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Abstract—This paper presents an approach to significantly
improve modeling accuracy for the power and energy demands
of industrial robots. This is achieved by taking the temper-
ature dependency of the joint’s viscuous friction parameters
into account. While the connection is commonly known, it is
usually neglected in state-of-the-art energy consumption models
for industrial robots. This paper shows that a consideration of
temperature-dependent friction provides significant improvement
of energy modeling accuracy. The approach is validated on a
test rig with a KUKA KR 16 robotic manipulator. Measurements
show that the grid energy consumption modeling error can be
reduced from up to 45% to approx. 5% over the whole spectrum
of operating temperatures.

Index Terms—Industrial Robotics, Energy Efficiency, Robot
Temperature, Friction Modeling

I. INTRODUCTION

Sales of industrial robots reached an all time high of
248,000 units sold in 2015 worldwide, increasing by about
12 % compared to the previous year [1]. Ongoing growth is
predicted for the future. However, a rising degree of automa-
tion also leads to an increase of overall energy consumption.
Recent research addresses this topic by developing methods for
increasing energy efficiency of components, machines, and/or
the whole manufacturing process.

Especially the software-based approaches that try to calcu-
late e. g. the most efficient scheduling for a robot cell [2],
[3] or the energy-optimal trajectory for single robots [4], rely
on modeling the system’s energy consumption in order to
find favorable operating points. Therefore, the energy model’s
accuracy directly affects the results of said calculations. For
complex machines like industrial robots, the consumption
depends on several factors, e. g. the regarded motion including
velocities and motor torques. Further, the energy consumption
is significantly influenced by robot temperature, that varies
from approx. 20 to 80 ◦C depending on its degree of utiliza-
tion. The presented paper aims on improving the modeling
accuracy for the energy consumption of industrial robots by
taking this dependency into account. Validation measurements
show that, using the presented modeling enhancements, a high

Fig. 1. Typical power consumption measurement for an industrial robot in
different operating phases

modeling accuracy can be achieved over the whole operating
temperature spectrum.

This article is structured as follows: The basic approach for
modeling power and energy demands of industrial robots is
shown in section II. The temperature-dependent identification
of friction parameters is explained in section III. Measurement
and validation results are presented in section IV. The paper
closes with a conclusion in section V.

II. POWER AND ENERGY MODEL FOR INDUSTRIAL
ROBOTS

First, the state-of-the-art modeling approach is introduced.
The approaches provide high accuracy and are able to cor-
rectly depict power flows of industrial robots. A typical grid
power demand can be seen in Fig. 1. The measurement was
performed at a KUKA KR 16 industrial robot, the test rig is
described later on in section II-C. The HOLD phase shows
the power demand in standstill but with active control. The
motion-dependent power consumption is marked as MOTION
phase.

The general modeling approach based on a substitue circuit
diagram is explained in section II-A, along with the identifica-
tion of the required cabinet parameters. The modeling of the

This is the author’s version of an article that has been published in the ICIT 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/ICIT.2018.8352183

Copyright (c) 2019 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Fig. 2. Electrical substitute circuit diagram for an industrial robot

motion-dependent power consumption is formulated in section
II-B. Validation measurements are presented in section II-C.

A. Substitute Circuit Diagram

The power consumption of industrial robots can be ex-
plained by consideration of a simplified electrical substitute
circuit diagram (Fig. 2). Starting on the right side of the
graphic, the mechanical power demand Pmech,i is predefined
by the motion and process planning. A detailed description of
the modeling approach for this particular term can be found in
section II-B. All axes usually share a supply module, the axes
are electrically coupled via the DC bus. This enables power
exchange between them. The sum of mechanical powers is
represented by an auxiliary variable PDC that characterizes
this power flow. Since most state-of-the-art robot controls are
not able to recuperate, excess power PR is dissipated through
a brake resistor. DC bus losses are summarized as a constant
loss power P`,DC, while P`,grid contains the constant losses
of all peripheral components (e. g. controller, cooling fans,
IO modules, sensors, etc.) as well as the holding brakes that
require active lifting.

