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ABSTRACT

Continuous image super-resolution (SR) recently receives a
lot of attention from researchers, for its practical and flexi-
ble image scaling for various displays. Local implicit image
representation is one of the methods that can map the coordi-
nates and 2D features for latent space interpolation. Inspired
by Variational AutoEncoder, we propose a Soft-introVAE
for continuous latent space image super-resolution (SVAE-
SR). A novel latent space adversarial training is achieved
for photo-realistic image restoration. To further improve the
quality, a positional encoding scheme is used to extend the
original pixel coordinates by aggregating frequency informa-
tion over the pixel areas. We show the effectiveness of the
proposed SVAE-SR through quantitative and qualitative com-
parisons, and further, illustrate its generalization in denoising
and real-image super-resolution.

Index Terms— Introspective Variational AutoEncoder,
super-resolution, latent space

1. INTRODUCTION

Image super-resolution (SR) aims to enlarge the low-resolution
(LR) images to the larger desired high-resolution (HR) im-
ages. It is widely used in digital display, broadcast and data
compression/restoration. With various display devices and
data resolutions, a flexible arbitrary image SR model can
adjust different needs to produce image/videos with best
visual experiences. Most existing state-of-the-art SR meth-
ods [1, 2, 3, 4, 5, 6] either focus on fixed super-resolution
solutions (one model for one dedicated upsampling scenario),
or integral upsampling scales (2×, 4× or 8×). They result in
costly training efforts and imperfect image resolutions.

Instead, continuous image super-resolution [7, 8] provides
arbitrary image/video scaling with photo-realistic visual qual-
ity. The goal is to discover the hidden latent space where the
missing pixels can be estimated by the continuous feature rep-
resentation. The advantage is that it can adjust size-varied dis-
play devices and reduce many training efforts when applying
out-of-distribution super-resolution tasks.

However, continuous image super-resolution tends to gen-
erate over-smooth images and is sensitive to noise. In or-
der to produce clean photo-realistic super-resolution images,
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we propose Soft-introVAE for continuous latent space image
super-resolution (SVAE-SR). The novelty is to use an autoen-
coder to discover the continuous image distribution space,
where we condition the continuous LR features for supervi-
sion. The reused encoder works adversarially against the de-
coder for discriminating between real and generated samples.
A soft threshold function is utilized to replace the hard margin
in the evidence lower bound (ELBO). Furthermore, the posi-
tional encoding is embedded as the frequency expansion to in-
troduce more pixels for prediction. To sum up, our key claims
are 1) Soft-introVAE for arbitrary image super-resolution that
can measure the adversarial conditional distribution of SR and
HR images for reconstruction, and 2) a positional encoding
scheme is modified to involve more neighborhood pixels for
estimation.

2. RELATED WORKS

Implicit neural representation. The idea of implicit neu-
ral representation is to use multi-layer perceptron (MLP) to
learn pixels or other signals from coordinates. It has been
widely used in 3D shape modeling [9, 10], surface reconstruc-
tion [11, 12], novel view rendering [13, 14, 15, 16] and so on.
For instance, Mildenhall et al. [13] propose to map the cam-
era poses to the pixel values via a multi-layer MLP network.
They use multiple-view images to optimize the network for
implicit feature representation. Instead of using a voxel or
point cloud, the implicit neural representation can 1) capture
the fine details of scenes for photo-realistic reconstruction,
and 2) also emit complex 3D representation as a small num-
ber of differentiable network parameters.
Image super-resolution. The goal of image super-resolution
is to enlarge LR images to the desirable resolutions with high
visual quality. Depending on the metrics of evaluation, it
can categorize into distortion-based SR [1, 2, 3, 4, 17, 18]
and perception-based SR [5, 6, 19]. For the former one, us-
ing deeper neural networks with sophisticated designs usually
leads to lower pixel distortions. For example, EDSR [2] pro-
poses a network using more convolutional kernels and layers
for optimization. RDN [4] proposes a residual dense network
to allow feature sharing. Most recently, attention [20] is also
used in image SR [17, 18] to involve more neighborhood pix-
els for estimation. For perception-based SR, GAN [21] and
VAE [22] are two major architectures used for photo-realistic
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Fig. 1: SVAE-SR. (a) At training, it uses an encoder (E), a decoder (D) and the feature extractor (G) to learn the continuous latent space
distribution. Given the reference image as the conditional feature, the encoder works as a discriminator to identify whether the SR distribution
is close to the HR distribution. The decoder learns the local implicit image function to have arbitrary scales of upsampling. (b) At test time,
SVAE-SR samples a random vector in the trained latent space and combines it with the reference features for high-frequency signal estimation.
A final LIIF is trained to map the continuous features to the estimated RGB pixels.

