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Abstract—Recent developments in power electronics and re-
newable energy sources have brought the risen of Direct Cur-
rent (DC) Microgrids. By power converters’ utilization, a DC
Microgrid is able to integrate renewables, storage systems, and
other devices in a simpler topology, since the major part of the
modern grid’s compounds have DC nature. This paper proposes
a control strategy aiming to regulate the voltage in the DC bus of
a Microgrid by a supercapacitor. The control law is applied to a
bidirectional boost converter that connects the supercapacitor
to the DC grid. The control scheme is based on dynamical
feedback linearization and consists in splitting the system in
different time scale dynamics, creating consequently a simplified
model. Simulations on Matlab/Simulink illustrate how the control
strategy is able to regulate the DC voltage with good performance.

Index Terms—DC Microgrids control, voltage stability, Feed-
back linearization, Nonlinear control, Power converters.

I. INTRODUCTION

The impact of distributed generation in electrical grids has
been a widespread concern. This impact is primary related
to the intermittent nature of renewable energy sources (renew-
ables) and the harmonic distortions caused by their converters.
Many solutions have been proposed to improve the integration
of new technologies in the power grid [1], [2]. Direct Current
(DC) Microgrids integrating renewables and storages are the
solution that is becoming increasingly interesting, as they
allow autonomy with respect to the main grid. Also, they bring
a better integration of their parts, since most electronic devices
(PV, batteries, electric vehicles ...) have a DC nature [3], [4].

Nowadays, several examples of DC Microgrids exist in
marine, aviation, automotive, and manufacturing industries.
For all of them, it is extremely important that a Microgrid
presents reliability and proper control operation [5], [6]. In
this context, nonlinear theory allows for a more realistic grid
modeling and a more effective stability analysis [7], [8], [9],
[10]. The utilization of nonlinear control techniques may also
improve power flow performances in the Microgrid, since the
system is not restricted by an operating point and there is the
possibility to work in a wider region of operation, considering
just the physical limitations of the system as restrictions. A
drawback of the use of nonlinear control technique is the
increased complexity of the resulting control law, which is
sometimes difficult to be implemented [7].

In this work, a control scheme for a DC Microgrid is
introduced, to the purpose to control power converters when

problems related to non-minimum phase system characteris-
tics appear because of control targets and converters’ topol-
ogy. Such problems limit state feedback utilization in some
electrical schemes: for example, a boost configuration for a
supercapacitor in charge of controlling the voltage in the DC
bus does not allow the utilization of the classical feedback
linearization. On the contrary, the here proposed dynamical
feedback linearization technique is based on a system’s equi-
librium value that is calculated in advance and allows state
feedback utilization.

To the target to reduce size and complexity, a simplified
model for the DC grid configuration will be used, based
on a Thévenin equivalent circuit. A dynamical feedback
linearization control based on the simplified model and on
singular perturbation analysis is developed; only the voltage
equilibrium point will be required, allowing for a simpler
control law. This approach avoids the problems related to
the non-minimum phase characteristics when the target is the
output voltage control in a boost converter [8], [11].

This paper is organized as follows: Section II introduces the
considered simplified model, while Section III describes the
adopted control law. Simulations are outlined in Section IV
and conclusions are provided in Section V.

II. MICROGRID MODELING

In [7] a DC Microgrid composed by a variable load, a PV
array for power generation and two energy storage systems (a
battery and a supercapacitor) operating at different time scales
for power management has been analyzed and a proper dis-
tributed nonlinear control has been proposed as solution. With
respect to [7], in this paper a new control scheme for regulating
the DC voltage bus in the Microgrid is introduced, taking
into account a more interesting electrical scheme. Indeed, the
supercapacitor with a buck configuration may be unfavorable,
since its voltage needs to be higher than the DC grid voltage
and consequently it has a more expensive construction [12]. A
DC/DC bidirectional-boost is here considered to connect the
supercapacitor and the DC grid performing the same DC grid
voltage stability operations as in [7], i.e. the supercapacitor
is in charge of keeping the DC voltage at the desired level
while the battery is used as energy reservoir. Furthermore, the
variable loads is here connected to the DC grid by a DC/DC
converter.



Fig. 1. The DC Microgrid integrating the PV array, the load and the two
energy storage systems operating at different time scales.

