
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor de la comunicación de congreso publicada en: 
This is an author produced version of a paper published in: 

 
2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 

2015. 345-350 
 

DOI:    http://dx.doi.org/10.1109/ICIT.2015.7125122  
 
Copyright: © 2015 IEEE 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1109/ICIT.2015.7125122


NafisNav: an Indoor Navigation Algorithm for 

Embedded Systems and based on Grid Maps 

 

Nafiseh Osati Eraghi, Fernando López-Colino, Angel de Castro, Javier Garrido 

HCTLab, Dpto de Tecnología Electrónica y de las Comunicaciones 

Universidad Autónoma de Madrid, Spain 

email: fj.lopez@uam.es

 
Abstract— An important goal in navigation of low cost robots 

is low memory usage. In this paper, we propose a novel 

navigation algorithm (NafisNav) suitable for embedded systems 

with low resources, mainly memory. The proposed path finding 

algorithm is designed and implemented in grid maps. Unlike 

existing algorithms, that mainly focus on obtaining the shortest 

possible path for navigation, the proposed algorithm  focuses on 

reducing memory consumption, even at the cost of not always 

obtaining the best path. Experimental results show the trade-off 

between path length and memory consumption that is obtained, 

comparing it with typical algorithms such as Dijkstra or A*. 
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I.  INTRODUCTION 

Path planning is one of the most important issues in 
navigation that it is used in many applications, such as games, 
robotics or navigators. The objective of path planning is to 
create a collision free path from the starting point to the given 
goal in an environment with obstacles. But there are some 
problems in path planning: finding the shortest path, or amount 
of system resources such as CPU time and memory. Depending 
on the application, the trade-off between shortest path, CPU 
time and memory usage changes considerably. It is not the 
same problem to navigate using a computer or console than 
using an embedded system. 

Many studies have been carried out in path planning for 
mobile robots. The most known algorithms for path planning 
problem are A*[1-2] and Dijkstra’s algorithms [3-4]. Kumar 
Das et al. [5] implemented the heuristic A* algorithm for a 
mobile robot in an unknown environment. They considered the 
distance and time metric as the cost function. But memory 
usage isn’t evaluated. In [6] for path planning in mobile robots, 
they improved real time A* algorithm, again without memory 
results included in the experiments. Chˆaari et al. [7] designed 
a tabu search planner algorithm for solving the path planning 
problem in a grid environment. The path length is evaluated in 
different map sizes (small, medium and large scales) and 
compared to A* and GA. The advantage of their algorithm is 
reducing the execution time. In [8] Cazenave presents some 
optimizations for A* and IDA* using an array of stacks instead 
of a priority queue in A*. Results show a higher speed in 
execution. The HCTNav algorithm [9] is also a path planning 
algorithm for grid maps implemented for indoor navigation. It 
has shown to require lower memory usage than Dijkstra’s or 
A* algorithms, so it is more suitable for low cost robots or 
systems with limited resources. The author in [10] also 
proposes a new algorithm for finding the shortest path which 

aims to reduce execution time, comparing his algorithm to 
Dijkstra’s. In [11] a new way for path finding is described 
which is based on Compressed Path Databases (CPD). It pre-
computes and compresses all the shortest path pairs, therefore 
reducing runtime execution time. In [12] authors use a coarse 
grid map instead of the original fine grid map for reducing 
memory usage. Their approach is intended for embedded 
systems in cleaning robots. The authors in [13] propose a 
modified A* algorithm to generate safe paths for robots. It 
considers the robot size and the direction of arrival (DOA) as 
parameters for avoiding sharp turns around corners and unsafe 
diagonal moves. In [14], the authors discuss the relation 
between the performance of different path finding algorithms 
and obstacles distribution. 

This paper presents a navigation algorithm (NafisNav) in 
grid based maps. It is intended for low cost robots or embedded 
systems. The main motivation of this work is to minimize the 
memory consumption. The algorithm is described and 
compared in terms of path length and dynamic memory to A* 
and Dijkstra’s algorithms. The grid maps are provided in two 
different sizes and the experiments are performed for each size.  

The reminder of this paper is organized as follows. In 
section II, A* and Dijkstra’s algorithms are described briefly. 
In section III, the proposed algorithm is described in detail. 
Section IV shows experimental results. The results are 
discussed in section V and finally conclusions are given in 
section VI. 

