Green Point Cloud Geometry Codec (GPCGC), was proposed.
The novel contributions include projection on octree-decomposed
voxels, lossy occupancy map coding, GICU-based depth map cod-
ing, and RDO for bit rate control. The last one is difficult to
achieve in DL-based codecs. As compared with MPEG V-PCC,

Methods Model Size Enc FLOPs Dec FLOPs
PCGCv2 0.78M 17.5G 60G

SparsePCGC 2.88M 35G 100G
V-PCC - 10G 180M

GPCGC (ours) 0.33M 4G 64M

Table 1. Comparison of the model sizes and the complexity in terms
of the encoding/decoding floating-point operations (FLOPs) of four
benchmarking codecs.

GPCGC achieves lower encoding/decoding complexity (with a sav-
ing of around 60%) while maintaining a comparable coding gain.
As compared with DL-based models, GPCGC has significantly
smaller model parameters and lower encoding/decoding complexity.
The low-complexity advantage of GPCGC comes from the multi-
resolution depth map coding with GICU, which consists of the Saab
transform and VQ. We plan to develop a green coding solution for
dynamic point clouds as an extension in the future.

6. REFERENCES

[1] MPEG, “V-pcc codec description,” ISO/IEC JTC 1/SC 29/WG
7 N00100, 2020.

[2] MPEG, “G-pcc codec description v12,” ISO/IEC JTC 1/SC
29/WG 7 N00151, 2021.

[3] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar,
P. A. Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li,
J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan,
A. Tabatabai, A. M. Tourapis, and V. Zakharchenko, “Emerg-
ing mpeg standards for point cloud compression,” IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 1, pp. 133–148, 2019.

[4] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki,
and A. Tabatabai, “An overview of ongoing point cloud com-
pression standardization activities: Video-based (v-pcc) and
geometry-based (g-pcc),” APSIPA Transactions on Signal and
Information Processing, vol. 9, p. e13, 2020.

[5] M. Quach, G. Valenzise, and F. Dufaux, “Learning convolu-
tional transforms for lossy point cloud geometry compression,”
in 2019 IEEE International Conference on Image Processing
(ICIP), 2019, pp. 4320–4324.

[6] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, “Adap-
tive deep learning-based point cloud geometry coding,” IEEE
Journal of Selected Topics in Signal Processing, vol. 15, no. 2,
pp. 415–430, 2021.

[7] J. Wang, H. Zhu, H. Liu, and Z. Ma, “Lossy point cloud geom-
etry compression via end-to-end learning,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 31, no. 12,
pp. 4909–4923, 2021.

[8] T. M. Borges, D. C. Garcia, and R. L. De Queiroz, “Fractional
super-resolution of voxelized point clouds,” IEEE Transactions
on Image Processing, vol. 31, pp. 1380–1390, 2022.

[9] M. Quach, G. Valenzise, and F. Dufaux, “Improved deep point
cloud geometry compression,” in 2020 IEEE 22nd Interna-
tional Workshop on Multimedia Signal Processing (MMSP),
2020, pp. 1–6.

[10] J. Wang, D. Ding, Z. Li, X. Feng, C. Cao, and Z. Ma, “Sparse
tensor-based multiscale representation for point cloud geome-
try compression,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–18, 2022.

[11] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand,
“Overview of the high efficiency video coding (hevc) stan-
dard,” IEEE Transactions on circuits and systems for video
technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[12] D. P. Kingma, M. Welling et al., “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learn-
ing, vol. 12, no. 4, pp. 307–392, 2019.

[13] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational image compression with a scale hyperprior,” arXiv
preprint arXiv:1802.01436, 2018.

[14] J. Wang, D. Ding, Z. Li, and Z. Ma, “Multiscale point cloud ge-
ometry compression,” in 2021 Data Compression Conference
(DCC), 2021, pp. 73–82.

[15] R. Gray, “Vector quantization,” IEEE Assp Magazine, vol. 1,
no. 2, pp. 4–29, 1984.

