

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

2015 IEEE International Conference on Industrial Technology (ICIT). IEEE,

2015. 345-350

DOI: http://dx.doi.org/10.1109/ICIT.2015.7125122

Copyright: © 2015 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/ICIT.2015.7125122

NafisNav: an Indoor Navigation Algorithm for

Embedded Systems and based on Grid Maps

Nafiseh Osati Eraghi, Fernando López-Colino, Angel de Castro, Javier Garrido

HCTLab, Dpto de Tecnología Electrónica y de las Comunicaciones

Universidad Autónoma de Madrid, Spain

email: fj.lopez@uam.es

Abstract— An important goal in navigation of low cost robots

is low memory usage. In this paper, we propose a novel

navigation algorithm (NafisNav) suitable for embedded systems

with low resources, mainly memory. The proposed path finding

algorithm is designed and implemented in grid maps. Unlike

existing algorithms, that mainly focus on obtaining the shortest

possible path for navigation, the proposed algorithm focuses on

reducing memory consumption, even at the cost of not always

obtaining the best path. Experimental results show the trade-off

between path length and memory consumption that is obtained,

comparing it with typical algorithms such as Dijkstra or A*.

Keywords— navigation, bresenham algorithm, grid based map,

embedded system, backtracking technique, dynamic memory

I. INTRODUCTION

Path planning is one of the most important issues in
navigation that it is used in many applications, such as games,
robotics or navigators. The objective of path planning is to
create a collision free path from the starting point to the given
goal in an environment with obstacles. But there are some
problems in path planning: finding the shortest path, or amount
of system resources such as CPU time and memory. Depending
on the application, the trade-off between shortest path, CPU
time and memory usage changes considerably. It is not the
same problem to navigate using a computer or console than
using an embedded system.

Many studies have been carried out in path planning for
mobile robots. The most known algorithms for path planning
problem are A*[1-2] and Dijkstra’s algorithms [3-4]. Kumar
Das et al. [5] implemented the heuristic A* algorithm for a
mobile robot in an unknown environment. They considered the
distance and time metric as the cost function. But memory
usage isn’t evaluated. In [6] for path planning in mobile robots,
they improved real time A* algorithm, again without memory
results included in the experiments. Chˆaari et al. [7] designed
a tabu search planner algorithm for solving the path planning
problem in a grid environment. The path length is evaluated in
different map sizes (small, medium and large scales) and
compared to A* and GA. The advantage of their algorithm is
reducing the execution time. In [8] Cazenave presents some
optimizations for A* and IDA* using an array of stacks instead
of a priority queue in A*. Results show a higher speed in
execution. The HCTNav algorithm [9] is also a path planning
algorithm for grid maps implemented for indoor navigation. It
has shown to require lower memory usage than Dijkstra’s or
A* algorithms, so it is more suitable for low cost robots or
systems with limited resources. The author in [10] also
proposes a new algorithm for finding the shortest path which

aims to reduce execution time, comparing his algorithm to
Dijkstra’s. In [11] a new way for path finding is described
which is based on Compressed Path Databases (CPD). It pre-
computes and compresses all the shortest path pairs, therefore
reducing runtime execution time. In [12] authors use a coarse
grid map instead of the original fine grid map for reducing
memory usage. Their approach is intended for embedded
systems in cleaning robots. The authors in [13] propose a
modified A* algorithm to generate safe paths for robots. It
considers the robot size and the direction of arrival (DOA) as
parameters for avoiding sharp turns around corners and unsafe
diagonal moves. In [14], the authors discuss the relation
between the performance of different path finding algorithms
and obstacles distribution.

This paper presents a navigation algorithm (NafisNav) in
grid based maps. It is intended for low cost robots or embedded
systems. The main motivation of this work is to minimize the
memory consumption. The algorithm is described and
compared in terms of path length and dynamic memory to A*
and Dijkstra’s algorithms. The grid maps are provided in two
different sizes and the experiments are performed for each size.

The reminder of this paper is organized as follows. In
section II, A* and Dijkstra’s algorithms are described briefly.
In section III, the proposed algorithm is described in detail.
Section IV shows experimental results. The results are
discussed in section V and finally conclusions are given in
section VI.

