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ABSTRACT

Transformer-based architectures have recently demonstrated
remarkable performance in the Visual Question Answering
(VQA) task. However, such models are likely to disregard
crucial visual cues and often rely on multimodal shortcuts
and inherent biases of the language modality to predict the
correct answer, a phenomenon commonly referred to as lack
of visual grounding. In this work, we alleviate this shortcom-
ing through a novel architecture for visual question answer-
ing that leverages common sense reasoning as a supervisory
signal. Reasoning supervision takes the form of a textual jus-
tification of the correct answer, with such annotations being
already available on large-scale Visual Common Sense Rea-
soning (VCR) datasets. The model’s visual attention is guided
toward important elements of the scene through a similarity
loss that aligns the learned attention distributions guided by
the question and the correct reasoning. We demonstrate both
quantitatively and qualitatively that the proposed approach
can boost the model’s visual perception capability and lead to
performance increase, without requiring training on explicit
grounding annotations.

Index Terms— Visual Question Answering, Visual
Grounding, Interpretability, Attention Similarity

1. INTRODUCTION

Models for Visual Question Answering (VQA) provide an-
swers to natural language questions about an image by per-
ceiving both textual and image cues. VQA lies at the inter-
section of vision and language and has recently generated sig-
nificant research interest. Existing methods aim to tackle the
task via deep multi-layer transformer architectures, attending
to linguistic and visual tokens [1, 2, 3, 4, 5]. However, despite
their superior performance, attempts to diagnose these mod-
els’ robustness and reasoning capability have revealed that
they often rely on linguistic biases and shallow correlations
to generate the correct answer [6, 7]. The language modality
has been proven a strong signal that is easy to exploit, causing
the model to overlook visual information and rely on shallow

∗Work was done while Markos Diomataris was with DeepLab.

Fig. 1. This work proposes a novel mechanism for leverag-
ing common sense reasoning as a supervisory signal. Our
VQA model, guided by the correct reasoning (R:[PERSON1]
IS HOLDING THE CIGARETTE), is able to attend to the appro-
priate image regions and accurately select the right answer
(A:[PERSON1] IS SMOKING).

patterns, such as correlations between words in the question
[8]. It has been shown that the performance of recent mod-
els can clearly degrade under evaluation settings that penalize
reliance on such spurious correlations [9, 10, 11].

This tendency of recent models to reason about the cor-
rect answer without attending to the relevant image areas has
been referred to as lack of visual grounding [12, 13]. To al-
leviate this, a line of work explores techniques for training
VQA models that are sensitive to the same image regions as
human annotators, commonly by enforcing alignment with
human attention maps [12, 14]. While such methods can re-
duce reliance on language biases, they also require explicit
grounding supervision that is rarely available. In this work,
we explore an alternative approach towards attending to infor-
mative image regions, that does not require explicit grounding
supervision, but leverages instead common sense reasoning as
a supervisory signal.

We take advantage of the fact that reasoning-level super-
vision in the form of textual justification of why an answer
is true, is already available in large-scale Visual Common-
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sense Reasoning datasets like [15]. For example, in Fig. 1, to
answer the question ‘What is [PERSON1] doing?’, the rea-
soning ’[PERSON1] is holding a cigarette and is leaned over
it’ can accurately guide a model’s visual attention towards
predicting the correct answer, ‘[PERSON1] is smoking’. The
correct reasoning often contains details of the scene and ref-
erences to objects and people relevant to the right answer.
Our VQA model is trained to utilize reasoning supervision
as a proxy signal to generate interpretable attention maps that
guide visual attention toward informative image regions.

Our proposed framework processes question/answer pairs
using a multilayer BERT [16] transformer architecture. A
separate visual attention stream is incorporated to generate
two attention distributions, one conditioned on the question
and the other on the correct reasoning. We distill knowledge
from the reasoning attention to our VQA model through a
similarity loss term, that encourages question and reasoning
attention alignment. Our model can accurately capture the vi-
sual components required to find the correct answer and pro-
duce interpretable, human-like attention maps, thus boosting
baseline performance. We evaluate our pipeline both quan-
titatively and qualitatively on the Visual Commonsense Rea-
soning dataset [15], a large-scale dataset for cognition-level
visual understanding. To the best of our knowledge, we are
one of the first works to employ implicit attention guidance,
free from explicit grounding supervision in a vision-language
transformer setting.

2. RELATED WORK

The main VQA paradigm is multi-layer transformers oper-
ating on joint image-text embeddings [3, 5, 1, 3]. These
methods benefit from extensive pre-training on large-scale
VL datasets, to extract meaningful image-text representations
and align visio-linguistic clues. One notable example is VL-
BERT [2], a model that is pre-trained on text-only corpora
with standard Masked Language Modeling (MLM) as well
as visual-linguistic corpora via predicting randomly masked
words and Regions of Interest (RoIs) of the image.

