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Abstract

The relatively new field of stream mining has neces-
sitated the development of robust drift-aware algorithms
that provide accurate, real time, data handling capabilities.
Tools are needed to assess and diagnose important trends
and investigate drift evolution parameters. In this paper,
we present two new and novel visulisation techniques, Pixie
and Luna graphs, which incorporate salient group statistics
coupled with intuitive visual representations of multidimen-
sional groupings over time. Through the novel represen-
tations presented here, spatial interactions between tempo-
ral divisions can be diagnosed and overall distribution pat-
terns identified. It provides a means of evaluating in non-
constrained capacity, commonly constrained evolutionary
problems.

1 Introduction

Analysing trends and developing improved data min-
ing and machine learning techniques in stream environ-
ments has never been as crucial as in the current environ-
ment. When considering streams there is a marked de-
parture from traditional machine learning and data mining
methods. In such a dynamic environment there is a need to
reconsider strategies for both the processing as well as the
pre-processing techniques. The most prominent of these de-
partures can be identified as ‘concept drift’, emergence de-
tection and error.

The is a considerable amount of work on determining
similarities or deviations in evolving data [6, 5], but few for-
malising the characteristics of evolution faced in stream en-
vironments. Our contribution here is to specifically look at
exploratory and inferential tools for diagnosing stream evo-
lution. A key aspect is the harnessing of unsupervised struc-
tural approaches that do not require shared points or expert
knowledge. Clustering is well suited for studying streams
in an unsupervised manner. One characteristic of clusters is

their difficultly in determining the best clustering [3]. Clus-
terings are constructed on the underlying attribute distribu-
tions and rarely correlate perfectly with subjective notions
of class or membership. We endeavor to demonstrate that
unsupervised tracking of stream evolution is highly adept at
providing intuitive insights into different clustering models
and the trends they portray.

2 Motivations

Dimensionality of most datasets prohibits the direct in-
terpretation of [12] the clusters formed in different time in-
tervals. Not only does dimensionality reduction need to take
place but also high fidelity data representations that capture
the most salient and interesting aspect of the data quickly
and intuitively. This paper puts forward two approaches
to visualises such transitions, Pixie and Luna graphs, as a
proof of concept. These techniques can be seen as appro-
priate precursors to improved machine learning methods.

Many stream techniques derived from traditional static
mining methods, such as sliding windows and forgetting,
together with novel approaches like ensembles, aim to min-
imise to effect of data evolution on accuracy without en-
deavouring to understand it. The graphing techniques de-
scribed here explicitly depict the evolution, error, and emer-
gence present in the datasets which has a number of advan-
tages:

• Aid in the development of advanced mining tech-
niques.

• Capacity to display high-dimensional data in low di-
mensional form so that inference can be made on im-
portant trends within the data.

3 Inherent complexities of changing data

Unless strict constraints are placed on data gathering, or
production (an assumption often violated) all robust stream
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mining/learning techniques will have to account for intro-
duced error, concept drift, and emergence.

3.1 Error and emergence

Although these factors constitute non-trivial complexity
when trying to determine change in group representations
they are easy to describe. Error, is by definition, any data
that misrepresents a given class or cluster through human
error or otherwise. Error becomes more interesting because
in isolation it is quite easy to mediate through thresholding
or statistical quality control. This is what we call ‘actual’
error. Which is different from ‘perceived’ error that results
from change in the underlying distribution where drift oc-
curs.

Emergence, similar to error and drift, initially presents
itself as an outlier. An emergent group differentiates itself
by exhibiting a unique distribution and drift from neighbor-
ing clusters. Through a thresholding measure, emergence
can asserts itself as a new group. There are inherent dif-
ficulties with implementation when handling these factors.
They all present themselves in very similar ways, yet need
to be accurately handled in various manners.

3.2 Concept drift

Determining concept drift is of paramount importance
in non-finite stream mining. In these environments, ‘The
underlying processes generating these concepts change over
months and years’ [8]. To accurately describe or predict
an item’s class effectively, you need to have a current and
appropriate model of the concept at all times. This, as it
turns out, is a non-trivial problem.

4 Diagnostic techniques

In a recent paper by C. Aggarwal [2] he describes meth-
ods for detecting and visualising changing distributions in
streams. The technique employs velocity density estima-
tion to indicate concept drift within the evolving streams.
Velocity density is the rate of change of data in a give spa-
tial region. This is then broken down and represented in
traditional two and three-dimensional plots with axis of spa-
tial and temporal densities. While this is a novel indicator
for representing data evolution it fails to directly represent
individual class or cluster distribution change. Traditional
graphing techniques are still employed, where novel indica-
tors are developed to fit typical representaions.

