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Abstract— Multistage production processes are becoming 
more important in the industry to ensure levels of flexibility, 
efficiency and modularity. Thus, the way in which companies 
define optimal production parameters related to production costs 
and quality must be adapted to this reality. In this paper we 
introduce a multi-response optimization (MRO) model for a two 
stage production process. The model gives first stage quality 
specification limits which minimize the rework costs caused by 
the nonconforming parts of the whole process.  The proposed 
model is applied to an example based on a production process of 
the automotive industry. The benefits of the model are evaluated 
by comparing the capability and the rework costs of the 
multistage production process before and after the optimization.   

Keywords—Cyber-Physical Systems, multistage production 
processes, online operation conditions, rework costs, production 
quality. 

I.  INTRODUCTION 
Cyber-Physical Systems (CPSs) are the new generation of 

engineered systems combining computational and physical 
elements [1] and are the base of the Industry 4.0 concept [2]. In 
this context, flexibility, adaptability, modularity, autonomy, 
reliability, safety and efficiency are rated as the key features of 
CPSs [3]. Hereafter, we focus on efficiency and adaptability of 
CPSs. 

With regards to efficiency of CPSs, achieving optimal 
design production parameters is possible by following 
Taguchi’s principles and theories (Taguchi et al. [4]), who’s 
main objective is to obtain the optimal levels of many design 
factors of a production process which allow achieving the 
minimal production costs while assuring a certain level of 
quality.  

Taking adaptability into account, trying to stabilize 
production costs and production quality while CPSs are 
running under different conditions is also a great challenge. 
While CPSs are running online, multiple parameters vary under 
different operation conditions resulting in a deterioration of the 
performance of the process [5]. For example, tool wear or tool 
breakage can appear, which have the effect of moving the 
product characteristics away from the target values. This fact 
results in higher nonconforming rates and, consequently, in 

higher rework costs -i.e. the costs that a company assume when 
describing outputs as nonconforming.  

Unfortunately, it is not easy to modify production 
parameters online due to different reasons such as lack of 
access to parameter design factors once processes are already 
running, or the high time that is required to reach agreements 
related to parameters modifications. Furthermore, the 
recalibration of machines to the initial design configuration is 
expensive and time consuming. However, in CPSs, such as 
multistage production processes, other production parameters 
can be easily modified. This can help to minimize production 
costs while machines cannot be recalibrated. 

In multistage production processes, the quality of the end 
products depends on the specification limits used in the 
previous stages, among other production parameters. Thus, 
these parameters have an influence on the proportion of 
conforming and nonconforming parts in the next sub-processes. 
Taking this into account, it is possible to influence the quality 
of the products at the end of the process by modifying the 
specification limits in the previous stages.  

The purpose of this paper is to present a multi-response 
optimization (MRO) model valid in multivariate and multistage 
production processes that minimizes rework costs. With this 
model, we suggest obtaining the optimal configuration of the 
specification limits in the first sub-process of a two stage 
production process. This MRO model assumes that the 
measures of the outputs follow a (multi-) normal distribution. 
The proposed model is applied to an example based on a 
production process within the automotive industry. The value 
of the model is evaluated by comparing the capability and the 
rework costs of the multistage production process before and 
after the optimization. 

The rest of the paper has the following structure: In section 
II, MRO models and univariate and multivariate process 
capability indices (PCIs) existing in the literature are presented. 
In section III, the new MRO model is presented. In section IV 
the model is applied and discussed in an example based on the 
automotive industry. The paper concludes in section V. 



II. MRO MODELS AND PCIS 
In this section we introduce some MRO models to solve 

MRO problems. Furthermore, we also introduce two univariate 
PCIs (the Cpand the Cpk ) and a multivariate PCI (the MCpk).  

In MRO problems, it is assumed that 𝑛𝑛 product 
characteristics, namely performance measures, (Y1, Y2, …, Yn) 
depend on 𝑚𝑚 factors (X1, X2, …, Xm) through a known 
function 𝑓𝑓 (i.e. Y1 = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚), 
Y2 = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚), …,  Yn = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑚𝑚)). 
Unfortunately, in MRO problems, maximizing or minimizing 
each relevant product characteristic individually does not 
always deal with obtaining the global optimum.  Taking this 
into account, many MRO models have been presented in the 
literature. Hereafter, some MRO models to solve MRO 
problems are discussed. 