II. DIJKSTRA’S AND A* ALGORITHMS 

The Dijkstra and A* algorithms are both graph search 
algorithms which obtain the minimum path length between two 
nodes in the graph. The Dijkstra algorithm [3,4] is Breadth-first 
algorithm with a priority queue based on the distance to the 
initial node. The A* algorithm [1,2] includes a heuristic 
function which uses both an estimation of the remaining 
distance to the target and the current distance to the origin for 
the priority queue. 

The application of these algorithms to a grid-based map 
requires the generation of a graph based on the map 
description. The lowest memory cost for this procedure is to 
generate a one-step graph from each cell to every adjacent free 
neighbor to which the robot may navigate. Fig. 1 shows an 
example of the generated graph after processing the grid map. 



 

Fig. 1. Graph created from a grid map. 

III. NAFISNAV ALGORITHM 

In nature, all creatures trying to reach a specified point 
move towards it, selecting points nearer the target each step. 
NafisNav algorithm is inspired by this simple rule. On the 
other hand, most path planning algorithms consider only two 
parameters for measuring quality: minimum path length and 
minimum execution time. As memory consumption is very 
important in low-cost robots and embedded systems, reducing 
needed memory should be a primary goal for these systems. 
The performance of the proposed algorithm will be evaluated 
through experiments and comparison with well known 
algorithms (Dijkstra and A*). 

This algorithm, NafisNav, was designed to be run in low-
cost robots for indoor navigation on grid based maps. In 
contrast to traditional path planning algorithms, this algorithm 
is rather simple and has the following characteristics.  

The main idea is that the approach is similar to the 
algorithm that a blind person would use. Although the 
complete grid map is available, the algorithm does not make an 
a priori analysis of the complete map (does not “see” the 
complete map, only its immediate surroundings), which is the 
part that consumes more memory in this kind of maps for other 
algorithms. Dijkstra algorithm always makes the whole graph 
of the map, and that is its main memory consumption reason, 
analyzing parts of the map that are not needed. According to 
this idea, the algorithm simply moves towards the target from 
the origin node without considering obstacles until they are 
found, as a blind person would do. The neighbor cell with the 
shortest distance to the target is always chosen for obtaining 
the trajectory, but only among those not already used for the 
path until now. In this way, loops are avoided. This is true also 
when obstacles are found. In those cases, some of the neighbor 
cells are not available (obstacles), but the available neighbor 
cell with the minimum distance to the target is chosen, even if 
that distance is greater from the distance of a previous cell in 
the path (possible when surrounding obstacles). By default 
only one path from the origin node to the target node is 
calculated, with an exception: when two neighbors have the 
same distance to the target node. In this case, one is selected 
and the other cell is put in a temporary memory, which is called 
“stack” for future execution. This stack works as a FILO (First 
Input Last Output), basically as a common stack. 

The advantage of the NafisNav algorithm is that it requires 
less memory, especially in simpler maps where a path can be 
found without exploring the complete map. The main 
drawback is that it can lead to non-optimal paths. When 
reaching an obstacle there is no analysis of other possible 
solutions, only choosing the available cell with the minimum 
distance to the target, even if the total path length is finally 
higher. Therefore, it is expected that the proposed algorithm 

obtains good memory results at the expense of path length 
minimization, especially in more difficult maps.  

Other important circumstance that must be taken into 
account is that the idea presented can lead to deadlocks, points 
in which there is no unused neighbor cell for continuing the 
search. Therefore, in order to assure that at least one solution is 
found (even if non-optimal) a backtracking technique is 
included for exiting from deadlock. In this case, the algorithm 
“moves” back to an earlier cell with unvisited neighbors. It is 
important to take into account that a robot would run the 
complete algorithm before moving (it would need some 
milliseconds), so there would be no apparent backtracking, as 
deadlocks are eliminated during the algorithm, not during the 
movement. 

Once the general idea of the algorithm is presented, the 
details of the algorithm are presented through a pseudo code 
(Code 1) and some additional explanations. 

Before each movement, including the first one, if there is a 
straight trajectory from the current node to the target node (see 
navbresenham procedure), the algorithm is finished. Regarding 
distance calculation, the Euclidean distance is not directly used, 
but its square. The Euclidean distance from (xi, yi) to (xj, yj) is: 

D(i,j) ═√(𝑥𝑖 –  𝑥𝑗)2 + (𝑦𝑖 –  𝑦𝑗)2 

In this work, the square distance, denoted as D2, is used. In 
this way, no square root is needed, decreasing computation 
needs and execution time without affecting the obtained path. 

