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Abstract—This paper presents the implementation of a 
complete fingerprint biometric cryptosystem in a Field 
Programmable Gate Array (FPGA). This is possible thanks to the 
use of a novel fingerprint feature, named QFingerMap, which is 
binary, length-fixed, and ordered. Security of Authentication on 
FPGA is further improved because information stored is 
protected due to the design of a cryptosystem based on Fuzzy 
Commitment. Several samples of fingers as well as passwords can 
be fused at feature level with codewords of an error correcting 
code to generate non-sensitive data. System performance is 
illustrated with experimental results corresponding to 560 
fingerprints acquired in live by an optical sensor and processed 
by the system in a Xilinx Virtex 6 FPGA. Depending on the 
realization, more or less accuracy is obtained, being possible a 
perfect authentication (zero Equal Error Rate), with the 
advantages of real-time operation, low power consumption, and a 
very small device. 

Keywords—Fingerprint recognition, biometric cryptosystems, 
FPGA hardware design, CAD tools 

I. INTRODUCTION 

In the next years, the widespread use of biometric systems 
will lead to the massive storage of biometric data. If an 
individual is registered in different biometric systems, the same 
biometric data will be stored in several places. Let us consider 
a situation where a person is registered by means of his/her 
fingerprint and an impostor steals the fingerprint representation 
associated to the template. The fingerprint image can be 
reconstructed from the template and then used to attack 
successfully the fingerprint recognition system [1]-[2]. In this 
situation, the user has to cancel that fingerprint and uses 
another one. The problem is that a maximum of ten fingers are 
available for each individual. 

From a security point of view, it is justified that biometric 
templates should be protected. Protection is required not only 
for template storage but also for operational and 
communication procedures of biometric data [3]. The 
realization of the complete biometric recognition system in the 
same hardware device (Authentication on Card) increases the 
security because the access to communication channels is more 
difficult. A further step to increase security is to employ 
biometric template protection schemes [4]. They provide 
interesting advantages such as non-reversibility, which means 
that it is computationally infeasible to recover the unprotected 

template from the protected template. At the same time, it can 
be possible to create different protected templates from the 
same template to be used in different applications. This 
property is known as diversity and leads to revocability, which 
means that as many protected templates as necessary can be 
generated when security is compromised. As drawback, the 
computational complexity of template protection schemes 
increases considerably and, in many cases, recognition 
accuracy decreases.  

Template protection schemes are categorized commonly 
into feature transformation systems and biometric 
cryptosystems. An example of the first case is salting 
techniques, also known as Biohashing, which combine a 
password introduced by the user (named as salt) with biometric 
data [5]-[6]. In this way, different passwords generate different 
protected templates. However, both protected template and 
password have to be private because if one of them is known, 
all the information is public. In the other side, biometric 
cryptosystems are based on fusing the unprotected template 
with additional information to generate data, named as helper 
data. An advantage of biometric cryptosystems is that helper 
data do not have to be private because the additional 
information employed obfuscates the template information and 
the helper data does not give biometric information. 

This paper focuses on implementing a complete fingerprint 
biometric cryptosystem in the same hardware device, in 
particular a FPGA (Authentication on FPGA). To the best of 
our knowledge, no protected biometric system has been 
implemented with dedicated hardware. The paper is structured 
as follows. Firstly, Section II reviews the main template 
protection approaches reported in literature. Section III 
presents a novel fingerprint feature named QFingerMap, which 
can be implemented in dedicated hardware with very few 
memory and computing resources. A cryptosystem that can 
fuse QFingerMaps from different samples of the same finger as 
well as passwords provided by the user is presented in Section 
IV. Section V summarizes the hardware implementation of the 
cryptosystem proposed and reports hardware implementation 
results in terms of timing and resource occupation. Finally, 
conclusions are given in Section VI. 

II. BIOMETRIC CRYPTOSYSTEMS 

The biometric cryptosystems based on Fuzzy Commitment 
[7] combine error correction and cryptographic techniques. 