MRO models can be classified into two different groups: 
Methods based on single responses approaches and methods 
based on constrained optimization approaches. Since the MRO 
presented in this article is a single response approach, we will 
focus our attention on this technique. 

The methods based on single responses include all 
approaches that group all product characteristics into a single 
response. In this group we can find methods including the 
desirability function (Harrington [6], Derringer and Suich [7], 
del Castillo et al. [8], Kim and Lin [9] and Wu and Hamada 
[10]), the quadratic loss function (Pignatiello [11], Vining [12], 
Tsui [13], Ribeiro et al. [14] and Ko et al. [15]), the signal-to-
noise rate (Tong et al. [16], Liao [17], Tong et al. [18] and 
Gauri and Chakraboroty [19]) a single response based on the 
proportion of conforming parts (Chiao and Hamada [20]), a 
Bayesian approach (Peterson [21]), a generalized distance 
function (Khuri and Conlon [22]) and single response methods 
based on PCIs (Lee and Yum [23], Awad and Kovach [24], 
Amiri et al.[25] and Bera and Mukherjee [26]) among others.  

PCIs are statistic coefficients used in the industry to 
quantify how well a process can meet process requirements by 
relating the variability of the measures of a product 
characteristic with the admissible one. The Cp (1) and the Cpk 
(2) indices in Kane [27] are univariate PCIs extendedly 
accepted and used in the industry which can be calculated with 
the following expressions: 

Cp = (USL − LSL)/6s                    (1) 

Cpk = Min {(USL− x)/3s ; (x− LSL)/3s} (2) 

In (1) and (2) s is the standard deviation of the measures and x 
represents the mean value of the measures. LSL and USL are 
the lower and upper specification limits.  

Multivariate PCIs have been recently introduced to describe 
the entire production variability derived from the multivariate 
case. Thanks to multivariate PCIs, the capability of a process 
with 𝑣𝑣 product characteristics can be summarized with one 
single index. Among all the multivariate PCIs existing in the 
literature, we suggest using the MCpk (3) in de-Felipe et al. 
[28].  

MCpk = − 1
3� Φ−1(NCPcrit)   (3) 

This multivariate PCI is a function of the expected total 
proportion of nonconforming parts in the most critical direction 
and is obtained through the cumulative distribution function 
(Φ) of the standard normal distribution 𝑁𝑁(0,1). 

III. MULTI-RESPONSE OPTIMIZATION MODEL 
In this section we introduce an optimization model that 

minimize rework costs by achieving the optimal position of the 
specification limits in the first sub-process of multistage 
production processes. In this model it is assumed that the 
specification limits in the last sub-process of the multistage 
production process are fixed. 

The MRO model introduced in this article is based on the 
model presented in Chiao and Hamada [20] but differs from it 
in three aspects: First, the model uses the modularity derived 
from multistage production processes by considering each 
stage individually and afterwards the whole multistage process 
as a global system. Second, in the presented model, rework 
costs are taken into account. Third, in the presented model, the 
optimization variables are the specification limits.  

Before introducing the model, we want to make clear that 
we assume that the measures follow a 𝑣𝑣-variate normal 
distribution, with mean vector 𝝁𝝁, and variance-covariance 
matrix ∑. Then, the probability density function is described 
with (4); and then, the probability that a measure is within a 
region 𝑅𝑅 can be calculated as the integral of (4) within 𝑅𝑅. 

𝑓𝑓(𝑥𝑥,𝝁𝝁,∑, 𝑣𝑣) = 1
�|∑|(2𝜋𝜋)𝑣𝑣

𝑒𝑒−
1
2

(𝒙𝒙−𝝁𝝁)′∑−1(𝒙𝒙−𝝁𝝁)
               (4) 

Imagine a multistage production process -like the one 
represented in Fig. 1- composed of two sub-processes (SP1 and 
SP2) and their respective  measuring stations and quality tests. 