reconstruction. ESRGAN [5] proposes a patch based GAN
network to supervise the perceptual quality via a binary dis-
criminator. SRVAE [6] achieves the goal using a conditional
VAE to minimize the distribution divergence. However, all
the methods are for fixed upsampling factors, like 2× and
4×. To have an arbitrary super-resolution solution, LIIF [7]
proposes to use the Local Implicit Image Function (LIIF) to
explore continuous feature representation for SR. MetaSR [8]
uses a Meta-Upscale Module to weight the upsampling filters
for prediction dynamically.

3. METHOD

Here, we describe the proposed Soft-Intro Variational Au-
toEncoder for continuous latent space image Super-Resolution
(SVAE-SR). SVAE-SR performs continuous super-resolution
by projecting image features into the latent space, and it
conditions the LR features with random coordinate space
sampling and transfers the new features to the decoder for
reconstruction. The encoder is reused as a discriminator
to distinguish the distributions of HR (real) and SR (fake)
images.

Overview. To learn the ground truth HR images Y, SVAE-
SR is a feed-forward network (shown in Figure 1) that re-
constructs SR images Y′ from LR images X and reference
images R. It consists of an encoder (E), a decoder (D) and
a feature extractor (G). The encoder learns the latent vector
of the joint HR-Reference distribution. The decoder uses the
local implicit image function (LIIF) to transform the 2D fea-
tures into pixel-coordinate pairs for 2D grid based interpola-
tion. The proposed positional encoding scheme process the
2D grid by high-frequency coding (HFC) and low-frequency
coding (LFC) to split the frequency bands. The LFC is with
the LR features for low-frequency component reconstruction
and the HFC is with the latent features for high-frequency re-
construction.

Soft-IntroVAE. Overall, SVAE-SR works as a soft-IntroVAE
to explicitly extract the latent distribution for pixel recon-
struction. Different from existing CNN/GAN based SR meth-
ods [1, 5], using VAE [6] has been proven to be useful for
robust photo-realistic quality restoration for real image SR.
Soft-IntroVAE [23] demonstrates its outstanding performance
in image generation. By combining the advantages of VAE
and GAN, it adversarially optimizes the encoder as an intro-
spective discriminator. It fits the task of image SR that it can
model the pixel correlations as multivariate Gaussian distri-
butions z ∼ Qω(z|X) = N (z;µi, σ

2
i I ). We further modify it

to a conditional Soft-IntroVAE model that it uses a reference
image as the condition to learn the missing high-frequency
signal. Formally, we give the mathematical description of the
proposed conditional Soft-IntroVAE as,

LEϕ
(Y|R, z) = ELBO(Y|R)−

1

α
exp (αELBO(Dθ(z)))

LDθ
(Y|R, z) = ELBO(Y|R) + γELBO(Dθ(z))

where ELBO(Y|R) = Ez∼Q(z|Y,R)[logPθ(Y,R|z)]
−DKL[Qϕ(z|Y,R)||P (z)] ≤ logPθ(Y|R)

(1)

In Eq (1), it can be seen that the process includes two steps:
1) fix the decoder and optimize the encoder to distinguish
through the ELBO value, between HR images (high ELBO)
and SR images (low ELBO) and 2) fix the encoder and op-
timize the decoder to “fool” the encoder with photo-realistic
SR images. In such a way, we can push the distribution of the
SR data close to the HR data. Note that the natural advan-
tage of using Soft-IntroVAE is that we use a soft exponen-
tial function over the ELBO to improve the training stabil-
ity. Meanwhile, using a reference image as the condition to
learn the joint p(Y|R) probability so that the matched fea-
tures from the reference images can be extracted for aiding
reconstruction.