During the enrollment phase, helper data H is computed from 
the biometric template B and a codeword C generated by an 
Error Correction Code (ECC). Then, H and hash(C) are stored. 
At matching, the error correction scheme decodes the 
information from the input biometric data B’ and the helper 
data stored H. Since the input biometric data B’ is similar to the 
biometric template B, the word C’ resulting from combining B’ 
and H is similar to C, so that the error correction code applied 
to C’ obtains C, ECC(C’) = C. The authentication is successful 
when hash(C) and hash[ECC(C’)] coincide. Any input 
biometric data B’ similar to the biometric template B should be 
able to reconstruct C. The Fuzzy Commitment scheme is 
illustrated in Figure 1. This scheme requires that biometric 
representations are binary, length-fixed, sorted and aligned and 
that was the reason why the first practical approaches of 
fingerprint cryptosystems were applied to features such as 
FingerCodes. Feature vectors extracted from minutiae are not 
ordered or aligned features. Hence, they should be converted to 
suitable representations. If extraction of minutiae is already 
complex for dedicated hardware, its protection further 
complicates its implementation [8]. 

Error correction techniques can be categorized into two 
groups, depending on how errors are processed: bit-by-bit 
(which corrects random bit errors) or block-by-block (which 
corrects burst errors). Although errors are normally distributed 
as bursts, both types have been applied in biometric 
cryptosystems, particularly BCH and Reed-Solomon [8], [9]. 
Despite applying error correction codes, most existing 
biometric template protection methods cause degradation in 
biometric performance, in comparison to an unprotected 
system [10]-[11]. Most of biometric features are real-valued 
but template protection schemes require binary features so that 
discretization methods influence the performance of the 
biometric cryptosystem because there is loss of information. 
This can be seen in Table I, which shows results from feature 
transformation systems and biometric cryptosystems. FMR 
(False Match Rate) is the number of false matches for the 
impostor distribution and FNMR (False Non-Match Rate) is 
the number of false non-matches for the genuine distribution. 

III. THE FEATURE QFINGERMAP 

A novel fingerprint feature based on textures is considered 
in this work [14]. The feature, named QFingerMap, is 
extracted from a window centered at the convex core point of 
the fingerprint, once the orientation or directional image (which 
contains the local ridge orientations of the pixels in the 
fingerprint image) has been segmented into homogeneous 
regions [15]. The complete extraction process is shown in 
Figure 2. 

Let us consider a coarse directional image that assigns to 
each pixel 1 out of 8 possible direction intervals in the range 
from 0º to 180º: g0=[0º, 22.5º), g1=[22.5º, 45º), g2=[45º,67.5º), 
g3=[67.5º, 90º), g4=[90º, 112.5º), g5=[112.5º, 135º), g6=[135º, 
157.5º), and g7=[157.5º, 180º). These intervals are represented 
by the following symbols (coded with 3 bits): 000, 001, 010, 
011, 100, 101, 110, and 111. Each symbol is represented by a 
color in Figure 2. The selection of the interval (and symbol) for 
each pixel is determined by simple comparisons between 
horizontal and vertical gradient values calculated at each pixel. 

As in any technique that calculates orientation images, the next 
step after symbol assignation is a smoothing process because 
the objective is to obtain homogeneous regions with the same 
symbols. A nonlinear filter based on maximum operator has 
been employed. It considers the neighboring pixels inside an S 
x S window centered at the analyzed pixel and assigns it the 
symbol with the highest number of occurrences inside the 
window. This operation is in charge of removing isolated and 
noisy symbols. The window size depends on the sensor 
employed (its size, resolution, and technology) because the 
features of the fingerprint images acquired are different. If the 
window size is small, isolated and noisy symbols cannot be 
removed. In contrast, if the window size is too large, relevant 
information can be lost. A 27 x 27 window has been proven to 
provide good performance for different types of sensors [15]. 