[16] J.-M. Valin and T. B. Terriberry, “Perceptual vector quantiza-
tion for video coding,” in Visual Information Processing and
Communication VI, vol. 9410. SPIE, 2015, pp. 65–75.

[17] J.-M. Valin, N. E. Egge, T. Daede, T. B. Terriberry, and
C. Montgomery, “Daala: A perceptually-driven still picture
codec,” in 2016 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, 2016, pp. 76–80.

[18] Y. Wang, Z. Mei, I. Katsavounidis, and C.-C. J. Kuo,
“Lightweight image codec via multi-grid multi-block-size vec-
tor quantization (mgbvq),” arXiv preprint arXiv:2209.12139,
2022.

[19] Y. Wang, Z. Mei, Q. Zhou, I. Katsavounidis, and C.-C. J. Kuo,
“Green image codec: a lightweight learning-based image cod-
ing method,” in Applications of Digital Image Processing XLV,
vol. 12226. SPIE, 2022, pp. 70–75.

[20] C.-C. J. Kuo and A. M. Madni, “Green learning: Introduction,
examples and outlook,” Journal of Visual Communication and
Image Representation, p. 103685, 2022.

[21] C.-C. J. Kuo, M. Zhang, S. Li, J. Duan, and Y. Chen, “In-
terpretable convolutional neural networks via feedforward de-
sign,” Journal of Visual Communication and Image Represen-
tation, vol. 60, pp. 346–359, 2019.

[22] Y. Chen, M. Rouhsedaghat, S. You, R. Rao, and C.-C. J.
Kuo, “Pixelhop++: A small successive-subspace-learning-
based (ssl-based) model for image classification,” in 2020
IEEE International Conference on Image Processing (ICIP).
IEEE, 2020, pp. 3294–3298.

[23] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al.,
“Shapenet: An information-rich 3d model repository,” arXiv
preprint arXiv:1512.03012, 2015.

[24] R. M. Dyke, C. Stride, Y.-K. Lai, P. L. Rosin, M. Aubry,
A. Boyarski, A. M. Bronstein, M. M. Bronstein, D. Cre-
mers, M. Fisher, T. Groueix, D. Guo, V. G. Kim, R. Kimmel,
Z. Lähner, K. Li, O. Litany, T. Remez, E. Rodolà, B. C. Russell,
Y. Sahillioğlu, R. Slossberg, G. K. L. Tam, M. Vestner, Z. Wu,
and J. Yang, “Shape correspondence with isometric and non-
isometric deformations,” in Eurographics Workshop on 3D Ob-
ject Retrieval, S. Biasotti, G. Lavoué, and R. Veltkamp, Eds.
The Eurographics Association, 2019.

[25] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similar-
ity search with gpus,” IEEE Transactions on Big Data, vol. 7,
no. 3, pp. 535–547, 2019.

[26] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i vox-
elized full bodies-a voxelized point cloud dataset,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, vol. 7, no. 8, p. 11, 2017.

[27] Y. Xu, Y. Lu, and Z. Wen, “Owlii dynamic human textured
mesh sequence dataset,” in ISO/IEC JTC1/SC29/WG1 1 input
document m41658, 2017.

[28] D. Group et al., “Common test conditions for point cloud com-
pression,” ISO/IEC JTC1/SC29/WG11 Doc. N18474, 2019.

[29] MPEG, “Mpeg-pcc-tmc2 (v18.0),” 2022. [Online]. Available:
https://github.com/MPEGGroup/mpeg-pcc-tmc2

[30] MPEG, “mpeg-pcc-tmc13 (v14.0),” 2021. [Online]. Available:
https://github.com/MPEGGroup/mpeg-pcc-tmc13

https://github.com/MPEGGroup/mpeg-pcc-tmc2
https://github.com/MPEGGroup/mpeg-pcc-tmc13

	1 Introduction
	2 Review of Previous Work
	3 GPCGC Method
	3.1 Module 1: Octree Split and Projection
	3.2 Module 2: Block Occupancy and Depth Coding
	3.3 Rate Control via RDO

	4 Experiments
	5 Conclusion
	6 References

