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Abstract—This work proposes a new segmentation algorithm
for three-dimensional dense point clouds and has been spe-
cially designed for natural environments where the ground is
unstructured and may include big slopes, non-flat areas and
isolated areas. This technique is based on a Geometric-Featured
Voxel map (GFV) where the scene is discretized in constant size
cubes or voxels which are classified in flat surface, linear or
tubular structures and scattered or undefined shapes, usually
corresponding to vegetation. Since this is not a point-based
technique the computational cost is significantly reduced, hence
it may be compatible with Real-Time applications. The ground
is extracted in order to obtain more accurate results in the
posterior segmentation process. The scene is split into objects and
a second segmentation in regions inside each object is performed
based on the voxel’s geometric class. The work here evaluates the
proposed algorithm in various versions and several voxel sizes and
compares the results with other methods from the literature. For
the segmentation evaluation the algorithms are tested on several
differently challenging hand-labeled data sets using two metrics,
one of which is novel.

I. INTRODUCTION

A segmentation method is required to isolate individual
objects in a scene as a prior process to the classification or
semantic recognition of them. Much effort has been made to
solve the problem of segmenting in 2D images, and more
recently the challenge has also been applied to the three-
dimensional (3D) point clouds, as 3D sensors have become
more widely used.

There are two main approaches for 3D segmentation .
The first approach, called point-based techniques, is based on
analyzing each point with features from its local neighborhood.
Some works start the process extracting the ground by fitting
it in a flat plane [1] [2] or by using a height threshold
[3]. Then the non-ground points are grouped in objects or
segments. These groups can be obtained depending on the
distance between points by using a graph based algorithm
such as Normalized Cut or Ncut [4] [3] and the algorithm of
Felzenszwalb and Huttenlocher (FH) [5] over the range image
[1] or over the 3D point cloud [6]. Other methods perform
the segmentation based on the similarity of the normal vector
computed at each point taking into account the local neighbor
points. In [7] the normal at each point is computed with the
information of the k-Nearest Neighbors (KNN). To reduce the
normal estimation at each point, in [2] the points are first
clustered if they are nearer than a distance threshold, which
is called the growing region technique, then these clusters are
grouped based on the similarity of the normal. In an other way,

[8] the authors classify each point in ground, planar, and non-
planar points through a Support Vector Machine (SVM) whose
inputs are local geometric features at each point, with KNN.
These features are: normal vector, height above the lowest
point in the scene, or eigenvalues from the covariance matrix
The planar clusters are segmented into two stages: by using
a Gaussian sphere, and then refining with a distance-based
clustering method, that is merging if distances are similar.
The non-planar points are clustered based only on distance.
The main drawback of this segmentation approach is the
high memory and execution time consumption since it has to
process each point in the point cloud. Therefore these methods
may be incompatible with Real-Time applications.

Another set of techniques for 3D segmentation is the group-
based techniques, which aim to solve the time-consumption
problem of the point-based techniques by reducing the scene
to a voxel model. Usually the scene is discretized in 3D cubes
with constant size as a 3D grid, but these voxels can also
be dynamically positioned around groups of points [9]. In
[10] several algorithms have been developed for both dense
and sparse pointclouds, which depends on the scan device.
The work concludes that algorithms which extract the ground
offer more accurate results in the subsequent segmentation
process . In sparse point clouds, as acquired from a Velodyne
scan, an interpolation method is performed to propagate the
ground to areas without 3D information. On the contrary,
for dense point clouds, as obtained with a Riegl scan, the
ground is detected as the largest area with adjacent voxels
with height mean or a vertical variance less than a threshold.
Once the ground has been extracted, the objects are isolated
by merging adjacent voxels or voxels in a distance lower than
a predefined threshold. In [11] the segmentation is also with
adjacent voxels, and the results are contrasted and fused with
an RGB data segmentation process. In addition the ground is
extracted through an elevation map. The main problem of these
techniques is that they assume flat and continuous ground, as
in an urban environment. Hence, big slopes or non-flat areas
are not grouped in the ground. A novel idea for the voxel map
is introduced in [12] called Geometric-Featured Voxel maps
(GFV). In this model the voxels contain geometric information
taken from a prior classification in linear or tubular structures,
scattered shapes, horizontal planes, or vertical planes [13]. The
ground is extracted as horizontal surface voxels with no other
kind of voxels below. Horizontal surface voxels higher than
a threshold over another identical kind of voxel in the same
position are discarded. This way, slopes can be detected as
the floor depending on the previous GFV classification, but