After SP1 the quality of the outputs is evaluated by 
analyzing 𝑚𝑚 product characteristics: PCSP1,1,…, PCSP1,m. For 
each product characteristic 𝑖𝑖 of SP1 (PCSP1,i, 𝑖𝑖 ∈ [1,𝑚𝑚];  i ∈ ℕ), 
the measured values of the 𝑚𝑚 product characteristics must be 
within LSLSP1,i and USLSP1,i. With the measures of the product 
characteristics obtained in the measuring station it is possible to 
calculate the mean vector 𝜇𝜇SP1and the variance covariance 
matrix ∑SP1and thus, to realize a capability analysis with 
univariate PCIs for each product characteristic and with a 
multivariate PCI for the whole SP1. 

 The outputs of SP1 that have all their product 
characteristics within the specifications are described as 
conforming and are sent to SP2. Outputs with measures outside 
the SL are represented as nonconforming; and thus, cannot be 
sent to SP2. Nonconforming outputs cause additional 
production costs because these outputs must be reworked and 
tested again (and/or rejected) before being sent to SP2. The 
additional production costs due to rework are named rework 
costs. 

In SP2 the products described as conforming after SP1 are 
processed. After it, the quality of the outputs is evaluated by 
analyzing other 𝑛𝑛 product characteristics: PCSP2,1,…, PCSP2,n. 
For each product characteristic 𝑗𝑗 of SP2, PCSP2,j, j∈ [1, n];  j ∈



ℕ, the measured values of the 𝑛𝑛 product characteristics must be 
within LSLSP2,j and USLSP2,j. Analogously to SP1, it is possible 
to do a capability analysis with univariate PCIs for each 
product characteristic and with a multivariate PCI for the whole 
SP2. 

As it is possible to understand, the number of products that 
arrive to SP2 depends on the specification limits used in the 
quality test of SP1: The smaller the distance between the 
specification limits in the quality test of SP1, the smaller the 
proportion of conforming parts in SP1; and thus, the smaller the 
proportion of parts that is sent to SP2. For this reason, we can 
affirm that the proportion of nonconforming parts in SP1 and 
SP2 depends on the values of the specification limits of SP1. 
Taking it into account, we suggest obtaining the optimal values 
of the specification limits of SP1 that minimize all rework costs 
of the multistage production process. 

  

Fig. 1. Multivariate and multistage production process with two stages. 

Minimizing all rework costs means that minimizing the 
sum of the proportion of nonconforming outputs of each sub-
process weighted by the unitary reworking costs. The unitary 
reworking costs describe the rework costs originated when 
reworking an output. Taking all this into account, we propose 
the following MRO model:  

[MIN]         𝑘𝑘𝑆𝑆𝑆𝑆1 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆1 + 𝑘𝑘𝑆𝑆𝑆𝑆2 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2  (5) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆1 = 1 − ∫ 1

��∑𝐒𝐒𝐒𝐒𝟏𝟏�(2𝜋𝜋)𝑚𝑚
𝑒𝑒−

1
2(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)′∑𝐒𝐒𝐒𝐒𝟏𝟏

−1(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝑑𝑑𝑆𝑆𝑆𝑆1𝑆𝑆𝑆𝑆1
     (6) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑇𝑇 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆1  (7) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑇𝑇 = 1 − ∫ 1

��∑𝐒𝐒𝐒𝐒𝑻𝑻�(2𝜋𝜋)𝑚𝑚+𝑛𝑛
𝑒𝑒−

1
2(𝒙𝒙𝑻𝑻−𝝁𝝁𝑻𝑻)′∑𝐒𝐒𝐒𝐒𝑻𝑻

−1(𝒙𝒙𝑻𝑻−𝝁𝝁𝑻𝑻)𝑑𝑑𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇
    (8) 

𝐿𝐿𝐿𝐿𝐿𝐿1𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿1𝑖𝑖 ≤ 𝑇𝑇1𝑖𝑖           ∀𝑖𝑖 ∈ [1,𝑚𝑚]       (9) 

𝑇𝑇1𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈1𝑖𝑖 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈1𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖         ∀𝑖𝑖 ∈ [1,𝑚𝑚]      (10) 

where: 

𝑘𝑘𝑆𝑆𝑆𝑆1 and 𝑘𝑘𝑆𝑆𝑆𝑆2 are the unitary reworking costs that describe 
the rework cost of each nonconforming output of SP1 and SP2. 
They are measured in monetary units / output. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆1, 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆2 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆T are the proportion of 
nonconforming parts of SP1, SP2 and of the whole multistage 
production process.  

