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Abstract—This paper presents an efficient heuristic approach 

for scheduling residential smart home appliances. Using available 

hourly prices for electricity, the starting times of a supplied set of 

appliances are optimized so that the economic cost of the energy 

consumed is reduced, while satisfying the operational and peak 

power constraints. The algorithm schedules appliances one after 

the other based on a greedy strategy. The heuristic (c.f. exact) 

approach is taken to reduce the computational burden to a level 

allowing re-optimization to take place at regular intervals by a 

modest computing device without specialized software, which 

could be embedded in a smart meter. The proposed algorithm is 

evaluated through a preliminary experimental study comparing 

the obtained costs and computation times with an exact 

algorithm. Results indicate that the obtained cost was within 5% 

of the optimal cost, while the computation time reduced by 

exponential factors. 
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I.  INTRODUCTION  

Efficient load scheduling is critical to achieve Demand 
Response (DR) at the consumption level of smart grid. The 
objective of scheduling residential load is to balance the 
controllable loads to minimize the cost of energy consumed. 
One important approach to load scheduling is the engagement 
of consumers to participate in the decision-making aimed at 
using the energy infrastructure more efficiently. Economic 
time varying tariff incentives such as Time-of-Use Pricing 
(TOUP) and Real Time Pricing (RTP) encourage the 
consumers to shift the energy consumption from peak to off-
peak periods [1]. However, it is unrealistic for consumers to 
keep track of hourly varying pricing of electricity so as to 
manually schedule the appliances. As such, energy 
management system in form of an automatic decision support 
is needed to provide scheduling advice and recommendation 
to the electricity consumers. 

Load scheduling is shown to be NP-Complete problem, 
whose optimal solution cannot be found in a polynomial time 
[2]. Mathematical optimization paradigms such as Linear 
programming (LP) is useful in task scheduling problems 
across various disciplines, particularly in engineering related 
fields such as energy, communication and transportation 
industries etc. [3]. With Integer Programming (IP), additional 
constraints are added to linear programming such that some or 
all of the variables take on integer values. This increases the 
scheduling problem and makes it difficult to solve within 
polynomial time. This means that if a polynomial time 

algorithm finds optimal solution to the load scheduling 
problem in a polynomial time, then all the NP-Complete 
problems can be solved in a polynomial time. However, it is 
generally thought that no such algorithm exists, although it 
cannot yet be ruled out [4]. Exact methods for NP-complete 
and NP-hard problems are only useful for solving problems of 
reduced size since they require excessive computational time. 
Since smart home appliance scheduling, like other forms of 
real-world scheduling problem, is effected by uncertainties, 
regular re-optimization in a ‘rolling-horizon’ frame work can 
be beneficial. For example, small changes in the electrical grid 
frequency - within national limits - can affect power 
consumption profiles by a small but not negligible margin; 
wear-and-tear of physical components such as motor brushes 
can also cause deviations from nominal appliance behavior. In 
this paper we therefore propose to sacrifice optimality at the 
expense of excessive computation time for near-optimality 
with low computation time, such that regular re-optimization 
with updated state information can take place. 

A heuristic algorithm applies a set of rules based on the 
modelling of processes and is realized in individual steps in a 
problem solution [4]. The advantage of a heuristic approach is 
that a ‘good’, but not necessarily optimal solution to the 
optimization problem can be found in a reasonable time. 
Therefore, heuristic scheduling algorithms are very important 
to achieve faster solutions. In the context of the current paper, 
a heuristic solution which is simple enough to be embedded in 
a microcontroller or computer for the purposes of a consumer 
decision support system is desired. This decision support 
system should not require specialized integer programming 
software, and be implementable on a small computing device 
such as a smart meter. 

Previous studies have considered heuristic task scheduling 
algorithms with an emphasis on load balancing. Ni et al. [5] 
developed a heuristic task algorithm to obtain a scheduling 
strategy by employing a mean load as heuristic information. 
Tasks are reassigned between two machines to raise the loads 
of the machines with lower-load and reduce that of the 
machines with higher-loads under the mean load heuristic. 
They argued that the efficiency of the algorithm is 
significantly improved and can almost achieve an optimal 
scheduling strategy. Shuhui et al. [6] compares optimal and 
heuristic Demand Response (DR) algorithms through a 
computational experiment strategy. The greedy heuristic 
which combines Min-min and Max-min heuristic by using 
better solution is discussed in [7].  Min-min algorithm selects 



tasks capable of finishing at the minimum time while the Max-
min algorithm selects the tasks that take a maximum time to 
finish the operation of the machines [8]. Barbato and 
Carpentieri [9] proposed a set of heuristics and an 
optimization model for the online demand side management. 
They combined online and offline approaches to control home 
appliances and energy storage systems for efficient 
management of the energy resources. 