Although not incorparating novel visualisations nor
aimed at streams, a diagnostic technique, ADCO [4], in-
corperates many of the same design objectives as the Pixie
and Luna graphs. By exploiting a hyper-grid representa-
tion of clusterings, a similarity metric is derived that takes

into account structural properties of the data, whilst operat-
ing without the need for all points to be shared. It utilises
a density metric to give a final score that underpins an un-
supervised evaluation technique but requires an equal num-
ber of clusterings for meaningful analysis. The application
of ADCO highlighhts two relevant notions. Firstly, by in-
cluding structual information in a diagnostic tool you are
better able to evaluate changes there-in. Secondly, utilis-
ing methods that allow indirect comparisons to be made be-
tween clusterings without shared points allows for apraisal
of newly incorparated data which is the case with streams.
Pixie and Luna graphs have an advantage over ADCO tech-
niques as theye can indicate emergent behaviour. This is
demonstrated in the results section.

Data evolution has been widely investigated using super-
vised techniques [6, 5], however, this paper will be investi-
gating purely unsupervised approaches.

5 Approach

5.1 Tools

For our experiments we make use of the K-means and
Hierarchical clustering algorithms developed by the Uni-
versity of Tokyo in their micro-array clustering package Py-
cluster [7].

5.1.1 Hierarchical clustering algorithm

This algorithm employs an agglomerative styled approach
to organise elements into clusters. The algorithm begins
with as many clusters as there are elements. Elements
are systematically joined via a linkage scheme. Unlike K-
Means, if the same linkage scheme is used them all clusters
will be the same for the same dataset. Time complexity is a
little greater than K-Means 0(n2logn) and space complex-
ity of O(nlogn).

5.1.2 Global K-means

The Global K-means [1] implements a non-smooth, non-
convex, optimised K-means. It derives this by minimising
the sum-of-square by iterating toward the global minima.
This process continues until a conditional threshold is met.
It utilises a stopping function to avoid insignificant subclus-
ters. Global K-means is well suited for high-dimensional
datasets due to an objective function that reduces the num-
ber of data points needed to achieve a given accuracy. It
employs a novel method to avoid local minima with the
effectiveness of the algorithm proving stable over disjoint
temporal data divisions. Global K-means has a similar time
order of complexity to that of K-means of O(nk), with k be-
ing the number of centers. It has a linear space complexity
of O(n).
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5.2 Graph development

The newly designed Pixie and Luna graphs allow for
quick inference of key elements of the interaction in an in-
tuitive format.

5.2.1 Pixie graph

The Pixie graph was developed to depict cluster interactions
over time intervals. Lines fan out in a many-to-many rela-
tionship. Stream intervals are represented on opposing sides
of the graph by Bi (Bi), where i is the number of intervals.
Similarly, clusters are represented by Cn(Cn), where n is the
number of clusters for that interval. A complete line from
one interval to the other represents the smallest centroid dis-
tance between two clusters in an inverse proportional rela-
tionship. These lines are normalised on the leftmost clus-
ters interactions. The width of the line is proportional to
the number of elements in overlapping regions(reffered to
here as point inclusion). A strong overlap is described as an
agreement. Such an agreement can be seen between B1C0

and B2C0 in figure 4.

5.2.2 Luna graph

The Luna graph has a similar layout as the agreement table
with intervals represented on the left and top. The purpose
of the graph is to show regions of overlap for agreements.
Light grey regions depict no interaction and dark grey indi-
cates overlap. Whereas the Pixie graph dealt with numbers
of elements, Luna looks at geometric overlap. Compliment-
ing the visual interpretations is the Hausdoff distance. An
interaction of two clusters is represented by two radii and a
center distance normalised over the largest value. The nor-
malisation has the effect of reducing the size of the cluster
to show distance even when there is no interaction present.
The same strong agreement seen previously between B1C0

and B2c0 can be seen in figure 5.

5.2.3 Agreement tables

We developed agreement tables to facilitate a representation
of the data that was as rich and intuitive as possible. Each
cluster interaction has nine features attributed to it (As seen
in figure 1). Information concerning the individual clusters
is kept in the margins. Average cluster radius and cluster
volume are displayed here. In the individual interactions we
see forward and backward Hausdorff deviations. These de-
viations are followed by forward and backward point over-
lap (or inclusion) and under the dividing line is the distance
between clusters. Cluster distances are characterised by dif-
fering font styles to indicate relative closeness. Bold font
indicates that the distance between the two clusters is the

closest for row clusters and, similarly, italics indicates least
distance for the column clusters.