Fig. 1 introduces the considered DC Microgrid, which is
composed by a supercapacitor, a battery, a PV array and
a variable load. Each device is connected to a DC bus by
a DC/DC converter: they are bidirectional-boost ones for
supercapacitor and battery, a boost for PV and a buck for
the load. Hypothesis on the good and proper size of the all
system’s components are done as in [7].

The contribution of this paper is to provide a simpler control
scheme for the DC bus of a Microgrid with respect to the
one introduced in [7], which has been shown to deal in
a more effective way with the system interconnection with
respect to classical PI control. Part of the contribution relies
also in the capability to use a boost converter for stabilizing
purposes. Indeed, by controlling the output voltage in the boost
converter, it is possible to bring the grid voltage Vdc to a
desired value.
A. Thévenin Equivalent Circuit

Assumption 1: In the Microgrid, we consider that the voltage
of the output capacitor of the PV array, the battery and the
load are considered as piecewise constant plus a slowly time-
varying disturbance.

This because the battery is controlled in a time-scale of
seconds according to power flow regulation, while the load
is in general a sum of switching elements in addition to
slowly (seconds) varying ones. Finally, in the PV case, the
disturbances come from the solar radiance, where the solar
variations is much slower than the voltage control time-scale.
The time varying disturbances will be neglected; the effect of
this will be an additive disturbance in a linear stable closed
loop system, which will be compensated by the robustness
of the controller. Nevertheless, there will be an arbitrarily
small slowly varying disturbance that will not bring the system
outside of the operation margin defined around the desired
equilibrium point.

Therefore, we can apply Thévenin theorem on those devices
to obtain an equivalent circuit. The DC bus is the coupling
point for the devices integrated in the system, and it is here
modeled as a capacitance. The Thévenin equivalent circuit is
used to substitute PV, battery and load by a voltage source Vth
and a resistance Rth.

Thévenin voltage Vth is calculated according to PV, battery
and load system in open circuit.

Vth = Rth

[
VC5

R5
+
VC8

R8
+
VC12

R12

]
(1)

where VC5
, VC8

and VC12
are converters’ output voltage on

PV, battery and load, respectively presented in Fig. 1. They

Fig. 2. The simplified electrical model of the DC Microgrid.

are considered according to assumption 1; consequently, the
resulting voltage Vth can be considered piecewise constant
plus slowly time-varying as well.

The equivalent Thévenin resistance Rth is calculated as

Rth =
R5R8R12

R5R8 +R5R12 +R8R12
(2)

where R5, R8 and R12 are the cable losses of the converters
of PV, battery and load respectively.
B. Simplified Microgrid Model

Fig. 2 depicts the Microgrid’s simplified electrical model
due to considerations in Section II-A. It is composed by the
converter that is connected to the supercapacitor, a capacitor
representing the DC bus and the Thévenin equivalent circuit.
Vcap is the voltage on the supercapacitor, Vdc is the voltage
on the DC bus and C10 is the capacitance of DC bus. R1

and R2 are the resistances representing cable losses, while
R01 and R02 are switch losses of the semiconductors, where
R01 = R02. VC1

is the voltage of capacitor C1, VC2
is the

voltage of capacitor C2 and IL3
is the current of inductor L3:

they are the state variables of the system. The control input
u1 is the converter duty cycle, where u1 ∈ [0, 1].

The equivalent circuit is expressed using state space average
model as follows:

V̇C1
=

1

R1C1
Vcap −

1

R1C1
VC1
− 1

C1
IL3

V̇C2
=

1

R2C2
Vdc −

1

R2C2
VC2

+
1

C2
IL3

(1− u1)

İL3
=

1

L3
VC1
− 1

L3
VC2

(1− u1)− R01

L3
IL3

V̇dc =
1

C10R2
(VC2

− Vdc) +
1

C10Rth
(Vth − Vdc)

(3)

III. MICROGRID CONTROL

According to its multi-time scale characteristics, the system
introduced in (3) can be split in two subsystems; one subsys-
tem is composed only by the current IL3

, while the other one
represents the three voltages VC1 , VC2 and Vdc. To correctly
address the desired actions, three steps need to be envisaged
for performing the control algorithm:

1) To introduce a stabilizing controller for the subsystem
representing the current IL3

. Indeed, this subsystem is
controllable and is allocated to have faster dynamics
with respect to the other one. The first target will be to
steer the controllable faster dynamics IL3

for bringing
it to a desired trajectory IL3 → I∗L3

, where I∗L3
is yet

to be designed. To develop the controller for the fast



dynamics separately from the slow dynamics some mild
conditions are considered, used and verified (see [13]).