In this paper, we present exact and heuristic algorithms to 
schedule a set of smart home loads and optimize the operating 
cost. Our algorithms determine the best hourly timeslot within 
the simulation horizon to schedule the appliances while also 
adhering to the appliance operational, sequential and peak 
constraints. The exact algorithm takes possible combination of 
costs across all hourly H timeslots for all appliances to 
determine the best scheduling with an exponential runtime 
complexity O    . In the heuristic algorithm, the appliances 
are scheduled in decreasing priority of user preference using 
the greedy strategy such that an appliance is not changed 
anymore once scheduled; this gives runtime complexity 
O(HN). The experimental results show that the optimality gap 
between our proposed heuristic with the exact algorithm was 
not more than 5% on the range of problems considered in a 
prototype tests using representative data. The runtime, as may 
be expected, was exponentially faster. 

The remainder of the paper is organized as follows: 
Section II describes the optimization problem. Section III 
presents the scheduling algorithm, explains the functionality 
and step-by-step processes. Experiments, results and 
discussions on the exemplary numerical studies of the 
algorithms are conducted in section IV. Section V is the 
conclusion. 

II. PROBLEM DESCRIPTION 

    We assume electricity supplied to the residential home is 
generated through a variety of means, including traditional 
forms of generation (coal, gas, etc) along with renewable 
means (solar, wind etc), with an hourly price that reflects the 
value of the energy during that hour. The hourly price will 
typically be a function of the ‘spot price’ for energy that the 
distribution/supply company for the residence has paid to 
secure the supply during that hour, and is advertised to the 
resident 24 hours in advance. The appliance scheduling 
problem can be modeled mathematically as a Linear or Mixed 
Integer Linear programming (MILP) as shown in [10]-[12]. 
Using a similar approach to Sou et al [13], we model the 
appliance operations as a set of uninterruptible (non-
preemptable) and sequential energy phases, each with a 
specified valid timeslot, length of operation and power 
consumption profile. This involves the mathematical 
formulation of the objective function and constraints.   

  Given the number of appliance i denoted as N and the 
number of phase j denoted as ni. The scheduling execution 
period is discretized into m uniform time slots k, such that       
k ∈ [1, m]. Let the phase for each appliance i ∈ [1, N] be 
indexed by j ∈ [1, ni]. The power assigned to every phase j of 

an appliance i at any timeslot k is denoted by     
  while the 

spot price of electricity at any timeslot is   . The objective 
function to be minimized is given by: 

                     ∑   ∑∑    
  

  

   

 

   

 

   

                                        

Subject to the following constraints [13]:  

    Phase Energy constraint: ensures the energy allocated for 
multiple phase j of an appliance i fulfill the energy 
requirements      

               ∑    
 

 

   

                                                                                

   Peak power constraint: ensures the maximum power 
consumption for all the appliances at any time slot k does not 
exceed the peak power limit 

                  ∑    
                                                                  

where       is the peak demand response signal   provided 
by the utility power provider. 

Sequential processing constraint: An energy phase 
operation cannot start until the previous phase has finished. 

Auxiliary decision variables     
  and     

  are used to describe 

the constraint 

              
      

 
     

                                           (4) 

Energy phase duration constraint: ensures the energy 
phase operation period of an appliance operates within a given 
time limit. 

                      ∑    
 

 

   

                                                          

where      and      are the lower and upper limits for the 

number of timeslots allocated to the phase j of an appliance i 

Uninterruptible Operation constraint: ensures that energy 
phase j of an appliance i finish operation without interruption. 

                                
         

                                                                                              

During timeslot k,       
    if energy phase j of an appliance i 

is already finished. As such,     
  must be zero. 

Between-phase delay constraint: imposes a specified 
amount of time-delay at the end of one energy phase before 
the start of the next phase. 

            ∑    
 

 

   

                                                        

 where      and      are the upper and lower bounds that 

describes the between-phase delay. 

User Time preference: ensures appliance does not operate 
outside of the time preference interval.  

                                
      

                                                         



where    
  is the time interval and it’s equal to zero if and 

only if energy phase j of an appliance i cannot be processed at 
any timeslot k. 

    The MILP formulations above can be solved using the IBM 
ILOG CPLEX and the YALMIP interface to Matlab; however 
it is only feasible for relatively small instances of about 4 to 6 
appliances [14]. Algorithms such as cutting plane method and 
branch and bound method [15] can also be used to reduce the 
average-case complexity. 