This table is specifically designed to allow the user to
intuitively follow clusters over batches and time.
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Figure 1. Agreement table field statistics

5.2.4 Hausdorf distance

Hausdorf distance is employed to represent cluster devia-
tion in subsequent intervals. Hausdorff is directional hav-
ing a forward and backward component indicating geomet-
ric deviation between clusters. As seen in equation 1 Haus-
dorf distance calculates the minimum distance from each el-
ement in one set to all elements in the other set in a many-to-
many relationship. The maximum of these distances is the
Hausdorff distance (in one direction). In figure 2, |a3 − b1|
is the Hausdorf distance in this instance.

h(A,B) = max
a∈A

{min
b∈B

{d(a, b)}} (1)

Forward Hausdorff distance between point sets A and B.
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Figure 2. This is a graphical representation of
the real Hausdorff distance
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5.2.5 Unsupervised adjusted Rand

The Rand algorithm [11] was originally developed to serve
as an objective measure of accuracy when testing different
clustering algorithms. It has since been adapted to create
a more meaningful coefficient in an adjusted implementa-
tion (adjusted Rand [9]) but the essential process remains
unchanged. A confusion matrix is built by recording the
intersection frequencies between the observed values and
expected values.

As the graphing techniques are loosely based on match-
ing matrices it was an intuitive step to incorporate the rand
index that also expolits its funcionality and simplicity. As
we are investigating similarities beteewn disjoint sections of
the stream, shared point techniques, set matching and vari-
ation of information were unavaliable to us. Pair-counting
measures, such as Rand and Jaccard indicies, could be eas-
ily adapted to be used without shared points and proved ver-
satile enough to provide a meaningful metric over disjoint
divisions.

Class \ Cluster v1 v2 ... v3 Sums
u1 n11 n12 ... n1C n1.

u1 n21 n22 ... n2C n2.

...
...

...
...

...
u1 nR1 nR2 ... nRC nR.

Sums n.1 n.2 ... n.C n.. = n

Table 1. Notation for the contingency table
comparing the two partitions

The dataset employed here is the flow control chart
dataset provided by the UCI KDD repository [10]. In fig-
ure 3 Global K-means proves best at consistently determin-
ing similar structures across intervals. Becuase of its under-
lying randomness, K-means demonstrates a distinct disad-
vantage.

6 Results

6.1 Cluster identification and visualisa-
tion using synthetic data

To properly validate the interpretation techniques, the
synthetic control flow chart was employed again to serve
as a baseline. The objective of this experiment is to identify
agreements over segments. Global K-means was utilsed as
it demonstrated the most stability accross disjoint divisions
by the adjusted rand index. Given this assuption, the stabil-
ity should be easily infered from the proposed representa-
tions.

The synthetic control chart time series data [10] was
selected from the UCI Machine Learning Repository for
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Figure 3. Rand and adjusted Rand index for
three algorithms across three intervals of the
flow control chart dataset

this experiment. This data represents six different classes
of control charts containing one hundred points in each.
Four equal segments were derived by equal spacing (non-
random) stratification to simulate a stream environment.
Immediately it can be seen that the agreements in the table
(See table 2) match up seamlessly indicating perfect cluster
alignment. Point inclusion further serves to highlight close-
ness of clusters.

It can immediately be seen that our six clusters and their
counterparts in the second segment agree perfectly. Perfect
agreements are seen as the unambiguous one-to-one rela-
tionships between clusters. Even though eight clusters are
specified when there are actually six, the strength of the
association, i.e. point association can be seen as the line
thickness, indicating the correct number of clusters. From
this visualisation it can be seen that the Pixie graph high-
lights the expected correspondence between like clusters in
subsequent groups. Line thickness here may well indicate a
drift in the target concept.

The Luna graph describes a high level view of the radius
overlap and a high-grained view of corresponding clusters
in n-dimensional space. Here we immediately see which
clusters are in agreement and which are in doubt. In the
third interaction it is also possible to discern subset point
inclusions. In low point inclusion interactions we can see
just how different the cluster spaces are away from each
other.

Through the novel representations presented here, it has
been demonstrated that spatial interations between temporal
divisions can be diagnosed and overall distribution patterns
identified.
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Table 2. Agreement tables for the synth inter-
action.