some horizontal surfaces can be wrongly detected as ground.
For instance, horizontal surface from an object may not have
points below because of the shadows in the scene captured.
Furthermore, another important disadvantage to this technique
is that GFV classification may not be enough since the surfaces
are classified in vertical and horizontal, hence it requires a very
accurate threshold for slopes. All these methods have been
designed for urban environments and thus ground detection is
risky in unstructured environments where big slopes or non-flat
areas belong to the ground.

This paper proposes a new 3D segmentation algorithm
for dense point clouds and has been specially designed for
natural environments. The main contribution of the work
preented here is the ground segmentation method where big
slopes, non-flat areas, and isolated areas which may appear in
unstructured environments have been considered. Moreover, a
double segmentation is implemented. The first one splits the
point cloud into objects by merging adjacent voxels, since after
the ground extraction the objects appear separated. Secondly,
we split each object into regions with the same geometric
class, by merging adjacent voxels with same class inside each
object. This technique is based on Geometric-Featured Voxel
maps (GFV) [13] where the scene is discretized in constant
size 3D cubes or voxels which are classified in geometric
classes. In this case, the classification is performed in surface,
line or tubular structures and scattered or undefined shapes,
usually corresponding to vegetation [14]. Since it is not a
point-based technique the computational cost is significantly
reduced, hence it may be compatible with Real-Time appli-
cations. Considering that the proposed ground segmentation
method involves several filters or steps, several combinations
of them with different orders have been tested to discern the
best performance. The proposed algorithm has been tested
in urban and natural environments presenting better results
in the comparison with other methods from the literature
in natural environments. In addition an experiment has been
executed to conclude which size of voxel provides the best
result. Besides a metric from the literature, a novel metric is
used to quantify the accuracy in the segmentation trough a
comparison between each segmented point cloud and the same
one, manually labeled. The aim of this study is to provide
a novel 3D segmentation method that can facilitate tasks
which belong to a Search and Rescue Robot such as object
recognition, traversable ground extraction and path planning
in natural environments.

This paper is organized as follows. Section II describes
the steps of the proposed algorithm; Section III explains
the experiments and metrics to evaluate the algorithm and
shows the results obtained. Finally the Section IV presents
the conclusions and future work.

II. 3D SEGMENTATION ALGORITHM

The input to the segmentation algorithm is not the point
cloud but rather a GFV map, which is the point cloud modeled
as a voxel map where each voxel keeps geometric information,
as Section II-A describes. The proposed segmentation method
is divided into several stages. First the ground is extracted
from the scene using several filters to improve the accuracy in
unstructured environments (Sec. II-B). After that, the scene is

Fig. 1. Geometric-Featured Voxel Map from a natural environment. Red
voxels represent flat surfaces, blue for tubular structures as trunks of the trees,
and green for scattered voxels as vegetation.

segmented first into objects and then the objects are split into
regions with the same geometric classification (Sec. II-C).

A. Geometric-Featured Voxel Map

To reduce the computational load of dealing with each
point separately, the space of data points is discretized into
a regular grid of three-dimensional voxels. By default, a voxel
size is 0.5 meters3, however owing to the fact that the voxel
size affects the accuracy in the segmentation process; this
parameter is tested in Section III .

Once the voxel map has been obtained, the classification
can be processed. The classification algorithm relies on geo-
metric features to divide the 3D scene voxel into planar sur-
face, linear or tubular structures and scattered regions, usually
corresponding to vegetation [14]. A neuronal network has been
used to classify each voxel based on the principal components
from its covariance matrix. The neuronal network has been
previously trained with several hand-labeled scenes which are
different to the scenes used in the algorithm evaluation (Sec.
III). The covariance matrix for each voxel is determined by the
spatial distribution from its inner 3D points. As a result, we
obtain a Geometric-Featured Voxel map where each voxel is
labelled as one of these geometric classes: scatter, linear or flat
surface. The Figure 1 shows a dense point cloud modelled as a
GFV map. The scene shows a natural environment in Malaga
captured by a low-cost laser range finder called Unolaser [15].