2) To define the operating region where the controller that
has been introduced in the previous step is able to work
with respect to the reference I∗L3

, which clearly depends
on the state of the system and of the desired value has
to be imposed.

3) To calculate the reference I∗L3
for the current dynamics,

according to the simplified model of the DC grid and
on the desired equilibrium point for the capacitor V ∗

C2
,

i.e. V ∗
C2

. This reference is obtained by considerations
about singular perturbation analysis and the Thévenin
equivalent circuit. Thus, I∗L3

will be deduced from the
desired equilibrium point of the output capacitor V ∗

C2
.

With this methodology, it is possible to avoid the problems
related to the non-minimum phase characteristics of the system
that is due to the structure of the boost converter. The target
will be to steer VC2

to a desired V ∗
C2

, providing DC bus voltage
regulation.
A. Feedback Linearization for IL3

The first step is to control the current IL3
in the super-

capacitor converter tracking its reference I∗L3
, which is now

supposed to be know, as well as its evolution over the time.
From singular perturbation analysis [9], we can consider the
states Vdc, VC1

and VC2
, as constant in this part and then

just study the subsystem describing the current. According to
the control objective, the output is defined as y1 = IL3

. The
system is a single-input single-output one:{

ẋ1 = f1(x1) + g1u1
y1 = IL3

(4)

where x1 , (VC1 VC2 IL3 Vdc)
T , f1 and g1 defined in (3),

and where the Lie derivative of the output with respect to g1
is calculated as:

J = Lg1(IL3
) = −VC2

L3
(5)

Since VC2
is always positive by technological reasons, J is

non-singular and therefore a nonlinear feedback linearizing
control for the control input u1 can be written as:

u1 = J−1

[
v3 −

1

L3
(VC1 − VC2 −R01IL3)

]
(6)

where v3 is the additional input to be designed. It must to be
noticed that VC1

and VC2
are considered constant because of

singular perturbation motivations.
The next step is to design the additional input v3 to the

purpose to bring the output IL3
to its desired trajectory I∗L3

:

v3 = İ∗L3
−K3(IL3 − I∗L3

)−Kα
3 α3 (7)

α̇3 = IL3 − I∗L3
(8)

where K3 and Kα
3 are positive constants, chosen in a way

such that the multi-time scale nature of the dynamics of IL3

with respect to the voltages is preserved, or even amplified.
By substituting (6), (7) and (8) in (4), the resulting dynamics

is linear and stable, where α3 is the auxiliary variable that
can be interpreted as the integral part in a PI controller. İ∗L3

is
the time-derivative of the desired I∗L3

that has to be designed;
then, both are known.

B. Analysis of stability and operating regions

The states VC1
, VC2

and Vdc presented in (3) are the zero
dynamics of the whole system with respect to output IL3

.
Due to the multi-time scale characteristics with respect to
the current IL3 , the linear dynamics of VC1 is shown to be
exponentially stable thanks to the fact that it is a linear system
with a negative eigenvalue and two disturbances (VPV and
IL3

) that will only modify its equilibrium point. For these
reasons, in this section a stability study is presented for just
the two variables representing the interconnected system, i.e.
VC2 and Vdc.

The calculated equilibrium points for VC2
and Vdc are:

V eC2
=
Vdc
2
± 1

2

√
V 2
dc + 4R2I∗L3

(VC1
−R01I∗L3

) (9)

V edc =
R2Rth
R2 +Rth

[
VC2

R2
+
Vth
Rth

]
(10)

As stated in (10), the variable Vdc has just one equilibrium
point while VC2

has two equilibrium points (see (9)); the
linearization technique will be used for stability analysis in
these equilibrium points. The resulting Jacobian linearization
matrix A is:

A =

[
− 1
R2C2

− I∗L3
(VC1

−R01I
∗
L3

)

C2V e
C2

2
1

R2C2

1
R2C10

− 1
C10

( 1
R2

+ 1
Rth

)

]
and its eigenvalues can be written as:

λ1,2 = − b
2
± 1

2

√
b2 − 4c (11)

where:

b =
1

R2C2
+

I∗L3

C2V eC2

2 (VC1
−R01I

∗
L3

) +
1

C10

R2 +Rth
R2Rth

(12)

c =
1

C2C10

[
R2 +Rth
R2Rth

I∗L3

V eC2

2 (VC1
−R01I

∗
L3

) +
1

R2Rth

]
(13)

A stability region can then be established with respect to
the values of b and c; in the following, a dedicated analysis is
introduced according to their signs:

1) For b > 0 and c > 0: the eigenvalues are such that
Re[λ1,2 < 0], and consequently the equilibrium points of
the zero dynamics are stable. By considerations on the above
inequalities, we can find out a region related to the value of
I∗L3

. The first region is given by b > 0:

VC1

2R01
− 1

2R01

√
∆1 < I∗L3

<
VC1

2R01
+

1

2R01

√
∆1 (14)

where ∆1 = VC1

2 + 4R01V
e
C2

2C10Rth+C2(R2Rth)
R2C2RthC10

.
The second region is given considering c > 0, and it can

be expressed as:

VC1

2R01
− 1

2R01

√
∆2 < I∗L3

<
VC1

2R01
+

1

2R01

√
∆2 (15)



with ∆2 = VC1

2 + 4R01V
e
C2

2 1
R2+Rth

. Since (15) is in (14),
the intersection of (14) and (15) is given by (15), which is the
region of stability for I∗L3

.
2) For b ≥ 0 and c ≤ 0: at least one eigenvalue has a

positive real part Re[λ1,2 ≥ 0], then the system is not stable.
3) For b ≤ 0: there is at least one eigenvalue with positive

real part Re[λ1,2 ≥ 0] where the zero dynamics are not stable.
The introduced analysis describes the operating regions

where the control of IL3
→ I∗L3

is stable, both for the charge
and the discharge of the supercapacitor, and implicitly provides
some bounds for the reference I∗L3

. In fact, it is necessary
to realize that they reflect the physical limitations of the
converter. So, the two zero dynamics are stable according to
the aforementioned operating regions. In the following of this
paper, authors make the reasonable assumption not to violate
the bounds and then to operate in the region of stability for
the systems interconnection.

C. Reference calculation

Here, the automatic procedure for obtaining the reference
I∗L3

is described. A desired fixed value for the dynamics VC2

is supposed to be considered as reference, i.e. V ∗
C2

. Starting
from it, considerations about the dynamics of the system
will be used to calculate a slowly varying desired reference
I∗L3

whose derivative has a minimum effect in the previously
designed current control. In this paper, the reference value for
the dynamics Vdc will be considered for V ∗

C2
, i. e. V ∗

dc. It
is important to remark that the utilization of the fixed value
V ∗
dc as desired reference for VC2

instead of the time-varying
Vdc will induce a steady state error in Vdc, which is the
voltage drop in R2 (cable loss). This because the capacitor’s
voltage will not be driven to the desired bus voltage in a
direct way. Nevertheless, the trade off between this small error
(proportional to the resistance of the bus connecting VC2

and
Vdc) and a greatly simplified control design is very convenient.

Following the theory used in [9] and [14], and according
to what stated in Section III-A, the controller designed in the
previous step will assure that IL3 quickly converges to I∗L3

.
In this way, it is created a two time scales behaviour in the
system, one for the IL3

current and another for the remaining
states (mainly the voltages). For this reason, and following [9]
and [14], the dynamics of VC2

presented in (3) can then be
replaced by:

V̇C2
=

1

R2C2
Vdc −

1

R2C2
VC2

+
1

C2
I∗L3

(1− u∗1) (16)

where u∗1 = 1− 1
VC2

[VC1
−R01I

∗
L3

].
We desire to develop a reference I∗L3

such that VC2
is

stabilized at V ∗
C2

. To do that, the dynamics VC2
is considered at

the equilibrium substituting u∗1 in (16). This dynamics is then
used to calculate the good reference for I∗L3

. Furthermore, a
virtual input vd has to be added to the system: V̇C2

=
1

R2C2
(Vdc − VC2

) +
I∗L3

C2VC2

[VC1
−R01I

∗
L3

]

İ∗L3
= vd

(17)

Here vd is the virtual input, and it is needed to impose a
desired dynamics to I∗L3