III. SCHEDULING ALGORITHMS 

In this section, we present our scheduling algorithms 
which use the appliance start time as the decision variable and 
other parameters such as power, length of timeslot, delay etc 
are the inputs which define the problem instance. Load power 
profiles and other parameters are assigned to appliances based 
on data extracted from surveys, communications and various 
sheets for smart home appliances in the appendix [16]. Some 
modern electric vehicles contain a lower capacity charger and 
will charge and deliver 38 miles of range in 4 hours using 
4KWh charging system [17]. In this research, we assign 
2000W of power to electric vehicle with 2 hours length of 
timeslot. The peak power constraint is the maximum 
instantaneous power that may be drawn by the load. In this 
paper, we assume this limit to be 5500Wh.  

A. Exact Algorithm 

The algorithm starts with an initial start time for every 
appliance which is in the operation time window. A cost 
matrix is created for all timeslots of the schedulable 
appliances, and the start times are exhaustively searched to 
obtain the best possible combination (in terms of economic 
cost) which also satisfies the constraints. Power consumed is 
calculated such that if the power assigned to every phase of an 
appliance is less than the peak power demand in (3), the 
algorithm calculates the total cost of operation for the 
appliance. If total cost of the appliance is less than the initial 
calculated total cost, then the initial total cost is updated; 
followed by the updates of the optimal start times.  

 

Algorithm 1. Exact method 

for all appliances i = 1 to N    do 

 for all timeslots k = 1 to 24   do 

      *Create cost matrix for all timeslots for each appliance 

 end for 

end for 

for all timeslot for 1
st
 appliance    do     

     for all timeslot for 2
nd 

appliance do     

   . 

      . 

         . 

           for all timeslot for N
th

 appliances     do     

           *Calc. the total power for each timeslot 

                 if Power     Peak      then 

                        *Calc. the total cost 

                     if total cost < initial total cost then 

                           *Update the initial total cost    

                           *Update the optimal start time 

                      end if 

                  end if 

             end for 

           . 

       .  

   . 

end for 

end for 

 

B. Heuristic algorithm 

The heuristic algorithm decides the best time to schedule 
the appliances in an order specified by the user, which can 
allow for an implicit priority ordering amongst appliances in 
terms of constraint satisfaction (although this was not 
explicitly considered in this paper). The appliances are 
scheduled sequentially based on a greedy strategy without 
back-tracking. The start time which minimizes the total cost 
across the horizon is selected from the set of feasible start 
times (i.e. those which satisfy the given constraints). An 
appliance start time, once fixed, is not changed. The remaining 
appliances are scheduled on top of the current solution; the set 
of appliances already issued with fixed start times. 

The algorithm basically performs three main control loop 
processes. The first loop in variable i iterates over all the 
number N of appliances and initializes the best time for the 
appliance scheduling. The second loop iterates over the 
timeslots k and initializes the appliance execution time 
window. The third iterates over the number of phases ni of 
appliance i. Delay is included in the phase loop and can be 
imposed in-between the execution start time of any phase of 
an appliance or between appliances such that StartTime = 
StartTime + (Delay(i, j)). The algorithm calculates the total 
cost and total power of individual appliances and ensures it 
doesn’t exceed the peak power demand. The optimized 
appliance solution is updated. 

 

Algorithm 2. Heuristic Greedy Algorithm 

U          Vector of sorted appliances by User preference 

for all appliances i ∈ U                  do 

    *Initialize the best appliance scheduling solution 

        for all time slots k ∈ [1, m]        do 



           *Initialize the start & end time (Time window) of the   
incumbent appliance i 

               for all phases j ∈ [1, ni]        do 

                  *Initialize the operation time of the phases 

                  Evaluate the best time slot k of appliance i 
                  Cost i             minimum cost [1, m]      

                       if Power     Peak power   then 

                            *Update Total cost 

                              Total cost            Total cost + cost i 

                           *Update Start time 

                             Start time           Best time i 

                     end if 

            end for 

     end for 

end for 

 

C. Discussion 

Clearly there are differences between the exact and the 
heuristic approaches; the largest one being in the time 
complexity. The exact algorithm iterates through N nested 
loops, considering each of the H = 24 timeslots in turn; giving 
a complexity O(H

N
). The heuristic algorithm iterates through 

one loop N times, in each case considering each of the H = 24 
timeslots in turn; giving a complexity O(NH). Clearly this 
reduces the complexity considerably. The price paid for this 
efficiency is that the heuristic is not guaranteed to obtain the 
optimal solution, and may also fail to find a schedule 
satisfying the constraints should one actually exist (it can, 
however, drop the lowest prioritized constraints necessary to 
obtain a schedule, but this was not explicitly considered). In 
the next section, computation experiments are described to 
investigate the degree of sub-optimality and computational 
efficiency savings of the proposed heuristic on representative 
data. 