100-80% Inclusion

80-60% Inclusion

60-40% Inclusion

40-20% Inclusion

20-0% Inclusion

XML Generated Graph
of Cluster Intersection of

synthXML.xml Segments 0 and 1

C7 C7

C6 C6

C5 C5

C4 C4

C3 C3

C2 C2

C1 C1

C0 C0

B1 B2

Figure 4. This figure represents the Pixie
graph of the first interaction of the synthetic
dataset

6.2 Cluster Emergence with Introduced
Data

Here we will objectively evaluate how the Global K-
means algorithm identifies emergence of an introduced
cluster in the final interaction. The entire additional clus-

98.46673249 168.13359652 33.82969165 110.61838638 97.563958 104.07066954 18.84733692 210.53136468

53.63254877 85.88451342 85.28070817 81.53229634 80.75643047 57.98872561 117.73037437 117.32068296

103.51646466 43.3304717 179.48051376 117.07926165 106.17902043 102.12751189 206.74486042 6.60230118

49.89771904 81.71530363 76.35583963 46.66006232 61.02792757 72.12711028 106.99311965 111.27796721

45.86837969 73.62075872 75.33765088 75.77492332 44.62881495 71.40725296 106.39395084 104.0503882

70.46138285 14.99326558 138.12771793 82.71861185 72.68380006 71.62089473 163.46879304 45.11589705

63.09106301 131.44409077 12.19387959 81.78035135 67.55379399 75.03355797 44.32932926 169.65872835

41.69117135 66.64790816 75.93278291 54.18730501 43.0586382 45.6630838 101.18855016 103.28260499

C7

C6

C5

C4

C3

C2

C1

C0

C0 C1 C2 C3 C4 C5 C6 C7

B1

B2

Intersection region

Independant region

XML Generated Graph of Cluster
Intersection of synthXML.xml Segments

0 and 1 (Hausdorff Significance)

Figure 5. This figure represents the Luna
graph of the first interaction of the synthetic
dataset

ter is withheld until the final interaction. For this experi-
ment the synthetic dataset has its first cluster removed and
then added to the final interaction. We want to introduce a
concept artificially and determine whether we can observe
its emergence. With the combination of the Luna and Pixie
graph concept emergence should be relatively straightfor-
ward to detect.

The Pixie and Luna graph (See figures 6 and 7) show per-
suasive evidence of emergence. It can be seen in final inter-
action representations (The emergence interval) that cluster
B3C0 has absorbed the retained group. In the Luna graph
we first note that the first two clusters are very stable with
the last two clusters without contentions.

Of B3C3, B3C5 we know that B3C3 has the largest ra-
dius intersection, is mutually closest, and has the lowest
deviation score gained from the Luna graph. B3C5 is ex-
cluded due to its low point inclusion score and competing
clusters in the column. The Pixie graph shows us the clear-
est of pictures that B3C0 has no counterpart in the preced-
ing segment. Any ambiguity present in the Luna graph, as
described above, is intuitively addressed and an accurate as-
sessment of the cluster is immediately attainable. From the
Luna representation B2C0 can align with only B3C3.
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100-80% Inclusion

80-60% Inclusion

60-40% Inclusion

40-20% Inclusion

20-0% Inclusion

XML Generated Graph
of Cluster Intersection

of synthemergXML.xml
Segments 2 and 3

C4

C3

C2

C1

C0

C5

C4

C3

C2

C1

C0

B1 B2

Figure 6. This figure represents the Pixie
graph of the last interaction of the emerging
synthetic dataset

86.95081907 105.98042361 119.40355474 67.44657798 29.40054432 73.41956932

86.41655108 109.61788206 113.66028851 70.51532426 81.99822355 40.93158636

41.29702494 102.38269379 104.9988461 44.37281524 59.38319303 51.23231984

95.55154383 17.6573972 180.98168325 111.38567951 105.36225787 109.56269438

95.94996847 171.03240113 24.6626223 102.19554694 108.63720659 97.98246865

C4

C3

C2

C1

C0

C0 C1 C2 C3 C4 C5

B2

B3

Intersection region

Independant region

XML Generated Graph of Cluster
intersection of synthemergXML.xml

Segments 2 and 3 (Hausdorff Significance)

Figure 7. This figure represents the Luna
graph of the last interaction of the emerging
synthetic dataset

7 Conclusion

In this report we have investigated the important role of
visualisation and metrics in determining data evolution. We
have highlighted the increased complexities associated with
the subdomain of stream mining. We have asserted that er-
ror, drift, and emergence are the main causes of change in
streams. This being the case, there has been very little in

the way of novel graphing techniques to explore these com-
plexities.

Three main areas representing change are investigated.
As stream techniques are only in the early days of devel-
opment, crucial tools, such as evaluation measures and vi-
sualisations need to be specifically designed to accommo-
date streams. Pixie and Luna graphs have demonstrated the
ability of such techniques at investigating evolution in data
streams. Through the use of visualisation styles that are
developed to fit the stream mining field, concepts can be
quickly modelled and new approaches built upon intuitive
understandings of the data.
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