Despite superior performance, state-of-the-art VQA mod-
els can often make decisions by relying on shortcuts and
statistical regularities instead of comprehending the scene as
demonstrated in [10]. Similarly, authors in [17] identify that
VQA models exploit co-occurrences of words in the ques-
tion and object segments in the image, which they define as
multimodal shortcuts.

In an attempt to counter shortcuts and language priors,
some methods encourage the model to effectively attend to
visual components and infer visual relationships. The authors
of [12] align gradient-based explanations with human atten-
tion annotations via a ranking loss to guide the network to
focus on the correct image regions. The authors of [14] train
an attention auxiliary model with ground truth human-labeled
attention maps and consequently apply human-like attention

supervision to an attention-based VQA model. Another work
in this direction [18] proposes a method that automatically se-
lects region and object annotations from Visual Genome [19]
that serve as labels for implementing visual grounding as an
auxiliary task for VQA. In contrast to these approaches, this
work mitigates over-reliance on language priors without re-
quiring annotated attention maps. We train our network in-
stead, to look at the image and attend to meaningful visual
evidence through reasoning supervision.

3. METHODOLOGY

Problem statement. A VQA model is tasked with answering
natural language questions from the visual content of a scene.
Given a dataset X = {ui, qi, ai, ri}Ni=1 of N images where
ui ∈ V is the visual input with question qi ∈ Q, reasoning
ri ∈ R and groundtruth answer ai ∈ A, our goal is to learn a
function f : Q × V → RA that predicts a distribution P (A)
over possible answers in A. Our proposed pipeline consists of
two parallel streams, a language stream with model parame-
ters θL and a visual attention stream with model parameters
θVq and θVr (question and reasoning guided attention decoder
that we will discuss next). During training, we will utilize
reasoning supervision as an additional supervisory signal,
thus modeling P (A|ui, qi, ri; (θL, θVq

, θVr
)) that simplifies

to P (A|ui, qi; (θL, θVq
)) at test time.

Language Stream. The first stream is language-focused
and aims to generate an informative representation of the
input question and answer sentence pairs by modeling their
relationship. The core of its architecture is a bi-directional 12-
layer transformer initialized with weights from BERT [16].
It takes a sequence of word embeddings of the question and
answer as input (separated by a separation element [SEP])
and adds a sequence positional embedding to each token. The
final output feature x[CLS] of the [CLS] element is used to
obtain the final pooled linguistic representation.

Visual Attention Stream. The visual attention stream con-
sists of two 9-layer transformer decoders. The first one gen-
erates an attention vector over the image features guided by
the question, and the second an attention vector over the im-
age features guided by the correct reasoning. We take advan-
tage of the cross-attention module to perceive multimodal in-
formation and capture relationships between image features
and word embeddings. The process is as follows: The im-
age is first processed via the backbone of a ResNet-50-FPN
to extract visual appearance features. The output is a fea-
ture map F ∈ RH×W×256, which we treat as a sequence
of 256-dimensional image features. Following [2], a visual
geometric embedding is added to each input token to inject
2D awareness into the model. We also encode the question
and correct reasoning language tokens via a pre-trained BERT
model, which yields a 786-dim representation for each word.
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Fig. 2. Proposed VAQ architecture: Our model comprises 2 main streams that operate in parallel, a language and a visual
stream. The output of the 2 streams is fused via Hadamard multiplication to obtain the final prediction. During training, we
utilize a reasoning attention decoder to distil reasoning information into the model, through a similarity loss between question
and reasoning-guided attention maps. Reasoning supervision leads in the formation of interpretable attention maps.

Question and reasoning word embeddings are used as in-
put to the corresponding question and reasoning transformer
decoders (functioning as query tokens). The image visual fea-
tures F are used to generate the keys and values. Then, the at-
tention weights are calculated based on the pairwise similarity
of the query and key elements. The output of each decoder is
an attention distribution over the image regions α ∈ RH×W ,
conditioned on either the word embeddings of the question
(referred to as αQ) or the word embeddings of the correct
reasoning (referred to as αR). In practice, to obtain the final
attention vectors αQ and αR, we compute the average per-
head attention of the last layer generated by the [CLS] token
over the image features.

The generated attention map αQ, is then used to take the
weighted sum over the image features F , which is passed
through a linear layer to obtain the final attended-by-the-
question representation of the image, Vq . The same operation
is performed to obtain the attended-by-the-reasoning image
representation Vr. Formally,

Vq = Linear(αQ ⊙F)

Vr = Linear(αR ⊙F)
(1)

Combining Language and Visual Streams. The model
outputs two separate predictions, one conditioned on the
question yq and the other on the correct reasoning yr. These
are produced by fusing the outputs of the language stream
x[CLS] and the visual attention stream, via Hadamard multi-
plication and then passing them through a softmax classifier
s, thus yq = s(x[CLS]⊙Vq) and yr = s(x[CLS]⊙Vr). At test
time, yq is used to provide predictions over possible answers.