B. Ground Segmentation

Some works have tested the benefit of using the ground as
a separator between objects [10]. Generally, ground segmenta-
tion methods assume the whole ground is continuous, almost
flat, or the biggest object in the scene. This assumption is not
true in natural environment where the ground has big slopes
or rough terrain covered by grass, rocks or bushes.

Here we present a ground segmentation method specially
designed for unstructured environments, this way the ground
does not mean traversable ground as other methods for urban



environments do. Several steps or filters compose the proposed
algorithm, as the following code shows. First we consider the
ground as a mesh of the lowest cubes in each position XY
and then some filters discard cubes which do not belong to
the ground and other filters add cubes which do.
Require: voxelmap
Ensure: voxelground

1: voxelground ← LowestVoxels(voxelmap)
2: voxelground ← ExtractVoxelDiscontinous(voxelground)
3: voxelground ← ExtractAreaDiscontinuous(voxelground)
4: voxelground ← AddCrest(voxelground)
5: voxelground ← AddSlope(voxelground)

1) Lowest voxel in each sole cell: Considering the 2D grid
from the voxel map sole, this is the plane XY, each cell may
involve one or more voxels, or none, with different heights
(coordinate Z) but the same XY position. Therefore we assume
the lowest cube in each cell from that grid belongs to the
ground. This is the main step and after it all the filters can be
processed in different orders.

2) Extract voxels with vertical discontinuity: Assuming the
ground can contain big slopes but not completely vertical ones,
because vertical slopes belong to an object, then two adjacent
ground cubes must have adjacent heights. That is, knowing
that a cube A belongs to the ground, then a cube B adjacent
to A in the plane XY, cannot belong to the ground except when
it has the same height as A, or its upper or lower cube height.
Ground cubes with a height difference bigger than a cube size
will be discarded. With this filter we can discard voxels which
are much further up than their neighbors (see Figure 2).

3) Extract voxels in isolated areas with vertical discontinu-
ity: Some ground cubes are grouped in an area not adjacent to
the rest of it, so the vertical steps have to be filtered in another
way. Ground voxels with adjacency are grouped in areas and
we assume the area or areas containing a voxel with the lowest
height are true ground areas, so then we test the areas left. In
each area, the height step is estimated as the height difference
between its lowest cube and the nearest voxel in a true ground
area. As in the previous filter, if this height difference is not
adjacent, it means, the height step is bigger than a voxel size,
so the area is discarded from the ground areas set (see Figure
2).

4) Add voxels in a terrain crest: So far, the ground has been
composed by one cube per cell maximum, but the relief of the
ground may require two cubes per cell. When a ground voxel
has an upper voxel with i) no voxel on top and ii) a height
variance from its inner points less than a fixed threshold, then
this upper voxel is included as a ground voxel (see Figure 3).

5) Add voxels in a slope: Each slope between two adjacent
ground voxels requires a new voxel on top of the lower voxel in
the slope, except when the slope is perfect and passes through
the edges of both voxels which is the ideal case and highly
improbable. Generally, we look for two voxels A and B which
belong to the current ground voxel list and they have some
restrictions: i) ground voxels A and B are adjacent voxels in
plane XY, ii) voxel B is the same height as A’s upper voxel
height and iii) A’s upper voxel exists and does not belong to
the ground. Therefore a slope has been recognized, and the
voxel on top of A is added as ground (see Figure 3).

Fig. 2. Point clouds silhouettes where the extracting filters are required. In
red the lowest point at each cell which belong to the ground, in black the
lowest point at each cell which should be extracted from the ground segment.
In the picture on the left there is a voxel with a vertical discontinuity with
respect to its adjacent voxel in XY. In the picture on the right there is an
isolated area with vertical discontinuity.

Fig. 3. Ground silhouettes where the adding filters are required. In red the
lowest point at each cell, in blue other ground points. On the left, a terrain
crest, on the right a slope.

6) Add voxels in a slope, recursive: As the previous filter
but considering in the process the new voxels added to the
ground since they can also obey the restrictions and belong to
a slope in the ground.

C. Object Segmentation

Fig. 4. Scene with objects segmented into regions with the same geometric
class: surface, linear, scatter. Random color for each segment.