𝝁𝝁𝟏𝟏 = (µ1,1,…, µ1,𝑖𝑖, …, µ1,𝑚𝑚)  is the mean vector that 
includes the mean values of the 𝑚𝑚 measured product 
characteristics of SP1.  

𝒙𝒙𝟏𝟏 = (𝑥𝑥1,1,…, 𝑥𝑥1,𝑖𝑖, …, 𝑥𝑥1,𝑚𝑚)  are the integration variables 
in (6). 

∑𝐒𝐒𝐒𝐒𝟏𝟏 is the variance-covariance matrix (𝑚𝑚 × 𝑚𝑚) of the 𝑚𝑚 
measured product characteristics of SP1. 

𝝁𝝁𝐓𝐓 = (µ𝑇𝑇1 , … , µ𝑇𝑇𝑘𝑘 , . . . , µ𝑇𝑇𝑚𝑚+𝑛𝑛) is the mean vector that 
includes the mean values of the 𝑚𝑚 + 𝑛𝑛 measured product 
characteristics in SP1 and in SP2. 𝑘𝑘 ∈ [1, n + m];  𝑘𝑘 ∈ ℕ. It is 
important to notice that the first 𝑚𝑚 components in 𝝁𝝁𝐓𝐓 represent 
the mean values of the 𝑚𝑚 product characteristics of SP1 and the 
last 𝑛𝑛 components in 𝝁𝝁𝐓𝐓 represent the mean values of the 𝑛𝑛 
product characteristics of SP2. 

𝒙𝒙𝐓𝐓 = (𝑥𝑥𝑇𝑇,1,…, 𝑥𝑥𝑇𝑇,𝑘𝑘, …, 𝑥𝑥𝑇𝑇,𝑚𝑚+𝑛𝑛)  are the integration 
variables in (8). 

∑𝐒𝐒𝐒𝐒𝑻𝑻  is the variance-covariance matrix (𝑚𝑚 + 𝑛𝑛) × (𝑚𝑚 + 𝑛𝑛) 
of the 𝑚𝑚 + 𝑛𝑛 estimated product characteristics. It is important 
to notice that the submatrix (𝑚𝑚 × 𝑚𝑚) placed on the first 𝑚𝑚 
columns and rows is the variance covariance matrix of  SP1, 
∑𝐒𝐒𝐒𝐒𝟏𝟏. Analogously, the submatrix (𝑛𝑛 × 𝑛𝑛) placed on the last 𝑛𝑛 
columns and rows is the variance-covariance matrix of SP2, 
∑𝐒𝐒𝐒𝐒𝟐𝟐 . 

𝐒𝐒𝐒𝐒𝟏𝟏 is the specification region for SP1 delimited by 
𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏  (2 × 𝑚𝑚). 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏 is the specification limit matrix of SP1 
which includes in columns the LSL and the USL of each 
product characteristic 𝑖𝑖,∀𝑖𝑖 ∈ [1,𝑚𝑚]. 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏 = �
LSLSP1,1

⋯ LSLSP1,i ⋯ LSLSP1,m

USLSP1,1
⋯ USLSP1,i ⋯ USLSP1,m

�  (11) 

𝐒𝐒𝐒𝐒𝐓𝐓 is the specification region for the whole multistage 
process delimited by 𝐒𝐒𝐒𝐒𝐓𝐓 (2 × (𝑚𝑚 + 𝑛𝑛)). 𝐒𝐒𝐒𝐒𝐓𝐓 is the 
specification limit matrix of the whole multistage process 
which includes in columns the LSL and the USL of each 
𝑘𝑘 [1,𝑚𝑚 + 𝑛𝑛] product characteristic in SP1 and SP2. The first 𝑚𝑚 
columns of 𝐒𝐒𝐒𝐒𝐓𝐓 are the columns of 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏 .The last 𝑛𝑛 columns of 
𝐒𝐒𝐒𝐒𝐓𝐓 are the columns of 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝟐𝟐 .  