The feature vector is generated from an N x N window 
within the smoothed segmented orientation image centered at 
the convex core point, being formed by N x N symbols in an 
ordered way. Each element of the feature vector is one symbol 
out of the 8 possible symbols. The selection of the window size 
N x N is also relevant for the recognition process. An adequate 
size depends in turn on the fingerprint image size acquired by 
the sensor. For most fingerprint sensors, which capture a 
fingerprint size of, approximately, 300 x 300, the several 
studies carried out have revealed that the most suitable option 
is a window size in the range of 129 x 129 because it gives the 
best tradeoff between distinctive capability and the fingerprint 
image size captured by the sensors. 

The feature vector length is reduced by applying down-
sampling to remove redundant information. The target is to 
generate a compact and distinctive representation of the 
fingerprint by selecting the most representative symbols. A 
simple way is to take 1 between d consecutive pixels 
(downsampling by a factor of d). A suitable performance is 
given by a factor of 8, which results a feature vector of 17 x 17 
symbols. If symbols are coded by 3 bits, the 17 x 17 symbol 
vector requires 867 bits (17 x 17 x 3 bits), which is a 
considerable reduction with respect to the initial 129 x 129 
symbol vector. Therefore, the feature vector QFingerMap is 
defined by a fixed-length vector composed of symbols 
distributed in a sorted way. 

The matching operation between two QFingerMaps is done 
by computing the number of different symbols. From its 
conception, a QFingerMap has been thought for hardware 
implementations, so that the feature extraction and matching 
operations require a low computational cost. In addition, its 
translation to a binary representation is direct and does not 
need a quantization process (thus reducing the possible 
variations caused by the translation of continuous to discrete 
values). Hence, QFingerMaps are very suitable fingerprint 
features for the application of a Fuzzy Commitment scheme for 
the purpose of biometric template protection. 

IV. A BIOMETRIC CRYPTOSYSTEM BASED ON QFINGERMAPS 

The helper data generation in a Fuzzy Commitment scheme 
is in charge of fusing the codeword and the biometric data (the 
QFingerMap) in a obfuscated way to create public information. 
In general, the fusion of the codeword and the biometric data is 
done by a XOR operator and so it has been employed in this 



work. A one-way transformation function (a cryptographic 
hash function) protects the codeword information. The hash(C) 
value can be public because the hash function ensures that the 
codeword C is computationally infeasible to recover from the 
hash(C) value. Keccak has been selected as hash function [16]. 

The codeword length n is determined by the QFingerMap 
length L (which is associated to symbols or bits, depending on 
the representation) and has to satisfy n≥L to fuse the codeword 
with biometric information. For BCH and Reed-Solomon error 
correction codes, n=2m-1 (n expressed as base 2 depending on 
m value). If L<n, a padding of n-L is applied to QFingerMap to 
complete the n values. The creation of the codeword is 
performed from a random value with length k. Values of n and 
k establish the number of errors t, which the error correction 
code can correct as a maximum. 

Since a QFingerMap is composed of 289 symbols or 867 
bits (in total, 17 x 17 symbols coded with 3 bits), the selection 
of a BCH code, which corrects random bit errors, requires a 
minimum length for the codeword of 1023 bits (n=1023). In 
the case of Reed-Solomon codes, which correct symbol errors, 
the 289 symbols of a QFingerMap determine the parameter for 
the codeword length (n), whose value should be greater or 
equal than 511 (for m≥9 and, thus, n≥29-1). For Reed-Solomon 
codes, the maximum number of errors t that can be corrected is 
defined as t=(n-k)/2. 