Once the ground has been extracted, the object partition is
found by clustering together adjacent voxels [10], see Figure
5. Each object is also split into regions. These regions are
obtained by merging adjacent voxels, based on the same
geometric class, see Figure 4. For example a tree object would
be split into two regions at least: i) a linear region relative to
the trunk and branches and ii) a scattered region relative to
the tree crown. Once we have the regions from each object,



we can compute several statistical features as: width, height,
depth, centroid position and distance from the ground. These
features may be used for future classification of the objects.
For instance, an object with a scattered region at the top and a
long linear region below, just over the ground, could be labeled
as a tree.

III. EVALUATION

To evaluate the proposed segmentation method we have
used a set of three differently challenging scenes which are
called Urban, Dense and Slope scenes, respectively. For the
comparison with previous work, one of the scenes used is a
very large point cloud with many different urban elements from
the University of Sydney campus [10] captured by a Riegl
scan. For this experiment we use a part of the scene with 41 big
objects including buildings, trees, cars, bushes, fences and light
poles. The other two point clouds show a natural environment
in Malaga captured by a low-cost laser range finder called
Unolaser [15]. One of them represents a dense forest with
many trees and bushes over the ground and the other contains
a steep slope and just a tree and a bush. Noisy points from
sparse areas will not be taken into account in the experiment
since they can not be manually identified as an object.

Two metrics have been used to quantify the agreement be-
tween each object automatically segmented with the proposed
method and the same object in the hand segmented scene. The
evaluation method is iterated for all the hand-labeled objects
sorted in descending order by the number of inner points.
At each hand-labeled object, we extract the same points in
the scene resulting in our algorithm. These points can belong
to more than one object because of the oversegmentation,
so the largest object is considered the match, and all other
partitions are considered errors. Furthermore, to quantify the
error from undersegmentation, once an object has been counted
as a match, it is considered as an error in any subsequent
match attempts. This first metric was proposed in [10] but it
does not consider the ground as an special object, and the
undersegmentation is not quantified enough.

The second metric that we propose considers the underseg-
mentation as a bigger penalty. When a hand-labeled object A
matches an automatically segmented object A*, we count the
points of A* which belong to A and the points of A* which are
outside of A. In the case of a significant undersegmentation,
A only contains points from A* and no other objects, but A*
contains points of A and other objects B* and C*. In the first
metric the points of A* outside of A, will be considered errors
in the rest of the evaluation. In this way, in the evaluation of
B and C, the point score will be 0. But, sometimes B* and C*
do not correspond to objects in the hand-labeled scene, so this
penalty will never be applied. For example, B* and C* may
be areas from the ground which have been wrongly segmented
as new objects. In addition, if exist A, B, an C with the same
size in number of points, A will score 100%, B and C 0%.
However, the strict score should be 0 in all three cases. In the
second metric, the evaluation is very similar but a 0% score
is assigned if A* has more points outside of A than inside it.
Then, the second metric will always be smaller than or equal
to the first one, but more accurate.

In our experiment, each evaluation provides several data in
percent:

• (G) the point score in the ground segmentation, the
number of points well matched in the ground with
respect to the total number which belong to the hand-
labeled segmented ground, in percent.

• (F) shows the false positive points, the number of
points outside the hand-labeled ground which have
been wrongly segmented in the ground with respect
to the total number of ground points.

• (O) the point score in the objects left, with the first
metric.

• (N) the point score in the objects left, with the novel
proposed metric.

• (T) is the time of the ground and object segmentation,
in seconds.

Table I shows the results of the evaluation of the scenes
with different ground extraction methods with a voxel size
of 50 cm3. These methods are the combination of the filters
of the ground extraction stage in different order. These filters
were numbered from 1 to 6, and the order is shown in the
first column. Number 7 represents the method with the best
results proposed in [10] called Cluster-All. For this method,
we have used the neighborhood magnitude of 1, which means
we consider neighbors only those voxels which are touching,
adjacent, as our proposed method. In addition the variance and
height thresholds for the ground required by this method were
extracted from the Urban hand-labeled scene.