II. DIJKSTRA’S AND A* ALGORITHMS

The Dijkstra and A* algorithms are both graph search
algorithms which obtain the minimum path length between two
nodes in the graph. The Dijkstra algorithm [3,4] is Breadth-first
algorithm with a priority queue based on the distance to the
initial node. The A* algorithm [1,2] includes a heuristic
function which uses both an estimation of the remaining
distance to the target and the current distance to the origin for
the priority queue.

The application of these algorithms to a grid-based map
requires the generation of a graph based on the map
description. The lowest memory cost for this procedure is to
generate a one-step graph from each cell to every adjacent free
neighbor to which the robot may navigate. Fig. 1 shows an
example of the generated graph after processing the grid map.

Fig. 1. Graph created from a grid map.

III. NAFISNAV ALGORITHM

In nature, all creatures trying to reach a specified point
move towards it, selecting points nearer the target each step.
NafisNav algorithm is inspired by this simple rule. On the
other hand, most path planning algorithms consider only two
parameters for measuring quality: minimum path length and
minimum execution time. As memory consumption is very
important in low-cost robots and embedded systems, reducing
needed memory should be a primary goal for these systems.
The performance of the proposed algorithm will be evaluated
through experiments and comparison with well known
algorithms (Dijkstra and A*).

This algorithm, NafisNav, was designed to be run in low-
cost robots for indoor navigation on grid based maps. In
contrast to traditional path planning algorithms, this algorithm
is rather simple and has the following characteristics.

The main idea is that the approach is similar to the
algorithm that a blind person would use. Although the
complete grid map is available, the algorithm does not make an
a priori analysis of the complete map (does not “see” the
complete map, only its immediate surroundings), which is the
part that consumes more memory in this kind of maps for other
algorithms. Dijkstra algorithm always makes the whole graph
of the map, and that is its main memory consumption reason,
analyzing parts of the map that are not needed. According to
this idea, the algorithm simply moves towards the target from
the origin node without considering obstacles until they are
found, as a blind person would do. The neighbor cell with the
shortest distance to the target is always chosen for obtaining
the trajectory, but only among those not already used for the
path until now. In this way, loops are avoided. This is true also
when obstacles are found. In those cases, some of the neighbor
cells are not available (obstacles), but the available neighbor
cell with the minimum distance to the target is chosen, even if
that distance is greater from the distance of a previous cell in
the path (possible when surrounding obstacles). By default
only one path from the origin node to the target node is
calculated, with an exception: when two neighbors have the
same distance to the target node. In this case, one is selected
and the other cell is put in a temporary memory, which is called
“stack” for future execution. This stack works as a FILO (First
Input Last Output), basically as a common stack.

The advantage of the NafisNav algorithm is that it requires
less memory, especially in simpler maps where a path can be
found without exploring the complete map. The main
drawback is that it can lead to non-optimal paths. When
reaching an obstacle there is no analysis of other possible
solutions, only choosing the available cell with the minimum
distance to the target, even if the total path length is finally
higher. Therefore, it is expected that the proposed algorithm

obtains good memory results at the expense of path length
minimization, especially in more difficult maps.

Other important circumstance that must be taken into
account is that the idea presented can lead to deadlocks, points
in which there is no unused neighbor cell for continuing the
search. Therefore, in order to assure that at least one solution is
found (even if non-optimal) a backtracking technique is
included for exiting from deadlock. In this case, the algorithm
“moves” back to an earlier cell with unvisited neighbors. It is
important to take into account that a robot would run the
complete algorithm before moving (it would need some
milliseconds), so there would be no apparent backtracking, as
deadlocks are eliminated during the algorithm, not during the
movement.

Once the general idea of the algorithm is presented, the
details of the algorithm are presented through a pseudo code
(Code 1) and some additional explanations.