𝑺𝑺𝑺𝑺𝐓𝐓 = �
LSLT1 ⋯ LSLTk ⋯ LSLTm+n

USLT1 ⋯ USLTk ⋯ USLTm+n

� (12) 

LSL1i,init  and USL1i,init are the initial values of the LSL and 
the USL of each product characteristic 𝑖𝑖 ∈ [1,𝑚𝑚] from SP1. 



T1i are the 𝑖𝑖 target values of each product characteristic 
𝑖𝑖 ∈ [1,𝑚𝑚] from SP1.  

It is important to realize that minimizing the rework costs 
of the whole multistage production process by modifying the 
configuration of the specification limits in the first sub-process 
will provoke the appearance of additional nonconforming 
outputs (ANCOs) in the first sub-process. ANCOs are outputs 
described as nonconforming when using the optimal 
configuration of the specification limits although they were 
described as conforming when using the original configuration 
of the specification limits. 

IV. AN EXAMPLE 
In this section we are going to apply the proposed 

optimization model in an example based on a production 
process of the automotive sector. The production process that is 
going to be analyzed is a multistage production process with 
two sub-processes. The first sub-process is the machining 
process of an engine component. The second sub-process is the 
assembling process of the engine. This multistage production 
process can be represented using the same representation used 
in Fig. 1.   

In the machining sub-process (SP1) there are two product 
characteristics that are the focus of study (𝑚𝑚 = 2). The first 
product characteristic is named PCSP1,1. The LSL of PCSP1,1 
(LSLSP1,1) is placed on -1.00 mm and the USL of 
PCSP1,1(USLSP1,1) is placed at 1.00 mm. The target value 
(TSP1,1) is placed on the middle point: 0.00mm. The second 
product characteristic is named PCSP1,2. The LSL of PCSP1,2 
(LSLSP1,2) is placed on -1.00mm. The USL of PCSP1,2 
(USLSP1,2) is placed on 1.00mm. The target value (TSP1,2) is 
also placed at the middle point: 0.00mm.  

In the assembling sub-process (SP2) there are also two 
product characteristics that are the focus of study (n = 2). The 
first product characteristic is named PCSP2,1 and the second is 
named PCSP2,2. LSLSP2,1 is placed at -1.00mm and USLSP2,1 is 
placed at 1.00mm. The target value (TSP2,1) is placed at the 
middle point: 0.00mm. LSLSP2,2 is placed at -1.00mm and 
USLSP2,2 is placed at 1.00mm. The target value (TB) is placed 
at the middle point: 0.00mm.  

We generate a 4-variate sample of data with 10.000 points 
based on a production process of the automotive industry and 
we assume that reworking an output in the assembly lines is 5 
times more expensive as reworking it in the machining lines 
(𝑘𝑘𝑆𝑆𝑆𝑆1 = 1€/𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝑘𝑘𝑆𝑆𝑆𝑆2 = 5€/𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢).  

Before applying the MRO model from section III, we want 
to show the influence of the values of the specification limits of 
SP1in the total rework costs. Fig. 2 shows six contour plots. 
Each contour plot is determined by the specification limits of 
SP1 and represents the minimal achievable rework costs for the 
whole process (also considering the two specification limits 
that are not represented in the axes) by considering the initial 
sample of data. We can see that the rework costs, which must 
be assumed in this multistage production process, depend on 
the values of the specification limits of the first sub-process. 

We can observe that the smaller the specification region 
(SL near the target value), the higher the rework costs. 
Furthermore, we can observe that the configuration of the 
specification limits that minimize rework costs is near the 
initial specification limits. Hereafter, we apply the MRO model 
from section III to obtain a more precise configuration of the 
optimal specification limits. 
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Fig. 2. Rework costs (in €) depending on the configuration of the 
specification limits in the machining process. 