Training. Our training pipeline consists of 2 stages. In the
first stage, we train with two cross-entropy loss terms Lq and
Lr w.r.t the ground truth answer [ai], or

Lstage1 = − 1

N

N∑
i

log(yqi )[ai]−
1

N

N∑
i

log(yri )[ai] (2)

In the second stage, we distill knowledge from the rea-
soning decoder by aligning the attention distributions condi-
tioned on the question αQ to the attention distributions condi-
tioned on the correct reasoning αR. To that end, we freeze the
weights of the reasoning attention decoder and only fine-tune
the question attention decoder (through Lq) while also uti-
lizing an attention similarity loss, formulated as the forward
Kullback-Leibler divergence between attention maps αQ and
αR, or DKL(α

Q||αR). The complete Lstage2 loss is:

Lstage2 = − 1

N

N∑
i

log(yqi )[ai] +
1

N

N∑
i

αQ
i log(

αQ
i

αR
i

) (3)

The whole process is illustrated in Figure 2. Our model
is trained for 11 epochs for stage 1 and then finetuned for 5
more epochs in stage 2.

4. EXPERIMENTS

Dataset. We validate our VQA model on the Visual Com-
monsense Reasoning dataset [15], which consists of 290k
QA problems derived from 110k movie scenes. Four possible
answers and four rationales are provided for each question,



Fig. 3. Comparison of question-guided attention maps (only the question attention decoder) before (first row), and after fine-
tuning with reasoning supervision (second row). We observe that the finetuned model is able to attend to informative regions.

Model Acc(%)

Baseline model 61.2
Reasoning Supervision 63.9

Table 1. Accuracy of the baseline and our proposed model
finetuned with reasoning supervision on VCR.

Model Acc(%) (+masking) Acc(%)

Baseline model 61.2 59.3 (−1.9)
Reasoning Supervision 63.9 61.1 (−2.8)

Table 2. Performance drop on the VCR validation set due to
object masking.

but we use only the correct rationale/reasoning. Note that rea-
soning is only used during training as additional supervision.

Quantitative Evaluation. Results in terms of model accu-
racy are reported in Table 1. Our baseline model (only the
question decoder) achieves 61.2% accuracy on the validation
set. Finetuning by aligning question and reasoning attention
distributions yields 63.9%, that is a 2.7% absolute improve-
ment, thus demonstrating the benefit of reasoning supervi-
sion. We note that our main goal is to propose a novel train-
ing strategy for boosting a VQA model’s visual explanatory
strength by exploiting reasoning as an alternative supervisory
signal. Thus, we do not directly compare to methods such as
[2, 3, 20] that contain a larger number of parameters, leverage
large-scale VL and video pretraining or ground-truth object
bounding boxes. For comparison, the best performance re-
ported in R2C [15] was 63.8%.

To further investigate our model’s ability to leverage the
visual modality, we perform an ablation study where we
mask the visual features of the objects/people referenced by
the question at test time and measure the effect on accuracy.

Results are reported in Table 2. We observe that the baseline
VQA model (that does not fully alleviate the lack of visual
grounding) suffers a lesser performance degradation of 1.9%
compared to 2.8% for our finetuned model (on reasoning
supervision). This is a different manifestation of the fact, that
the baseline model is over-reliant on the language modality,
thus performance is penalized less when visual information
is not available due to object masking.

Visual Results. In Fig. 3, we visualize attention maps (αQ)
for both the baseline model (above) and finetuned model
(with reasoning supervision) (below). The correct reasoning
can intuitively provide important guidance during training.
For example, for the question (Q: WHICH PERSON IS THE
LEAD FOR THIS DANCE GROUP?), the reasoning (R: [1] IS
IN THE MIDDLE, WHICH IS GENERALLY WHERE THE MAIN
DANCER GOES)) clearly explains the dynamics of different
elements of the scene. This information is distilled to our
VQA model through our attention similarity loss. In Fig. 3,
we observe that after fine-tuning, visual attention improves.
Our method is able to produce interpretable, human-like at-
tention maps, thus being able to predict the correct answer by
perceiving relevant visual concepts.

5. CONCLUSION

In this work, we alleviate the lack of visual grounding through
reasoning supervision. This additional supervision takes the
form of textual justifications of the correct answer and it’s
already available for VCR datasets. We incorporate a simi-
larity loss that encourages the alignment between the visual
attention maps (guided by the question and correct reason-
ing) thus improving the model’s visual perception capability.
We demonstrate qualitatively and quantitatively that reason-
ing information can lead to interpretable attention maps and
performance increase for visual question answering.
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