Before each movement, including the first one, if there is a
straight trajectory from the current node to the target node (see
navbresenham procedure), the algorithm is finished. Regarding
distance calculation, the Euclidean distance is not directly used,
but its square. The Euclidean distance from (xi, yi) to (xj, yj) is:

D(i,j) ═√(𝑥𝑖 – 𝑥𝑗)2 + (𝑦𝑖 – 𝑦𝑗)2

In this work, the square distance, denoted as D2, is used. In
this way, no square root is needed, decreasing computation
needs and execution time without affecting the obtained path.

When no straight path is available, the origin is included in
the path by calling the insert_node procedure. Then the origin
node is considered the current node. After that, a loop is
executed while there isn’t a straight trajectory from the current
node to the target node or the stack isn’t empty, which means
the algorithm must go on. The following step is normally
looking for more nodes for the path. However, if there aren’t
any available neighbors for going on it may be because of two
reasons. A deadlock has been reached, so the deadlock_exit
procedure is called, or a second path is being looked for but
cannot be obtained because nodes cannot be repeated in
different paths (see later footprint). We know we are in that
case when there is one path already calculated and the stack is
empty. That is a break condition, finishing the algorithm with
the available path or paths.

The main part of the algorithm is choosing the next current
point among unvisited neighbors (those not already included in
the path). Only the eight immediate neighbors are considered.
The unvisited neighbor with the shortest distance to the target
is always chosen. If one node has two neighbors with the same
minimum distance to the target node, then the path is divided
into two branches from that node. One path is continued and
the other will be calculated later, adding the other node to the
stack (push).

After each new node is added to a path the algorithm
checks if there is a straight line to the target from the new node.
In that case, the algorithm would be finished for the current
path, and would go on with the stack if not empty. After
calculating each path, the footprint from every node will be

included. It means that in the next path, previously selected
nodes (footprint) won’t be selected again. There is an exception
for the footprint: the surrounding nodes of the target node clear
their footprints. Therefore, it is possible to reach the target
node even if a previous path had used that final step, but the
rest of multiple paths will not share any other nodes except the
ones adjacent to the target.

Once the path (or paths) has been obtained, it is optimized.
Most of the nodes of each path are just one step from each
other, as neighbor cells are used during the algorithm. But
possibly some not neighbor nodes can be connected directly.
This is done in the optimizating_paths procedure, as explained
later.

As seen, four procedures are used during the main
algorithm: deadlock_exit, navbresenham, optimizing_path and
insert_node. In the next sections, each of these procedures is
explained in further detail. After those sections, graphical
examples of the complete algorithm are included for a better
understanding of the algorithm.

Code 1. NafisNav algorithm pseudo code

A. The deadlock _exit procedure

When there is no available neighbor cell that has not
already been used in the path, it means that a deadlock has been
reached. At that time, this procedure starts. It is a backtracking
technique used for exiting from the deadlock. This procedure
goes back in the sequence of nodes until it finds one that has
any unvisited neighbor. That node is called “the promising
node”. This procedure does two operations: exiting from the
deadlock by recognizing the promising node and inserting the
new path from the start node to this node. This is illustrated in
fig. 2, where an example of a deadlock and a promising node
are shown. The backtracking is also shown in fig. 3. The
pseudo code of this procedure is shown in Code 2.

Fig. 2. A) Deadlock example. B) Promising node example.

Fig. 3. The path diagram from the origin node (6, 5) to the deadlock node (6,
6) and backtracking to the promising node (4, 6).

Code 2. The deadlock_exit procedure pseudo code

B. The navbresenham procedure

This is based in the well-known Bresenham algorithm [15],
which is commonly used for drawing straight lines in a
computer screen with simple arithmetic (not using square roots,
for instance). Our procedure calculates all the cells that a robot
would touch going in a straight line from one cell to another.
The main variation from the classical Bresenham algorithm is
that the original algorithm only gives the cells nearer the center
of the straight line, but not all cells partially touched by a robot
moving through that line. This is solved adding more
Bresenham lines from surrounding cells of the origin and

target, as shown in [9]. Therefore, if all the cells returned by
this procedure are empty, then a robot can move in straight line
without risk of collision.