When no straight path is available, the origin is included in 
the path by calling the insert_node procedure. Then the origin 
node is considered the current node. After that, a loop is 
executed while there isn’t a straight trajectory from the current 
node to the target node or the stack isn’t empty, which means 
the algorithm must go on. The following step is normally 
looking for more nodes for the path. However, if there aren’t 
any available neighbors for going on it may be because of two 
reasons. A deadlock has been reached, so the deadlock_exit 
procedure is called, or a second path is being looked for but 
cannot be obtained because nodes cannot be repeated in 
different paths (see later footprint). We know we are in that 
case when there is one path already calculated and the stack is 
empty. That is a break condition, finishing the algorithm with 
the available path or paths.  

The main part of the algorithm is choosing the next current 
point among unvisited neighbors (those not already included in 
the path). Only the eight immediate neighbors are considered. 
The unvisited neighbor with the shortest distance to the target 
is always chosen. If one node has two neighbors with the same 
minimum distance to the target node, then the path is divided 
into two branches from that node. One path is continued and 
the other will be calculated later, adding the other node to the 
stack (push). 

After each new node is added to a path the algorithm 
checks if there is a straight line to the target from the new node. 
In that case, the algorithm would be finished for the current 
path, and would go on with the stack if not empty. After 
calculating each path, the footprint from every node will be 



included. It means that in the next path, previously selected 
nodes (footprint) won’t be selected again. There is an exception 
for the footprint: the surrounding nodes of the target node clear 
their footprints. Therefore, it is possible to reach the target 
node even if a previous path had used that final step, but the 
rest of multiple paths will not share any other nodes except the 
ones adjacent to the target. 

Once the path (or paths) has been obtained, it is optimized. 
Most of the nodes of each path are just one step from each 
other, as neighbor cells are used during the algorithm. But 
possibly some not neighbor nodes can be connected directly. 
This is done in the optimizating_paths procedure, as explained 
later. 

As seen, four procedures are used during the main 
algorithm: deadlock_exit, navbresenham, optimizing_path and 
insert_node. In the next sections, each of these procedures is 
explained in further detail. After those sections, graphical 
examples of the complete algorithm are included for a better 
understanding of the algorithm. 

Code 1. NafisNav algorithm pseudo code 

 

A. The deadlock _exit procedure 

When there is no available neighbor cell that has not 
already been used in the path, it means that a deadlock has been 
reached. At that time, this procedure starts. It is a backtracking 
technique used for exiting from the deadlock. This procedure 
goes back in the sequence of nodes until it finds one that has 
any unvisited neighbor. That node is called “the promising 
node”. This procedure does two operations: exiting from the 
deadlock by recognizing the promising node and inserting the 
new path from the start node to this node. This is illustrated in 
fig. 2, where an example of a deadlock and a promising node 
are shown. The backtracking is also shown in fig. 3. The 
pseudo code of this procedure is shown in Code 2. 

 

 

Fig. 2. A) Deadlock example. B) Promising node example. 

 

Fig. 3. The path diagram from the origin node (6, 5) to the deadlock node (6, 
6) and backtracking to the promising node (4, 6). 

Code 2. The deadlock_exit procedure pseudo code 

 

B. The navbresenham procedure 

This is based in the well-known Bresenham algorithm [15], 
which is commonly used for drawing straight lines in a 
computer screen with simple arithmetic (not using square roots, 
for instance). Our procedure calculates all the cells that a robot 
would touch going in a straight line from one cell to another. 
The main variation from the classical Bresenham algorithm is 
that the original algorithm only gives the cells nearer the center 
of the straight line, but not all cells partially touched by a robot 
moving through that line. This is solved adding more 
Bresenham lines from surrounding cells of the origin and 



target, as shown in [9]. Therefore, if all the cells returned by 
this procedure are empty, then a robot can move in straight line 
without risk of collision. 

C. Optimizing _Path Procedure 

This procedure is used after path or paths are calculated. 
The original paths include neighbor nodes one step from each 
other in any of the main eight directions. However, there may 
be empty straight lines joining some of the nodes of the path in 
a diagonal not included in the main eight directions. In that 
case, the final path can be shortened while assuring that a robot 
can move through the new optimized path. The procedure 
looks for any possible empty straight line (using the 
navbresenham procedure) from any pair of nodes of the same 
path. This is repeated until no more diagonals are found. An 
example of the procedure is shown in fig. 4, and its pseudo 
code in Code 3. 