An unprotected biometric system based on QFingerMaps 
applies a matching operation which calculates the number of 
different symbols (codified by 3 bits) between two 
QFingerMaps. Hence, the number of different symbols (bits) 
used as threshold value to distinguish between genuine 
individuals and impostors is correlated to the number of 
symbols (bits) than the ECC can correct. The correction code 
capability also determines the values of FMR (False Match 
Rate) and FNMR (False Non-Match Rate) because as more 
errors are corrected, the FMR increases and the FNMR 
decreases, and vice versa. 

The unprotected biometric system has been applied to 560 
fingerprints captured in live by an optical sensor (the FS90 
sensor from Futronic) and enhanced by applying the filtering 
proposed in [17]. In the genuine distribution, each sample is 
matched against the remaining samples of the same finger, and 
for the impostor distribution, the first sample of each finger is 
matched against the first sample of the remaining fingers. 
These distributions remove symmetric comparisons to avoid 
correlation according to the recommendations of Fingerprint 
Verification Competition (FVC). Table II shows a comparison 
of the EER (Equal Error Rate, that is, the rate where FMR and 
FNMR are equal) for the unprotected biometric system and the 
protected biometric system, considering BCH and Reed-
Solomon codes. In general, there is not a clear relation between 
the unprotected biometric system and the cryptosystem in 
terms of FMR, FNMR, and EER. The cryptosystem usually 
performs worse but it cannot be estimated quantitatively by a 
simple analysis how much worse it is going to perform. In 
contrast, for QFingerMaps, there is a clear relation between the 
performance of the unprotected system and the performance of 
the cryptosystem. This is an advantage that eases the design of 
the cryptosystem because the threshold values of the 

unprotected biometric system indicate the number of errors to 
be corrected by the error correction code. Thus, the selection of 
the error correction code parameters depends on the FMR and 
FNMR values required by the application. This is illustrated in 
Figure 3, which shows how the results of the protected and the 
unprotected systems are quite similar. However, the minimum 
length for the BCH codewords is 1023 bits, and BCH codes are 
more suitable (offer more efficient implementations) for 
lengths of a hundred of bits [11]. Hence, a Reed-Solomon code 
has been chosen for the proposed cryptosystem.  

A fingerprint recognition system usually employs several 
samples of a finger at enrollment and even at matching to 
increase recognition performance. Therefore, let us consider 
the acquisition of St samples at enrollment, so that St helper 
data values are computed as follows: ܪ = ( ଵܵ⨁ܥଵ,… , ܵ௧⨁ܥ௧) = …,ଵܪ)  ௧)  (1)ܪ,

where (C1, …, Ct) are codewords of an ECC. 

At matching, S’q samples are captured as inputs and St x S’q 
values are calculated from the helper data values stored as 
follows: ቀܥᇱଵ, … , ᇱௌ೟×ௌᇲ೜ቁܥ =(ܵᇱଵ⨁ܪଵ,… , ܵᇱଵ⨁ܪ௧,… , ܵᇱ௤⨁ܪଵ,… , ܵᇱ௤⨁ܪ௧) (2) 

The St x S’q hash values, hash[ECC(C’i)], are compared to 
the corresponding hash values stored, hash(Cj). The number of 
comparisons is St x S’q and each comparison gives ’1’ if the 
compared values are equal, and ’0’ if they are different. The 
OR operator is applied to these values, and the result is ’1’ if an 
individual has been recognized, and ’0’ otherwise. ݐݑ݋ = ܱܴ௜ୀଵ,…,௧௝ୀଵ,…,௤[ℎܽݏℎ ቀܥܥܧ(ܵᇱ௝⨁ܪ௜ቁ] = ℎܽݏℎ(ܥ௜)  (3) 

Considering the fingerprint database commented above, the 
following realizations have been analyzed among others:  

- Case 1: Multi-sample system composed of three samples at 
enrollment, and one sample at matching. 

- Case 2: Multi-sample system composed of three samples at 
enrollment, and two samples at matching. 