In order to apply the MRO model from section III, we need 
to obtain the mean vectors (13) and (14); and the variance-
covariance matrices (15) and (16) from the sample.  

𝝁𝝁𝟏𝟏 = (0.039 −0,060)               (13) 

𝝁𝝁𝐓𝐓 = (0.039 −0,060 0.244 0.305)             (14) 

∑𝐒𝐒𝐒𝐒𝟏𝟏 = �0.089 0.022
0.022 0.091�                (15) 

∑𝐒𝐒𝐒𝐒𝑻𝑻 = �
   0.089 0.022
   0.022 0.091

0.064 −0.021
0.020     0.055

   0.064 0.020
−0.021 0.055

0.087     0.013
0.013     0.086

�      (16) 

This example has been solved with MATLAB R2013b 
using a workstation with CPU Intel ® Core™ i5-5300U CPU 
@2.30 GHz and runtime of 61.25s. The solver function 
patternsearch in MATLAB was used. The optimal values of 
the specification limits of SP1 are tabulated in table I. 

If we look at table I, we can see that the optimal LSLs for 
PCSP1,1 and PCSP1,2 are nearly the same as the initial ones. For 
the USLs, the MRO model suggests two different values.  If we 
refine and adjust the mesh used in Fig. 2, we can see that the 
optimal values obtained for both upper specification limits are 
in accordance with the values suggested by the model (see Fig. 
3).  



In table I we can also see that the rework costs of the whole 
multistage production process have been reduced. The initial 
configuration of the specification limits carries a cost of 661€. 
The optimal configuration reduces the unitary costs to 642€, 
which is a reduction of 2.87% of the rework costs. 

TABLE I.  COMPARISON OF INITIAL AND OPTIMAL CONFIGURATIONSa 

a. SL in mm and RC in €. 
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Fig. 3. Refined and adjusted mesh for the entire rework costs (in €) 
depending on the configuration of the USLSP1,1 and USLSP1,2 in the machining 
process.  

Hereafter we analyze how the optimal configuration of the 
specification limits affects the capability of this multistage 
production process. In table II we can find the univariate PCIs 
for the four product characteristics analyzed in this example for 
the initial and the optimal configuration of the specification 
limits. 

TABLE II.  UNIVARIATE CAPABILITY ANALYSIS 

 

With the optimal configuration, the capability regarding the 
product characteristics of the machining process (PCSP1,1 and 
PCSP1,2) has been reduced. This occurs due to the fact that the 
optimal USLs of both product characteristics is smaller than 
the original one; and thus, the probability of finding 
nonconforming outputs in the optimal configuration is higher 
than in the initial configuration. However, the capability 
regarding the product characteristics of the assembly lines 
increases. This occurs because many of the nonconforming 
outputs that were detected in the test of the assembly lines in 
the initial configuration are detected in the test of the 

machining process with the optimal configuration; and thus, 
they are not sent to the assembly sub-process. 

Table III shows the multivariate PCIs for SP1 and SP2 for 
the initial and the optimal configurations. We can see that the 
optimal configuration reduces the capability of the machining 
process but increases the global capability of the assembly 
process. If we consider the capability of the whole multistage 
process, we can see that it presents lower capability in the 
optimal configuration. This happens because taking into 
account the rework costs of the whole multistage process, the 
probability of describing outputs as nonconforming in the 
optimal configuration of the specification limits is higher. With 
the proposed MRO model, the total rework costs are minimized 
but we have to accept smaller rates of conforming parts and the 
appearance of ANCOs. 

TABLE III.  MULTIVARIATE CAPABILITY ANALYSIS 

 

 

 

 

 

Finally, we want to analyze the appearance of ANCOs 
because of the optimal configuration of the specification limits 
in this example. Table IV shows the engines described as 
nonconforming in SP1, SP2 and SPT for the initial and the 
optimal configurations. The difference between the outputs 
described as nonconforming for SPT in the optimal and in the 
initial configuration are the ANCOs. As stated, ANCOs are 
outputs that should be described as conforming but with the 
proposed configuration of the specification limits are described 
as nonconforming. ANCOs will not leave the multistage 
production process; and thus, they generate a loss of benefit. 