Code 3. Optimization algorithm pseudo code 

 

 

Fig. 4. Initial proposed path and optimized path. 

D. Insert_node Procedure 

In this procedure, a node (xi, yi) is added to the path. If the 
node to be included is the target point, then it means a new path 
has been finished, as shown in code 4. 

Code 4. Insert_node pseudo code 

 

IV. EXPERIMENTAL RESULTS 

The NafisNav algorithm is based on a depth-first algorithm 
which avoids visited nodes and improved with a backtrack 
procedure. These modifications together with its application to 
a finite graph ensure its completeness. This section will focus 
on comparing the proposed algorithm with the A* and the 
Dijkstra’s algorithms. Three aspects may be compared: 1) final 
path length, 2) memory requirements and 3) execution time. 

The last aspect, execution time, is the least important as the 
execution time of the algorithm in the μprocessor is not 
significant compared to the robot’s movement time. Therefore, 
the following sections will show the results regarding the final 
path length and the memory requirements of each algorithm. 

The three algorithms have been implemented using ANSI-
C language. The final code has been compiled using GCC 
without any optimizing flag. The three algorithms have been 
executed for the following test set: 

 A set of 42 small maps. The size of the maps is 15 
columns and 10 rows. 

 A set of 6 large maps. These large maps have been 
created as the scaled and repeated versions of three of 
the former small maps. The size of the maps is 120 
columns and 80 rows, 64 times larger than the 
equivalent small maps. 

Each algorithm has been implemented in a full program 
that receives the map as a plain text file, the origin and target 
positions. The result is the sequence of cells for the final path 
or a message showing that there is no possible solution. 

A. Path length comparison 

The first comparison focuses on comparing the path length 
provided by the three algorithms. To ensure an equitable 
comparison, the sequence of nodes provided by Dijkstra and 
A* is optimized using the “Optimizing_Path procedure” 
presented before. The optimization procedure makes some of 
the results obtained by Dijkstra and A* different. The average 
path lengths for each of the two sets are presented in table 1 
and 2. 

TABLE I.  AVERAGE PATH LENGTHS FOR THE SMALL MAP SET 

Algorithm Average path lengths 

A* 7.89 

Dijkstra 7.90 

NafisNav 8.35 

TABLE II.  AVERAGE PATH LENGTHS FOR THE BIG MAP SET 

Algorithm Average path lengths 

A* 57.85 

Dijkstra 57.57 

NafisNav 59.56 

 

A deep study of the results of the three algorithms leads to 
13 different occurrences, depending on the comparison of the 
provided path length of each algorithm. These have been used 
for presenting the results. For every case the mean percentage 
of the number of paths is presented for each map set. Table 3 
shows the results for the small map set and Table 4 for the big 
map set. 

input: (xi, yi) 

Add  (xi, yi) to the path 

if xi ═ xt and yi ═ yt  then 

     create a new path 



TABLE III.  MEAN PERCENTAGE FOR EACH CASE OBTAINED FOR EACH 

ALGORITHM IN THE SMALL MAP SET 

Case Result Average of percentages 

1 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 80.591 

2 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 5.329 

3 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 0.771 

4 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.295 

5 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 0.605 

6 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.371 

7 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 0.166 

8 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎>𝑃𝐿𝐴∗ 0.515 

9 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 0.533 

10 𝑃𝐿𝐴∗<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.194 

11 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 9.117 

12 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗ > 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.540 

13 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 > 𝑃𝐿𝐴∗ 0.974 

TABLE IV.  MEAN PERCENTAGE FOR EACH CASE OBTAINED FOR EACH 

ALGORITHM IN THE BIG MAP SET 

Case Result Average of percentages 

1 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 40.19 

2 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 8.04 

3 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 4.00 

4 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.27 

5 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 8.53 

6 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 1.40 

7 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 3.33 

8 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎>𝑃𝐿𝐴∗ 0.80 

9 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 3.00 

10 𝑃𝐿𝐴∗<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 1.76 

11 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 5.66 

12 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗ > 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 12.48 

13 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 > 𝑃𝐿𝐴∗ 10.54 

 

For each of the 13 different possible cases, the path 
increase penalization is also presented. This penalization is 
obtained for each case using the following formulas: 

P_NafisNav: ((∑
(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣)

𝑖
−𝑀𝐼𝑁(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,𝑃𝐿𝐴∗,𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎)

𝑖

𝑀𝐼𝑁(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,𝑃𝐿𝐴∗,𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎)
𝑖

)/𝑛𝑛
𝑖=0 ) 

P _A* : ((∑
(PLA∗)i−MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)

i

MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)
i

)/nn
i=0 ) 

P_Dijkstra: ((∑
(PLDijkstra)

i
−MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)

i

MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)
i

)/nn
i=0 ) 

Tables 5 and 6 show the penalization for each algorithm in 
the small-map and big-map sets respectively. 