A two factor identification/authentication, which combines 
passwords and biometric information, increases the security 
because both information (‘what you know’ and ‘who you are’) 
are required to recognize an individual. Also, the fusion of 
biometric data and passwords is a simple way to obtain more 
accuracy in recognition by using a dual factor [18]. Hence, a bit 
operator (XOR) has been employed to fuse bits from 
passwords and bits from biometric data. Padding has been 
applied to the hash of the password to achieve the same 
QFingerMap length. The password obfuscates the biometric 
information and vice versa, so that both data are protected by 
the Fuzzy Commitment scheme. As a matter of fact, this case 
can be seen as a kind of salting transforms. The result of the 
fusion has the length of a QFingerMap. Hence, protection is 
applied similarly to equation (3), as follows: ݐݑ݋ = ܱܴ௜ୀଵ,…,௧௝ୀଵ,…,௤[ℎܽݏℎ ቀܥܥܧ(ܵᇱ௝ ⊕ [௜ቁܪ⨁′ܲ = ℎܽݏℎ(ܥ௜)  (4) 



where the helper data Hi are associated to a sample i of the 
fingerprint, Si, the hash of the password conveniently padded, 
P, and a codeword, Ci. 

Table III shows the selection of ECC parameters for the 
cases 1 and 2 considered above, with and without passwords, 
using Reed-Solomon codes. Individual discrimination is 
improved. Figure 4 illustrates graphically the recognition 
performance (FMR and FNMR) for the multi-biometric case 2 
when adding the passwords. Since the genuine and impostor 
distributions are separated, several Reed-Solomon codes are 
suitable for a perfect authentication. 

V. DESIGN OF THE FPGA SYSTEM 

The main blocks for the hardware implementation of the 
presented cryptosystem implement the QFingerMap extraction, 
the encoder to generate the codeword from a random value, the 
decoder to correct errors due to the variability in the biometric 
data acquisition, and the hash function to protect the codeword 
generated and to process the possible password introduced by 
the user. The enhancement filtering employed for the 
fingerprint database considered is not included in the system 
because the enhancement techniques depend on the type of the 
sensor and the captures. These blocks are shown in Figure 5.  

The whole system has been designed with Matlab-
Simulink. The tool HDL Coder from Simulink has been 
employed to generate synthesizable VHDL code. The tools 
from Xilinx ISE environment have been used to implement the 
design in the FPGA, verify the code at hardware level (with 
ISIM simulator), and verify the system at its context of 
operation (with FPGA-in-the-Loop functionality) [19]. 

The implementation has been performed in a Xilinx Virtex-
6 (XC6VLX240T-1FFG1156) FPGA for 440 x 300 fingerprint 
images. The FPGA considered contains 37680 slices and 416 
36-Kbit Block RAMs. More details about the architecture and 
data processing of the blocks that obtain the partitioned 
directional image, the smoothed partitioned directional image, 
and the singular points as well as the block that estimates the 
quality of the acquired fingerprint image can be seen in [15]. 
The realization also includes a 512-bit hash function based on 
the SHA-3 Keccak [20]. 

As discussed, Reed-Solomon is selected as the most 
suitable error correction technique for a cryptosystem based on 
QFingerMaps. Following the hardware design flow based on 
CAD tools, the Reed-Solomon encoder and decoder 
implemented have been obtained from the Matlab-Simulink 
library blockset for HDL Coder ([21] and [22], respectively). 
The selection of different parameters leads to different 
implementations and, thus, different occupation and resources 
needed. The results for a Reed-Solomon code with n=511, 
k=383 and t=64 are 505 slices (1.34%) for the encoder, and 
25181 slices (66.83%) for the decoder. This code can correct 
22.15 % of errors, which allows perfect authentication in the 
multi-biometric system of case 2 shown in Figure 4. 