. The system in (17) is in the following
standard form {

ẋ0 = f(x0, z) + g0vd
y2 = VC2

(18)

where x0 , (VC2
I∗L3

)T , z , (VC1
Vdc)

T is continuous and
know as well as its time derivative and being vd the control
input. By defining VC2

as output, the relative degree is equal to
2 and consequently the considered system is fully controllable.
The following Lie derivatives can be deduced as:

V̇C2 = L1
f0(VC2) (19)

V̈C2
=

V̇dc
R2C2

− V̇C2

[
1

R2C2
+
VC1I

∗
L3
−R01I

∗
L3

2

C2VC2

2

]
+

+
1

C2VC2

I∗L3
V̇C1

+
1

C2VC2

(VC1
− 2R01I

∗
L3

)İ∗L3
(20)

V̈C2 , L2
f0(VC2) + Lg0L

1
f0(VC2)vd (21)

To introduce a desired synthetic input θd, the input vd can
be designed as:

vd =
1

Lg0L
1
f0

(VC2
)
[θd − L2

f0(VC2
)] (22)

where the additional input is chosen using linear techniques
to give the desired dynamics for VC2 .

θd = −K2(V̇C2
− V̇ ∗

C2
) +Kα

2 (VC2
− V ∗

C2
) (23)

As the reference V ∗
C2

is considered slowly time varying (and
most often constant), its time derivative can be neglected. By
substituting (22) and (23) in the system (17), the following
closed-loop system is obtained:[

V̇C2

V̈C2

]
=

[
0 1
−Kα

2 −K2

] [
VC2
− V ∗

C2

V̇C2

]
(24)

Here the convergence speed of the voltage VC2 can be
imposed by pole placement considerations. The gains K2 and
Kα

2 need then to be properly chosen.
The steps presented above can now be stated in the form of

the following theorem.
Theorem 3.1: System (3) is asymptotically stable at the

desired equilibrium point under utilization of the control law
(6) and of a reference trajectory for the current given by (22)
in (17). The gains K2, Kα

2 , K3 and Kα
3 in (24) and (7) have

to be suitably chosen to define the proper control action.
The overall strategy may be seen as composed in two parts:

at first, the compensation of the nonlinearities takes places
to enlarge the operating region, and then the steering of the
resulting system to its equilibrium point by a PI through pole
placement procedure takes place, with the advantage to easily
be able to chose the gains.

Remark 1: The term VC1
− 2R01I

∗
L3

is always positive
since the voltage VC1 is always much larger than the voltage
dissipation represented by 2R01I

∗
L3

, so the input vd is always
nonzero.



TABLE I
BOOST CONVERTER PARAMETERS

R1 0.1 Ω R2 0.1 Ω L3 3.3 mH
C1 100 mF C2 10 mF R01 10 mΩ

Fig. 3. Variations in the DC Microgrid represented by voltage Vth.

Remark 2: A reference trajectory I∗L3
is deduced from (17)

model and its dynamics can be controlled by pole placement
with the input θd. From [9], one can see that the use of
singular perturbation to obtain the simplified model is valid
inside an operating region that is given by the time scale
ratio from the two subsystems. As a consequence, the desired
imposed dynamics should be chosen such as to obtain a
suitable operation region for the DC Microgrid.

Remark 3: In the proposed control the time derivative of
Vth is neglected. This because its components are either piece-
wise constants (battery and part of loads) or slower varying
(solar and remaining loads) compared to the supercapacitor
dynamics. The result of neglecting them is that there will be
an additive time varying disturbance in the feedback linearized
system. Such situation is standard and will impose errors in
Vdc and VC2

that will be arbitrarily attenuated by the pole
placement.

IV. SIMULATION RESULTS

The electrical system in Fig. 2 has been simulated on
Matlab/Simulink using the SimPowerSystem toolbox to test the
proposed controller. The initial conditions are IL3

(0) = 0 A,
VC1(0) = 400 V , VC2(0) = 1000 V , Vdc(0) = 1000 V and
Vcap(0) = 400 V . The capacitance of the supercapacitor is
50 F with a nominal voltage of 400 V , in order to have
the capability of being in charge of the voltage stabilization.
Table I shows the used parameters. The switching frequency
for PWM is fs = 10 kHz.