 

Fig. 1. Electricity Tariff (Hourly System Price) from the 28/09/2014 to 
05/10/2014. Data taken from Nordpool. (www.nordpoolspo0t.com) 

IV. COMPUTATIONAL STUDY 

We present numerical studies to evaluate the performance 
of the proposed algorithms for the residential smart home 
appliances. All experiments are performed on a HP© PC with 
an Intel Core i5 CPU, 3.40GHz speed and 6GB of memory. 

A. Optimal cost solution using the proposed algorithms based 

on hourly system price 

     In this experiment, we investigate our algorithms using the 

system price of electricity in fig 1 above, for the Scandinavian 

electricity market from the 29
th 

September 2014 to the 5
th

 

October 2014 [18]. The hourly system price is used for one 

week of optimization to obtain the cost effective scheduling 

for the exact and heuristic algorithms. Optimization was 

carried out once every 24 hours in these tests. The scheduling 

system is composed of four controllable smart home 

appliances: washing machine, tumble dryer, dish washer & 

electric vehicle. In addition, 2 uncontrollable appliances: 

electric heater and television are also included such that the 

user imposes an adjustable constraint (Adjustable = 0) if and 

only if none of the uncontrollable appliances can be processed 

during the timeslot k. The execution period of the appliance 

operation is within the time window for every appliance. Time 

preference constraint in (8) is imposed by the household 

consumer such that dish washer and electric vehicle are to run 

any time between 5pm to 11pm and 1am to 5am respectively. 

The washing machine and tumble dryer can operate anytime 

between 10am to 11pm. However, Appliance operation 

constraint is applied such that washing machines phases must 

finish before tumble dryer phases start 
After extensive simulation, the periodic optimized cost 

solutions for exact and heuristic algorithms are plotted against 
each other as shown in fig 2. Percentage cost difference in 
comparison of heuristic and exact algorithms are as follows: 
(0.2116 – 0.2100)/0.2116 = 0.0076%. The result verifies that 
while the exact algorithm achieves an optimal cost solution to 
the problem, the percentage cost difference with the heuristic 
is near to optimality.  

 

Fig. 2 Total cost solutions for one week periodic re-optimization for exact and 
heuristic algorithm with four controllable appliances. 

B.  Testing the proposed algorithms based on spot prices for 

NewYork City (NYC) and Denmark (DNK) 

   Our proposed algorithms are further tested to determine the 
cost of energy consumption for a typical day in the fall 
(autumn) period using the spot prices of electricity for New 



York City and Denmark on 5
th

 November 2014. See fig. 3 and 
4 for the respective NYC and DNK spot prices. 

 
Fig. 3.  Spot price of electricity for New York City on 13th November, 2014. 
www.nyiso.com/public/markets_operations/market_data/pricing_data/ 

 

Fig. 4.  Spot price of electricity for Denmark on 13th November, 2014. Data 
taken from Nordpool. (www.nordpoolspot.com) 

   Using the same number of appliances, values of the 
technical specification in the appendix and the constraints 
used in experiment A, the two instances of spot prices for 
NYC and DNK are solved with both exact and heuristic 
algorithms. After solving with heuristic algorithm, the spot 
price of electricity and the sum of power assigned to all 
appliances at each timeslot within the simulation horizon are 
plotted in fig. 5 and fig. 6 below. 

 

Fig. 5. Heuristic solution for power consumption profile and the electricity 
tariff, in the New York City scenario 

 

Fig. 6. Heuristic solution for power consumption profile and the electricity 
tariff, in the Denmark scenario 

The results of the total cost obtained for both instances of spot 
prices using both algorithms are shown in the table 1 below: 

TABLE I.   