TABLE V.  PATH PENALIZATION FOR EACH ALGORITHM FOR IN THE 

SMALL MAP SET 

Case NafisNav A* Dijkstra 

1 0.00% 0.00% 0.00% 

2 0.00% 0.00% 7.67% 

3 0.00% 2.13% 0.00% 

4 0.00% 1.31% 1.26% 

5 1.09% 2.39% 0.00% 

6 0.00% 0.40% 1.17% 

7 0.00% 1.99% 0.62% 

8 1.51% 0.00% 1.51% 

9 2.86% 2.86% 0.00% 

10 0.56% 0.00% 1.23% 

11 20.65% 0.00% 0.00% 

12 7.51% 1.28% 0.00% 

13 18.84% 0.00% 1.33% 

TABLE VI.  PATH PENALIZATION FOR EACH ALGORITHM FOR IN THE BIG 

MAP SET 

Case NafisNav A* Dijkstra 

1 0.00% 0.00% 0.00% 

2 0.00% 0.00% 1.38% 

3 0.00% 1.725% 0.00% 

4 0.00% 0.79% 0.79% 

5 1.23% 2.36% 0.00% 

6 0.00% 0.54% 1.48% 

7 0.00% 2.52% 0.745% 

8 0.575% 0.00% 0.575% 

9 4.24% 4.24% 0.00% 

10 0.365% 0.00% 1.05% 

11 13.27% 0.00% 0.00% 

12 7.10% 1.33% 0.00% 

13 16.60% 0.00% 1.11% 

B. Dynamic memory requirements 

The second comparison focuses on comparing the memory 
that each program requires for solving the problem. All three 
algorithms have been implemented using dynamic memory for 
storing the map, generating the graph (when required) and 
generating the solution. The measurement of the allocated 
memory is done using the Valgrind application. The results are 
processed with Massif-msprint tool. Similar to the previous 
experiment, we have measured the memory for every possible 
path in each map of the set. Fig. 5 shows the maximum 
memory in each map for the small-map set. Fig. 6 shows the 
maximum memory in each map for the big-map set. 



 

Fig. 5. Comparison of the maximum memory requirement for each small 

map. 

 

Fig. 6. Comparison of the maximum memory requirement for each big map. 

V. EXPERIMENT DISCUSSION 

As expected, the depth-first approach of the NafisNav 
algorithm provides, for some cases, longer paths than Dijkstra 
and A*. This is meaningful observing cases 11, 12 and 13. The 
normalized penalization in these three cases is 19.25 % for 
small maps and 13.51 % for big maps. However, the global 
normalized penalization of the solution provided by the 
NafisNav algorithm is just 2.08 % in the small-map set and 
3.63 % in the big-map set. 

The former analysis on its own would not justify the use of 
NafisNav over the existing A* and Dijkstra’s algorithms. The 
advantage of using NafisNav over the former is the decrease of 
memory requirement for solving robot navigation. The results 
for the small-map set shows that NafisNav requires around the 
70 % of dynamic memory when compared to Dijkstra and the 
80% of dynamic memory when compared to A*. The 
difference of this memory requirement is more significant for 
the big-map set. This big-map set resembles the size of real 
environments. For this set the differences are even more 
significant as depicted in Fig. 6. These differences are very 
relevant for choosing a μController when developing a robot. 

VI. CONCLUSIONS 

This paper presents a navigation algorithm (NafisNav) that 
works with grid maps and that is designed for embedded 
systems with low resources. The algorithm is similar to what a 
blind person would do: it just uses the information of the 

immediate surroundings, advancing towards the goal when 
there are no obstacles, and otherwise surrounding them. Using 
only the information of the immediate surroundings greatly 
minimizes memory consumption, especially in easier and 
bigger maps. However, the obtained path is not always the 
shortest possible one, reaching a trade-off between path length 
and memory consumption. The algorithm is compared using 
experimental results to A* and Dijkstra’s algorithms.  

Future research can investigate the performance of the 
NafisNav algorithm in terms of execution time. 
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