For clarification, the detailed structure of the encoder and
decoder is shown in Figure 2. For the encoder, it takes the
reference, HR/SR image and 2D grid as inputs. A to pixel



sampler converts them to pixel-coordinate 1D vectors. The
self-attention and cross-attention is applied to learn the latent
distribution. The decoder combines the HF signal and LF sig-
nal together to form the final SR image.

Positional Encoding for frequency band splitting. Another
key component of the proposed SVAE-SR is positional en-
coding (PE). Inspired by [13], we expand the 2D grid map to
much wider frequency bands. It can better fit the data with
a high-frequency variation. It is specifically useful for image
SR because the missing details around the edges and textures
are high-frequency signals. Neural networks are biased to
low-frequency reconstruction, which leads to over-smooth vi-
sual quality. Using PE can explicitly lift the feature for high-
frequency mapping. Mathematically, given signal o,

λ(o) =
(
sin(20πo), cos(20πo), ..., sin(2L−1πo), cos(2L−1πo)

)
(2)

Eq (2) maps the signal to an L-degree frequency band. We
further split it into two parts, the first L//2 frequency bands
for the low-frequency coding (LFC) and the rest for the high-
frequency coding (HFC).

Fig. 2: The detailed structure of the encoder and decoder. The en-
coder takes the HR/SR image and reference image as inputs to com-
puter their features correlations for joint distributions. The high-
frequency positional Encoding (HFC) ensures the estimated features
expand to the high-frequency bands. The decoder combines the LR
features and sampled high-frequency features and pass them to the
LIIF model for pixel estimation.

Training Loss. We train SVAE-SR using the l1 loss between
SR and HR images and KL divergence as follows:

L = L1 + λ||Y ′ − Y ||1 + βKL[Qϕ(z|Y|R)||N (0, 1)], (3)

where λ and β are the weighting parameters to balance pixel
distortion and KL losses.

Table 1: PSNR comparison between ours and other state-of-
the-art methods in various upsampling scales. RDN trains
different models for different scales. MetaSR, LIIF, and ours
use one model for all scales and are trained with continuous
random scales uniformly sampled in ×1 ∼ ×4. We also test
on out-of-distribution scenarios in ×6 and ×8.

Dataset Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×8

Set5

RDN 38.24 34.71 32.47 - -
RDN-MetaSR 38.22 34.63 32.38 29.04 26.96

RDN-LIIF 38.17 34.68 32.50 29.15 27.14
SVAE-SR (ours) 38.23 34.72 32.60 29.23 27.24

Set14

RDN 34.01 30.57 28.81 - -
RDN-MetaSR 33.98 30.54 28.78 26.51 24.97

RDN-LIIF 33.97 30.53 28.80 26.64 25.15
SVAE-SR (ours) 34.01 30.58 28.86 26.72 25.23

B100

RDN 32.34 29.26 27.72 - -
RDN-MetaSR 32.33 29.26 27.71 25.90 24.83

RDN-LIIF 32.32 29.26 27.74 25.98 24.91
SVAE-SR (ours) 32.36 29.32 27.80 26.06 5.00

Urban100

RDN 32.89 28.80 26.61 - -
RDN-MetaSR 32.92 28.82 26.55 23.99 22.59

RDN-LIIF 32.87 28.82 26.68 24.20 22.79
SVAE-SR (ours) 32.92 28.88 26.73 24.29 22.87

4. EXPERIMENTS

Implementation details. We train our model on DIV2K [24]
and Flickr2K [2] datasets. They both contain images with
resolutions larger than 1000×1000. Same as [7], we first ex-
tract LR patches with the size of 48×48. Then we randomly
sample upsampling scales α in uniform distribution U(1, 4).
The corresponding HR patches 48α×48α. are then used to
sample 482 pixels to form coordinate-RGB pairs. For the
reference image, we randomly choose one from Wikiart [25]
that is widely used in style transfer. The testing datasets in-
clude Set5 [26], Set14 [27], Urban100 [28] and DIV2K val-
idation [24]. We train with Adam optimizer with a learning
rate of 10−4 and a batch size of 32 for 100k iterations (8hrs
on two NVIDIA V100 GPUs).