The implementation of these methods has been done in
Matlab, and the experiments were executed on a computer with
a i7 processor with a clock frequency of 2.4 GHz and 8GB
in RAM. The Urban scene presents the best results, almost
perfect ground and object segmentation in all methods, but
the computational times are large because of the large number
of points. The Dense scene presents very good results in the
ground extraction, but between 30 and 50% of point score
in the object segmentation. This is because the bushes are
partitioned together with the adjacent trees, and several trees
are joined by their crowns (see Figure 5). In fact, it does not
present a problem for the future recognition of the scene for a
navigation system because the second segmentation in regions
with the same geometric class shows the parts of the object
which are solid obstacles (linear or tubular class) or traversable
such as bushes on the ground (scatter class). Finally the most
risky scene is the Slope one where the ground extraction has
scores of between 50 and 73% in most of the methods, except
the last three and this produces poor object segmentation. In
addition, this scene shows the lack of accuracy in the first
metric for the object segmentation. Figure 6 shows the Slope
scene segmented with the method 12345. The main object is
the tree which has been wrongly segmented from the ground,
from an area of the ground which is also badly segmented.
The first metric provides a score of 61% and the second metric
0.6% which is more accurate.

To sum up, there is no method with the best score in all
the scenes but when analyzed, the mean of the novel proposed
metric (N) in the three scenes shown in the last column (Mean),
the best results are provided by the method which combines
only filters 1, 6 and 3 in the ground extraction stage. These
correspond to the sequence of the filters Lowest voxel in each



TABLE I. SEGMENTATION RESULTS WITH DIFFERENT GROUND EXTRACTION METHODS

Filter Slope Scene Dense Scene Urban Scene Mean[%]G[%] F[%] O[%] N[%] T[s] G[%] F[%] O[%] N[%] T[s] G[%] F[%] O[%] N[%] T[s]
1234 50,8 0,0 61,5 0,6 4,0 99,3 4,8 61,2 36,3 6,1 100,0 0,1 94,7 94,7 85,3 43,9
12345 66,0 0,0 61,5 0,6 3,5 99,9 25,0 50,6 32,2 4,3 100,0 2,4 93,4 93,4 113,9 42,1
12346 69,8 1,4 32,4 0,6 2,7 99,9 62,6 45,9 36,4 4,5 100,0 3,6 92,7 92,7 91,6 43,2
12354 65,3 0,0 61,5 0,6 2,3 99,7 18,6 61,0 54,4 3,0 100,0 2,2 93,4 93,4 97,2 49,5
1236 69,3 1,4 32,4 0,6 2,7 99,6 51,5 50,3 40,8 1,5 99,6 3,3 92,8 92,8 100,6 44,7
12364 69,8 1,7 26,5 0,6 2,5 99,7 55,6 47,9 38,4 5,8 100,0 3,3 92,8 92,8 100,3 43,9
1423 50,4 0,0 61,5 0,6 2,6 99,3 4,7 61,0 36,3 6,1 99,9 0,1 94,7 94,7 102,1 43,9
14523 69,8 0,0 61,5 0,6 4,3 99,9 28,3 48,6 30,4 4,2 99,9 2,4 93,5 93,5 112,3 41,5
14623 73,0 0,0 61,5 0,6 2,7 99,9 64,8 44,8 35,3 6,8 99,9 3,4 93,0 93,0 113,6 43,0
15423 65,4 0,0 61,5 0,6 4,7 99,7 21,3 59,1 52,4 6,0 99,9 2,1 93,5 93,5 101,5 48,9
16230 72,6 0,0 61,5 0,6 3,5 99,6 54,4 48,4 38,9 3,8 99,6 3,2 93,0 93,0 98,5 44,2
16423 72,9 0,0 61,5 0,6 2,4 99,7 56,7 47,0 37,5 3,6 99,9 3,2 93,0 93,0 84,8 43,7

1 54,6 0,0 61,5 0,6 2,2 98,4 5,5 55,7 30,8 4,5 88,5 2,1 80,4 70,5 109,1 34,0
16 98,4 2,8 38,2 38,2 1,7 99,6 75,5 36,1 26,8 2,8 99,6 6,3 90,0 90,0 125,5 51,7
163 98,4 2,8 38,2 38,2 3,5 99,6 73,0 36,9 27,1 4,1 99,6 3,8 93,1 93,1 112,0 52,8