TABLE IV.  ANCOS ANALYSIS 

 

 

 
Hereafter, we evaluate the value of the model by comparing 

the rework costs that must be assumed in a second scenario 
with a new sample of data of 10.000 points. Table V shows the 
rework costs that must be assumed with the initial 
configuration of the specification limits and the optimal 
configuration obtained in this section.  

We can see that using the optimal configuration of the 
specification limits, the rework costs are smaller than the 
rework costs that should be assumed with the initial 
configuration. The initial configuration of the specification 
limits carries a rework cost of 713€. The optimal configuration 
reduces the costs to 673€, which is a reduction of 5.61% of the 
rework costs.  

TABLE V.  COMPARISON OF INITIAL AND OPTIMAL CONFIGURATIONS 
WITH A SECOND SAMPLEb 

Configuration LSLSP1,1 USLSP1,1 LSLSP1,2 USLSP1,2 RC  

Initial -1 1 -1 1 661 

Optimal -0.98 0.88 -1.00 0.72 642 

Configuration PCI 𝐏𝐏𝐏𝐏𝐒𝐒𝐒𝐒𝐒𝐒,𝟏𝟏 𝐏𝐏𝐏𝐏𝐒𝐒𝐒𝐒𝐒𝐒,𝟐𝟐 𝐏𝐏𝐏𝐏𝐒𝐒𝐒𝐒𝐒𝐒,𝟏𝟏 𝐏𝐏𝐏𝐏𝐒𝐒𝐒𝐒𝐒𝐒,𝟐𝟐 

Initial 

Cp 1.12 1.11 1.13 1.14 

Cpk 1.07 1.04 0.86 0.79 

Optimal 
Cp 1.04 0.95 1.14 1.15 

Cpk 0.93 0.86 0.86 0.80 

Configuration PCI SP1 SP2 SPT 

Initial MCpk 0.99 0.73 0.72 

Optimal MCpk 0.81 0.74 0.69 

Nonconforming outputs SP1 SP2 SPT 

Initial 20 129 149 

Optimal 72 114 186 



b. SL in mm and RC in €. 

We can see that the optimal configuration of the 
specification limits derived from the first sample is also valid 
for the second sample. This occurs because production 
parameters have not varied between the first and the second 
samples; and thus, the second sample has the same mean vector 
and variance-covariance matrix as the first sample. 

V. CONCLUSIONS AND OUTLOOK 
In this paper a MRO model has been presented. This MRO 

model differs from other MRO models from the literature in 
three aspects: First, the model uses the modularity derived from 
multistage production processes by considering each stage 
individually and afterwards the whole multistage process as a 
global system. Second, in the presented model, rework costs 
are taken into account. Third, in the presented model, the 
optimization variables are the specification limits. With this 
model, rework costs originated due to poor production 
processes can be easily minimized when machines cannot be 
recalibrated. While minimizing the whole rework costs using 
the proposed model, the proportion of outputs of the whole 
process that will be described as nonconforming will increase; 
and consequently, more outputs will have to be reworked. 
Thus, if companies want to minimize rework costs using the 
proposed MRO model, they will have to be able to assume 
more rework rates as well as ANCOs. It has been seen that it is 
possible to minimize quickly rework costs of a multistage 
production process when sacrificing capability in the first sub-
processes. 

For future research we propose improving the MRO 
model with focus on these three points: Firstly, the proposed 
model assumes that the specification limits of the last stage of 
the multistage production process are fixed. If the specification 
limits in the last stage are also flexible, we suggest using the 
proposed model with different configurations of the 
specification limits in the last stage of the process. Then, we 
suggest obtaining the optimal specification limits in the first 
stage for each configuration and taking the configuration that 
carries the minimal rework costs. This may enable researchers 
to minimize rework costs in the case where the specification 
limits of the last stage are not fixed. Secondly, the presented 
model does not take into account the loss originated by the 
ANCOs. Thus, we recommend to include the cost originated by 
the ANCOs in the model. Finally, future researchers may also 
deal with the case in which the measures are not normal 
distributed. 
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