C. Optimizing _Path Procedure

This procedure is used after path or paths are calculated.
The original paths include neighbor nodes one step from each
other in any of the main eight directions. However, there may
be empty straight lines joining some of the nodes of the path in
a diagonal not included in the main eight directions. In that
case, the final path can be shortened while assuring that a robot
can move through the new optimized path. The procedure
looks for any possible empty straight line (using the
navbresenham procedure) from any pair of nodes of the same
path. This is repeated until no more diagonals are found. An
example of the procedure is shown in fig. 4, and its pseudo
code in Code 3.

Code 3. Optimization algorithm pseudo code

Fig. 4. Initial proposed path and optimized path.

D. Insert_node Procedure

In this procedure, a node (xi, yi) is added to the path. If the
node to be included is the target point, then it means a new path
has been finished, as shown in code 4.

Code 4. Insert_node pseudo code

IV. EXPERIMENTAL RESULTS

The NafisNav algorithm is based on a depth-first algorithm
which avoids visited nodes and improved with a backtrack
procedure. These modifications together with its application to
a finite graph ensure its completeness. This section will focus
on comparing the proposed algorithm with the A* and the
Dijkstra’s algorithms. Three aspects may be compared: 1) final
path length, 2) memory requirements and 3) execution time.

The last aspect, execution time, is the least important as the
execution time of the algorithm in the μprocessor is not
significant compared to the robot’s movement time. Therefore,
the following sections will show the results regarding the final
path length and the memory requirements of each algorithm.

The three algorithms have been implemented using ANSI-
C language. The final code has been compiled using GCC
without any optimizing flag. The three algorithms have been
executed for the following test set:

 A set of 42 small maps. The size of the maps is 15
columns and 10 rows.

 A set of 6 large maps. These large maps have been
created as the scaled and repeated versions of three of
the former small maps. The size of the maps is 120
columns and 80 rows, 64 times larger than the
equivalent small maps.

Each algorithm has been implemented in a full program
that receives the map as a plain text file, the origin and target
positions. The result is the sequence of cells for the final path
or a message showing that there is no possible solution.

A. Path length comparison

The first comparison focuses on comparing the path length
provided by the three algorithms. To ensure an equitable
comparison, the sequence of nodes provided by Dijkstra and
A* is optimized using the “Optimizing_Path procedure”
presented before. The optimization procedure makes some of
the results obtained by Dijkstra and A* different. The average
path lengths for each of the two sets are presented in table 1
and 2.

TABLE I. AVERAGE PATH LENGTHS FOR THE SMALL MAP SET

Algorithm Average path lengths

A* 7.89

Dijkstra 7.90

NafisNav 8.35

TABLE II. AVERAGE PATH LENGTHS FOR THE BIG MAP SET

Algorithm Average path lengths

A* 57.85

Dijkstra 57.57

NafisNav 59.56

A deep study of the results of the three algorithms leads to
13 different occurrences, depending on the comparison of the
provided path length of each algorithm. These have been used
for presenting the results. For every case the mean percentage
of the number of paths is presented for each map set. Table 3
shows the results for the small map set and Table 4 for the big
map set.

input: (xi, yi)

Add (xi, yi) to the path

if xi ═ xt and yi ═ yt then

 create a new path

TABLE III. MEAN PERCENTAGE FOR EACH CASE OBTAINED FOR EACH

ALGORITHM IN THE SMALL MAP SET

Case Result Average of percentages

1 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 80.591

2 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 5.329

3 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 0.771

4 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.295

5 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 0.605

6 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.371

7 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 0.166

8 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎>𝑃𝐿𝐴∗ 0.515

9 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 0.533

10 𝑃𝐿𝐴∗<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.194

11 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 9.117

12 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗ > 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.540

13 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 > 𝑃𝐿𝐴∗ 0.974

TABLE IV. MEAN PERCENTAGE FOR EACH CASE OBTAINED FOR EACH

ALGORITHM IN THE BIG MAP SET

Case Result Average of percentages

1 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 40.19

2 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 8.04

3 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 4.00

4 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 0.27

5 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 8.53

6 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐴∗<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 1.40