7 85,5 4,6 61,5 0,6 4,3 48,9 4,3 57,3 32,1 4,8 100,0 0,6 94,3 94,3 117,3 42,3

Fig. 5. Dense scene segmented with the method 12354. Black points are
segmented as ground, other random colors for the segmented objects. The
main three trees are joined by their crowns and some bush.

sole cell, Add voxels in a slope -recursive version- and Extract
voxels in isolated areas with vertical discontinuity. When the
extracting filters (2 or 3) are applied before the adding filters
(4, 5 or 6), some voxels required for the interpolation in a slope
ground are removed. However, in scenes where the ground
is almost flat and continuous, the extracting filters applied in
the first place provide better time consumptions because the
folowing filters will process less data, and any accuracy penalty
is shown. Our method obtains a much better result than others
in the literature especially in natural environments with big
slopes.

In another experiment different voxel sizes are tested with
the algorithm proposed 1-6-3. A too small size of voxel
produces sparser data, the number of empty cubes which
connect surfaces from the same object increases, then objects
become over-segmentated. On the contrary, too big voxels
can create adjacency in voxels which really are in different
objects. This could be an advantage in sparse point clouds
where two points are separated but their voxels can offer a
direct adjacency, hence the segmentation process will merge
these points in the same object. In dense point clouds the points
are closer and the optimal voxel size will be the one which
is as big as possible to further simplify the point cloud but at
the same time small enough to keep the meaningful features

Fig. 6. Slope scene wrongly segmented. The bottom image shows the same
scene from the side. Black points are segmented as ground, other random
colors for the segmented objects.

of the scene, as shapes.

Figure 7 shows the ground and object segmentation scores
for Slope and Dense scenes with the novel metric N. When
the voxel size increases, the ground score also increases how-
ever the object score decreases. In conclusion, more accurate
segmentation results are obtained with lower voxel sizes. Fur-
thermore, we have analyzed the performance of the algorithm
in terms of time and object score per unit of time. Figure
8 presents the decrease of the execution time as the voxel
size increases, as it would be assumed that the point cloud
is becoming simpler in a smaller number of voxels. However,
since the available time is limited in many applications, it is
useful to analyze the performance in terms of the segmentation
score per each unit of the executed time. The rate of score per
time is based on the result of the Point Score in the object



Fig. 7. Ground and Object point scores, in percent, for the data set Slope
and Dense with different voxel size. The ground scores are in the blue scale,
in the left vertical axis, and the object scores are in the green scale, in the
right vertical axis. X axis is the size of the voxel used, in m3

Fig. 8. Execution times in seconds and rates of segmentation scores per unit
of time with different voxel sizes. Blue and green lines are the execution times
in Slope and Dense scene respectively, and red and black lines are the score
per time rate for these scenes, respectively. X axis is the size of the voxel
used, in m3

segmentation with the novel metric N in percent, per each
unit of the execution time in seconds. The figure shows that
the optimal performance is obtained with a voxel size between
0.45 and 0.5 m3.

IV. CONCLUSION

This paper has proposed a new method for 3D segmenta-
tion, specially designed for unstructured environments where
the ground is not flat or continuous. The method is based
on a Geometric-Featured Voxel map where the dense point
cloud is discretized in a 3D grid and each voxel is classified
as flat surface, linear or tubular structures, or scattered area.
Since it is not a point-based technique the computational cost
has been significantly reduced, hence it may be compatible
with Real-Time applications such as autonomous navigation
for outdoor robots. Several filters has been proposed and
tested for the ground extraction to obtain more accurate results
in the subsequent segmentation process. The segmentation is
performed in two steps, one in objects with adjacent voxels and
a second and refined one, splitting each object into regions with
adjacent voxels and the same geometric class. The evaluation
process concludes that the proposed algorithm obtains better
results than others from the literature in natural environments
with rough ground. With this double-segmentation method

the traversable ground can be extracted to facilitate the path
planning. Solid obstacles can be labeled in linear or surface
regions distinct from the ground such as trunks, and traversable
objects can be labeled in short scattered regions over the
ground such as bushes. In addition several geometric and
statistical features can be extracted from both objects and
regions in order to classify objects automatically and in the
recognition of the scene.
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