All blocks required for a fingerprint-based cryptosystem 
can be implemented in the same device, in this case a Xilinx 
Virtex-6 FPGA. It is a dual security level because recognition 
stages (feature extraction and matching) are performed in the 
same device and template protection lets store and match 

biometric data and passwords in a transformed domain, which 
reduces considerably the number of possible attacks. The 
occupation of all blocks is 29895 slices (79.34%). The Reed-
Solomon Decoder occupies most of slices (66.83%) and limits 
the global maximum frequency to 58 MHz. Hence, the system 
generates the feature vector in 2.28 ms after processing serially, 
pixel by pixel, a 440 x 300 fingerprint image (440 x 300 / (58 
MHz)). Once the hash of the query codeword is obtained from 
the query fingerprint (and possible password), the time to 
compute the comparison with the stored hash is negligible (it is 
a comparison of hash values). 

The template memory is composed of 1023 bits from the 
helper data (511 bits) and the hash of the codeword used at 
enrollment (512 bits). Since 18.5 out of the 416 36-Kbit Block 
RAMs are used in a Xilinx Virtex-6 FPGA to extract a query 
codeword, the other 36-Kbit Block RAMs of the FPGA can 
store more than 14,323 helper data associated to samples and 
passwords. 

VI. CONCLUSIONS 

This work has presented an FPGA realization that protects 
a fingerprint template based on the feature QFingerMap. The 
proposal is a cryptosystem that applies a Fuzzy Commitment 
scheme because the feature QFingerMap is an ordered, binary 
and fixed-length vector. The main operations of the Fuzzy 
Commitment scheme are the error correction technique and the 
hash function. The error correction codes selected have been 
Reed-Solomon codes since they are more suitable for 
QFingerMaps, which are based on symbols instead of bits. 
Recognition performance results show that there are not 
significant differences between the performance of unprotected 
and protected systems, which is an interesting result that 
facilitates the design of the cryptosystems. Moreover, 
experimental results confirm that accuracy can be complete 
(both False Match Rate and False Non-Match Rate can be zero) 
and operation is performed in real time. 
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Fig. 1 Fuzzy Commitment scheme. (1) refers to the enrollment phase, 

and (2) refers to the matching phase. 
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TABLE I. RESULTS FOR UNPROTECTED AND PROTECTED SYSTEMS

Proposal 
Protection 
Scheme 

Unprotected Protected 
FMR 
(%) 

FNMR 
(%) 

FMR 
(%) 

FNMR 
(%) 

Directional 
Image/Finger-
Codes [11] 

Fuzzy 
Commitment 

1.4 1.4 4.5 4.5 

Minutiae [12] 
Cancelable 
Transformation 

3.2 3.2 12.5 12.5 

Minutiae [10] 
Fuzzy 
Commitment 

1.7 1.7 0.0 12.6 

Minutiae [13] 
Symmetric 
Hash Functions 

1.7 1.7 3.0 3.0 

Minutiae [12] 
Biohashing 
Transformation 

6.6 6.6 1.8 1.8 

 

TABLE III. EQUAL ERROR RATES AND PARAMETERS FOR REED-
SOLOMON CODES DEPENDING ON THE REALIZATION 

Realization EER ECC (n, k, t) 

Case 1 2.52 (511, 363, 74) 

Case 2 1.03 (511, 391, 60) 

Case 1 with passwords 0.05 (511, 345, 83) 

Case 2 with passwords 0.00  (511, 381, 65) 

 
 



 
 

Fig. 2. Extraction process of the feature QFingerMap. 

                                  
                                                           (a)                                                              (b) 

 
Fig. 3. FNMR and FMR for QFingerMap-based unprotected and protected systems (a) using BCH and (b) Reed-Solomon codes. 

 

Fig. 4. FNMR and FMR for the case 2 with passwords depending on the number of errors corrected by a Reed-Solomon code. 
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Fig. 5. Block diagram for the crypto-biometric identification/authentication process: (1) enrollment phase, and (2) matching phase. Paths without names are 
employed in both phases (enrollment and matching). Paths depicted with shaded lines are employed depending on the application. 

 
 
 
 
 
 
 
 
 