7 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝐴∗ 3.33

8 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎>𝑃𝐿𝐴∗ 0.80

9 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣=𝑃𝐿𝐴∗ 3.00

10 𝑃𝐿𝐴∗<𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣<𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 1.76

11 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗=𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 5.66

12 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐴∗ > 𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 12.48

13 𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣>𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 > 𝑃𝐿𝐴∗ 10.54

For each of the 13 different possible cases, the path
increase penalization is also presented. This penalization is
obtained for each case using the following formulas:

P_NafisNav: ((∑
(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣)

𝑖
−𝑀𝐼𝑁(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,𝑃𝐿𝐴∗,𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎)

𝑖

𝑀𝐼𝑁(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,𝑃𝐿𝐴∗,𝑃𝐿𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎)
𝑖

)/𝑛𝑛
𝑖=0)

P _A* : ((∑
(PLA∗)i−MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)

i

MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)
i

)/nn
i=0)

P_Dijkstra: ((∑
(PLDijkstra)

i
−MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)

i

MIN(𝑃𝐿𝑁𝑎𝑓𝑖𝑠𝑁𝑎𝑣,PLA∗,PLDijkstra)
i

)/nn
i=0)

Tables 5 and 6 show the penalization for each algorithm in
the small-map and big-map sets respectively.

TABLE V. PATH PENALIZATION FOR EACH ALGORITHM FOR IN THE

SMALL MAP SET

Case NafisNav A* Dijkstra

1 0.00% 0.00% 0.00%

2 0.00% 0.00% 7.67%

3 0.00% 2.13% 0.00%

4 0.00% 1.31% 1.26%

5 1.09% 2.39% 0.00%

6 0.00% 0.40% 1.17%

7 0.00% 1.99% 0.62%

8 1.51% 0.00% 1.51%

9 2.86% 2.86% 0.00%

10 0.56% 0.00% 1.23%

11 20.65% 0.00% 0.00%

12 7.51% 1.28% 0.00%

13 18.84% 0.00% 1.33%

TABLE VI. PATH PENALIZATION FOR EACH ALGORITHM FOR IN THE BIG

MAP SET

Case NafisNav A* Dijkstra

1 0.00% 0.00% 0.00%

2 0.00% 0.00% 1.38%

3 0.00% 1.725% 0.00%

4 0.00% 0.79% 0.79%

5 1.23% 2.36% 0.00%

6 0.00% 0.54% 1.48%

7 0.00% 2.52% 0.745%

8 0.575% 0.00% 0.575%

9 4.24% 4.24% 0.00%

10 0.365% 0.00% 1.05%

11 13.27% 0.00% 0.00%

12 7.10% 1.33% 0.00%

13 16.60% 0.00% 1.11%

B. Dynamic memory requirements

The second comparison focuses on comparing the memory
that each program requires for solving the problem. All three
algorithms have been implemented using dynamic memory for
storing the map, generating the graph (when required) and
generating the solution. The measurement of the allocated
memory is done using the Valgrind application. The results are
processed with Massif-msprint tool. Similar to the previous
experiment, we have measured the memory for every possible
path in each map of the set. Fig. 5 shows the maximum
memory in each map for the small-map set. Fig. 6 shows the
maximum memory in each map for the big-map set.

Fig. 5. Comparison of the maximum memory requirement for each small

map.

Fig. 6. Comparison of the maximum memory requirement for each big map.

V. EXPERIMENT DISCUSSION

As expected, the depth-first approach of the NafisNav
algorithm provides, for some cases, longer paths than Dijkstra
and A*. This is meaningful observing cases 11, 12 and 13. The
normalized penalization in these three cases is 19.25 % for
small maps and 13.51 % for big maps. However, the global
normalized penalization of the solution provided by the
NafisNav algorithm is just 2.08 % in the small-map set and
3.63 % in the big-map set.

The former analysis on its own would not justify the use of
NafisNav over the existing A* and Dijkstra’s algorithms. The
advantage of using NafisNav over the former is the decrease of
memory requirement for solving robot navigation. The results
for the small-map set shows that NafisNav requires around the
70 % of dynamic memory when compared to Dijkstra and the
80% of dynamic memory when compared to A*. The
difference of this memory requirement is more significant for
the big-map set. This big-map set resembles the size of real
environments. For this set the differences are even more
significant as depicted in Fig. 6. These differences are very
relevant for choosing a μController when developing a robot.