General image super-resolution. SVAE-SR performs effi-
cient super-resolution with high reconstruction quality. To
show its effectiveness, we compare it to four state-of-the-
art methods: Bicubic, EDSR [2], RDN [4], LIIF [7] and
MetaSR [8] in Table 1. For demonstration, we use contin-
uous upsampling scales α in uniform distribution U(1, 4),
and we also test on out-of-training-distribution scenarios,
where larger unseen upsampling scales, namely 6× ∼ 8×,
are evaluated on unknown images. We can find that using our
proposed method can achieve arbitrary image enlargement
with superior performance across different datasets. Espe-
cially on out-of-distribution scenarios, ours performs even
better with +0.08 ∼ +0.09 dB in PSNR.

We show visual comparisons in Figure 3. It can be seen
that our method can restore the fine textures with better visual
quality, like the windows in 78004, floor strides in 148024,
lighting rays in 0828 and the handrails in 0851.



Fig. 3: Visual comparison to the state of the arts. We show 4× super-resolution on BSD100 (78004, 148026) and DIV2K-validation
(0828,0851) datasets. We enlarge the regions in red boxes for better visualization.

Table 2: Abalation studies on our methods with or without
Soft-IntroVAE and PE structures for image SR. The tests are
done on DIV2K validation in PSNR(dB).

Method
In-distribution Out-of-distribution

×2 ×3 ×4 ×6 ×12 ×18
Bicubic 31.01 28.22 26.66 24.82 22.27 21.00

LIIF 34.99 31.26 29.27 26.99 23.89 22.34
LIIF-VAE 34.89 31.20 29.16 26.90 23.81 22.29
LIIF-GAN 34.78 31.12 29.03 26.58 23.53 22.07
LIIF-PE 35.01 31.29 29.30 27.02 23.93 22.37

SVAE-SR w/o PE 35.02 31.30 29.31 27.04 24.01 22.42
SVAE-SR w/ PE 35.05 31.33 29.35 27.08 24.06 22.47

Ablation studies. Effect of Soft-IntroVAE for SR. To show
the effectiveness of the proposed SVAE-SR, we compare it
with LIIF (baseline with pure MLP structure), LIIF-VAE
(LIFF with ordinary VAE structure), LIIF-GAN (LIIF with
ordinary GAN structure) and proposed SVAE-SR. From
rows 2 to 4 and SVAE-SR w/o PE in Table 2, we can see that
with the same LIIF network, using Soft-IntroVAE (SVAE-SR
w/o PE) achieve +0.03 ∼ +0.12dB in PSNR. On the other
hand, using LIIF-GAN actually obtains lower PSNR, about
−2 ∼ −4dB.

Fig. 4: Visualization on 1) 2× ∼ 16× continuous upsampling,
and 2) image super-resolution on the noisy image with noise level
τ = 1.5. We show the residual image between SR and HR images
to enhance the differences.

Effect of positional encoding for SR. To illustrate the ef-
fect of the positional encoding for SR. From Table 2, we con-
duct the comparisons among LIIF (baseline with pure MLP
structure) (row 2), LIIF-PE (baseline with positional encod-
ing) (row 5) and ours with or without PE (row 6 and 7). We
can see that using PE can improve the reconstruction quality
by about +0.03 ∼ 0.05dB in PSNR.

In Figure 4, we show two more our results on continuous
image super-resolution between 2× ∼ 16×. We can see that
the window patterns are well restored across different scenar-
ios. We also mentioned that the proposed SVAE-SR has the
ability to overcome the noise for real image SR. We show one
example using LR image with Gaussian random noise of in-
tensity 1.5. We can see that our method achieves better results
compared to other methods.

Computational cost. Our method achieves relative real-time
inference in a Nvidia V100 GPU, approximately 0.3s in 4×
upsampling and 1.1s in 16× upsampling.

5. CONCLUSION

In this paper, we propose a Soft-IntroVAE for continuous im-
age super-resolution (SVAE-SR). It combines the advantages
of VAE and LIIF to explore the continuous latent space in-
terpolation, which results in arbitrary upsampling with photo-
realistic visual quality. In the meantime, the proposed po-
sitional encoding scheme expands the signal to much wider
frequency bands, which avoids the network bias in the low-
frequency domain. Experimental results on qualitative and
quantitative comparisons show that our proposed SVAE-SR
achieves outstanding performance and points in a promising
direction in robust real-image super-resolution.
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