 RESULTS OF TOTAL ENERGY CONSUMPTION FOR HEURISTIC AND EXACT 

WITH SPOT PRICES FOR NEW YORK CITY (NYC) AND DENMARK (DNK) 

Algorithms with spot prices Cost (USD) 

Heuristic: with NYC 0.2841       [ 8.523 per month ] 

Exact: with NYC 0.2751       { 8.253 per month } 

 Cost (EUR) 

Heuristic: with DNK 0.2670       [ 8.01 per month ] 

Exact: with DNK 0.2565       {7.695 per month } 

 

C. CPU Time Scalabity 

     In testing the solving time for this scheduling problem, the 
number of timeslots over the horizon and number of 
controllable appliances are the major variables dictating the 
problem size and hence algorithm execution time. Table II 
shows the one week periodic re-optimized average solving 
time for the heuristic and exact algorithms against increases in 
the number of controllable appliances. The controllable 
appliances are increased from 4 to 10 with random (but 
representative) energy and operating time requirements. There 
is a significant difference in the average solving times for both 
algorithms; clearly the heuristic solving time grows linearly 
with the increasing appliance number, where the exact 
algorithm grows exponentially. For 10 controllable appliances, 
no result was returned by the exact algorithm in 30 minutes 
computation time. Extrapolating the growth rate from the data 
obtained, we predict that approximately 12,700 seconds would 
be required. For 12 controllable appliances, this would rise to 
over 611 hours. However at this stage, it must be cautioned 
that the exact algorithm we employed did not utilize pruning 
techniques (such as branch-and-bound) which may help to 
reduce the average-case run-time. The extent to which such 
techniques would impact is an area of future investigation. 

TABLE II.   

TESTING THE HERURITIC AND EXACT SOLUTIONS FOR DIFFERENT NUMBER 

OF APPLIANCES 

No of 

appliances 

Average CPU solving time (in seconds) 

Heuristic Algorithm Exact Algorithm 

      4      0.000704 0.00246 

      6      0.00123                0.427 

      8      0.00157                73.56 

     10      0.00201                 N/A 

        

    Hence, the exact algorithm as presented is not scalable, and 
should be restricted to the case of a few smart home 
appliances (e.g. less than 9 appliances). However, the 
experiment demonstrates that the heuristic algorithm 
developed in this research is scalable, comparatively very 
efficient in terms of computational time complexity and could 
be applied as a core element in a decision support process for 
a real-time residential appliance scheduling. 



V. CONCLUSION 

    Load scheduling is one major aspect of Demand Side 
Management. By scheduling loads in response to variable 
energy prices, consumers can affect economic savings whilst 
simultaneously reducing pressure on supply side generation at 
critical times, leading to potentially greener energy 
production. It has been generally proved in many previous 
works that load scheduling problems are computationally 
difficult, and no efficient polynomial time algorithms exist for 
their solution. This paper proposes exact and heuristic 
algorithms for load scheduling. Using real system prices for 
electricity obtained from the Scandinavian and North 
American energy countries, and representative appliance data, 
it was found that the proposed heuristic algorithm could 
achieve within 5% of the optimal cost obtained by the 
proposed exact algorithm. The results demonstrate that the 
heuristic algorithm displaced scalable computational behavior, 
with computational growth linear in the number of 
controllable appliances. In conclusion, the heuristic approach 
seems a promising candidate for integration into a rolling 
horizon optimization approach for smart home appliance 
management in the presence of variable energy tariffs.  
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APPENDIX 

A. Smart home appliances – Technical specifications 

    Table III - VI are the lists of data for the technical 

specifications of the scheduled smart home appliances: 

washing machine, tumble dyer, dish washer and electric 

vehicle. Appliance phases, power assigned to the respective 

phases, and the length of timeslots are contained in the tables.  

TABLE III 

TECHNICAL SPECIFICATIONS OF WASHING MACHINE [ 16] 

Appliance 

energy phase 

Energy 

(Wh) 

      Power 

      (W) 

Time 

(min) 

movement 51.99       119.97          26 

heating         600       600          60 

maintenance         52.4       120 26.2 

Cooling 21.67       130          10 

1st rinse         86.4       480 10.8 

2nd rinse         396       800 29.7 

TABLE IV 

TECHNICAL SPECIFICATIONS OF TUMBLE DRYER [16] 

Appliance 

energy phase 

  Energy 

   (Wh) 

  Power 

   (W) 

     Time 

     (min) 

drying    2400    1200      120 

TABLE V 

TECHNICAL SPECIFICATIONS OF DISH WASHER [16] 

Appliance 

energy phase 

  Energy 

    (Wh) 

    Power 

      (W) 

        Time 

         (min) 

Pre-wash      116.72      470 14.9 

Wash      428.16      800.3 32.1 

1st rinse      26.93      160 10.1 

Drain      7.17      100          4.3 

2nd rinse      94.75      310.67 18.3 

Drain & dry      34.87       40 52.3 

TABLE VI 

TECHNICAL SPECIFICATIONS OF ELECTRIC VEHICLE [17] 

Appliance 

energy phase 

  Energy 

   (Wh) 

   Power 

     (W) 

      Time 

       (min) 

charging     2000      1000         120 

 