VI. CONCLUSIONS

This paper presents a navigation algorithm (NafisNav) that
works with grid maps and that is designed for embedded
systems with low resources. The algorithm is similar to what a
blind person would do: it just uses the information of the

immediate surroundings, advancing towards the goal when
there are no obstacles, and otherwise surrounding them. Using
only the information of the immediate surroundings greatly
minimizes memory consumption, especially in easier and
bigger maps. However, the obtained path is not always the
shortest possible one, reaching a trade-off between path length
and memory consumption. The algorithm is compared using
experimental results to A* and Dijkstra’s algorithms.

Future research can investigate the performance of the
NafisNav algorithm in terms of execution time.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministerio de
Ciencia e Innovacion under project TEC2009-09871.

REFERENCES

[1] S. Rabin, AI Game Programming Wisdom, Charles River Media, 2002.

[2] M. Buckland, Programming Game AI by Example, Jones & Bartlett
Learning, 2005.

[3] R. Diestel, Graph Theory, Graduate Texts in Mathematics. Springer-
Verlag, vol. 173, pp. 6–9, 2005.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, 658-664, 2009.

[5] P. Kumar Das, A. Konar, R. Laishram, Path planning of mobile robot in
unknown environment, Special Issue of IJCCT Vol.1 Issue 2, 3, 4, for
International Conference [ACCTA-2010], 2010.

[6] D. Ananya, M. priyadarsini, M. Prakruti, K.D. Pradipta, C.M. Subash,
Improved real time A* algorithm for path planning of mobile robot in
quadrant based environment, International Journal on Advanced
Computer Theory and Engineering (IJACTE), 1, 2319-2526, 2012.

[7] I. Chˆaari, A. Koubˆaa, H.Bennaceur, A. Ammar, S. Trigui, M. Tounsi,
E. Shakshuki, H. Youssef, On the Adequacy of Tabu Search for Globa
Robot Path Planning Problem in Grid Environments, 5th International
Conference on Ambient Systems, Networks and Technologies (ANT-
2014) , 2014.

[8] T. Cazenave, Optimizations of data structures, heuristics and algorithms
for path-finding on maps, CIG'06 (May 22-24 2006), 2006 IEEE, 2006.

[9] M. Pala, N. Osati Eraghi, F. Lopez-Colino, A. Sanchez, A. de Castro, J.
Garrido, HCTNav: A Path Planning Algorithm for Low-Cost
Autonomous Robot Navigation in Indoor Environments, International
Journal of Geo-Information, vol.1, 729-748, 2013.

[10] N. A. El-Sherbeny, A new algorithm of A* algorithm for the time-
dependent shortest path problem with time windows, Scientific Research
and Impact (Science Park Journals), 2(1): pp. 1-8, 2013.

[11] A. Botea, Ultra-Fast Optimal Pathfinding without Runtime Search,
Proceedings of the Seventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2011.

[12] H. K.Lee, W.Y. Jeong, S. Lee, J. Won, A Hierarchical Path Planning of
cleaning robot Based on Grid Map, IEEE International Conference on
Consumers Electronics (ICCE), 2013.

[13] B. M. ElHalawany, H. M.Abdel-Kader, A. TagEldeen, A.E.Elsayed,Z.
B.Nossair, Modified A* Algorithm for Safer Mobile Robot Navigation,
International Conference on Modelling, Identification & Control
(ICMIC), 2013.

[14] Y. Li, Z. Zhou, W. Zhao, Performance Analysis of Pathfinding
Algorithms Based on Map Distribution, TELKOMNIKA Indonesian
Journal of Electrical Engineering,Vol.12, No.7, pp.5537-5545, 2014.

[15] J.E. Bresenham, Algorithm for computer control of a digital plotter.
IBM Syst. J., 4, 25–30, 1965.