A constant value of 1000V is considered as reference for
V ∗
C2

; it is the desired value to be obtained for Vdc. This
approach does not control Vdc directly, but it provides DC
grid voltage regulation by maintaining Vdc in a granted region
(with an error smaller than 5%) with smooth oscillations.

The voltages of the PV array, battery and load that are
represented by the Thévenin voltage are depicted in Fig. 3,
where Vth is piecewise constant with realistic time-varying
oscillations. The calculated value of Thévenin resistance is
Rth = 0.33 Ω. The supercapacitor voltage Vcap is shown
in Fig. 4. It reproduces the charge and discharge operations
according to voltage variations. The supercapacitor absorbs the
exceeding energy and supplies the missing one, balancing the
power flow in the DC bus. Fig. 5 describes the voltage of the
capacitor C1, which varies according to Vcap and the required
current I∗L3

.

Fig. 4. The capacitor’s voltage Vcap.

Fig. 5. The voltage VC1
.

Fig. 6 introduces the dynamical behaviour of the voltage
VC2 with respect to its reference V ∗

C2
, which is constant. To

the purpose to show the correctness of the hypothesis used in
the paper, Fig. 6 also introduces a value VC2n which represents
VC2

when the current IL3
is in its reference value: since the

two behaviours are similar, it is possible and reasonable to
use VC2n instead of VC2

for the calculation of I∗L3
, as seen

in Section III-C. By a comparison between Figures 3 and
6, it is possible to note that VC2 has some small transients
when Vth varies. The ripples are caused by the converter
switching; nevertheless, they can be considered moderate.
Also, the oscillations for VC2

are about 0.5%. Fig. 7 depicts the
behaviours of the current IL3

and its reference I∗L3
. Obviously,

the dynamics of the current varies according to the voltage
level in Vth with respect to Vdc. The proper calculation of the
reference I∗L3

is shown in Fig 8, where the DC grid voltage is
depicted in p.u..Since the steady state error on Vdc is less than
2%, the reference I∗L3

has been properly obtained to perform
the desired result, i.e. Vdc results to be regulated inside the

Fig. 6. The voltage VC2 , its reference V ∗
C2

and the value VC2n.

Fig. 7. The current IL3 and its reference I∗L3
.



Fig. 8. The DC grid voltage Vdc and its operation bounds in p.u.
(Vdc, base = 1000V ), with a reference value of V ∗

dc = 1000V ..

Fig. 9. The voltage VC2
with respect to the parameters errors.

grant region given by the grid requirements (+/- 5%). The DC
bus voltage has been stabilized inside the grant region.

A. Robustness of the proposed control

To the purpose to better validate the control performance,
simulations illustrating the robustness of the proposed control
action will now be introduced. An error percentage is consid-
ered in the knowledge of some system parameters (R1, C1, L3

and R01). Two cases have been considered: a first one where
the value of the aforementioned parameters have an error about
10% on the nominal one, and a second case where this error
is increased up to 20%. Fig. 9 shows the different behaviours
the voltage VC2

has according to the considered parameters’
errors with respect to the nominal case. As it is also possible
to state from Fig. 10, where the current IL3

is depicted with
respect to the parameters’ errors, to higher currents correspond
higher errors. As for Fig. 6, the ripples in Fig. 9 caused by
the converter switching are considered moderate.

Fig. 10. The inductor current IL3 with respect to the parameters errors.

Fig. 11. The DC grid voltage Vdc with the parameters errors.

Fig. 11 depicts the DC bus voltage and how the applied
control is robust enough to regulate it for both the considered
cases. Indeed, the parameters’ errors do not affect the voltage
to cause relevant changes in its behaviour.

V. CONCLUSIONS

In this paper a dynamic feedback linearization control strat-
egy to regulate the voltage on the DC bus for a DC Microgrid
is introduced. The proposed control action avoids problems
related to non-minimum phase properties for power converters.
Based on Thévenin equivalent circuit and singular perturbation
analysis, hypothesis on the structure of the DC Microgrid are
developed and tested, to the purpose to reduce control system
complexity. Nevertheless, control system efficiency is ensured.

SimPowerSystem simulations illustrate how the simplified
model can be successfully applied for control purposes. The
robustness of the control strategy is tested in condition of
parameters’ values incertitude.

Both analytical and simulations results clearly show the
capability of the proposed control scheme to stabilize the
voltage of a DC Microgrid with good performance.
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