In the HOLD phase, the power demand is induced by the
constant losses on the grid side P`,grid and on the DC side
P`,DC:

Pconst = P`,grid + P`,DC. (1)

The power consumption for the static holding is not con-
sidered separately. It is instead included in the constant DC
losses P`,DC. The dependency on the robot configuration is
neglected: for the KUKA KR 16, measurements have shown
a maximum deviation of Phold of approx. 10 % for the most
extreme poses (see section II-C for the test bed description).
Larger robots usually feature a counterbalancing weight sys-
tem which further diminishes the influence. However, with
regard to the KR 16’s peak power of approx. 8 kW (see Fig. 4),
the deviation comes down to less than 0.01 %.

In order to provide the desired accuracy, industrial robots
usually feature backlash free gears with high friction. Hence,
the mechanical losses usually clearly exceed the electrical
ones. Therefore, the proposed simplifications only have a mi-
nor impact on the grid power consumption (see section II-C).

B. Motion-dependent Power Consumption

This section focuses on the calculation of the power con-
sumption in dependence of the executed motion. Assuming
that a trajectory of an industrial robot is predefined, the
calculation of the grid power demand starts with determining
the motor torques τ (t). In general, the model for inverse
dynamics is given by

τ (t) = diag(
1

uG,1
, ...,

1

uG,n
)(M(q)q̈ + c(q, q̇) + g(q))

+ h(q, q̇), (2)

where q, q̇, q̈ are time-dependent joint angles, velocities, and
accelerations provided by the motion planning algorithm. The
term uG,i represents the gear factor for joint i while the vector
τ contains the respective motor torques τi. M contains mo-
ments of inertia, c Coriolis effects, and g gravitational effects.
h summarizes non-linear effects which in our regarded case
is the aforementioned friction. Several comprehensive friction
models can be found in literature, e. g. [5], [6]. However,
many applications feature a more simplified model that yields
satisfying results. In [7], a commonly used friction model
including Coulomb friction and viscous damping (coefficients
fc,i and fv,i, respectively) is presented. It is applied for this
model, expressing friction torque τf,i for joint i as

τf,i(t) = hi(t) = fc,i sign(ωi(t)) + fv,i ωi(t), (3)

where ωi is the angular motor velocity of motor i which
can be determined as

ωi(t) = uG,i q̇i(t). (4)

Most robotic manufacturers utilize a model of the inverse
dynamics within the robot control system for implementation
of feed forward control. Thus, it can be assumed that system
friction parameters are known. If not, they can be obtained us-
ing established identification methods [8] (see also section III).
Equations (2) and (4) are used to obtain the mechanical power
Pmech,i(t) for each motor i:

Pmech,i(t) = τi(t) ωi(t). (5)

The total DC bus power PDC is obtained by summing up
the mechanical power of the n individual motors:

PDC(t) =
n∑

i=1

Pmech,i(t). (6)

For state-of-the-art industrial robots, the DC bus features
a capacitor that is usually dimensioned to smoothen rectified
voltage, not to buffer excess energy in generator operation
phases. Therefore, the capacity is neglected. However, it can
be implemented according to [4] if desired. Further, rectifiers
in industrial robot cabinets are usually not able to recuperate.
Hence, negative values for PDC need to be partly corrected.
The excess power in generator operating phases can cover
constant losses within the DC bus, but grid side losses will
remain. The remaining power consumption is marked as Pgen

in Fig. 1. This is considered as follows:
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PDC(t) + P`,DC ≥ 0 :

Pgrid(t) = PDC(t) + P`,DC + P`,grid,

PR(t) = 0,

PDC(t) + P`,DC < 0 :

Pgrid(t) = Pgen = P`,grid,

PR(t) = |PDC(t) + P`,DC|,

where PR(t) is the power dissipated via the brake resistor.
The time integral of the grid power demand over trajectory
time (from tstart to tend)

Egrid =

∫ tend

tstart

Pgrid(t) dt (7)

equals the grid energy demand Egrid of the system for the
respective motion.

C. Validation of Temperature Dependency

The model is applied to a KUKA KR 16 with a maximum
payload of 16 kg. The test setup for the validation is shown
in Fig. 3. The grid power is measured using a Yokogawa
WT 3000 precision power analyzer. The robot is equipped with
a test weight of 15 kg.

If the robot has a predefined thermal state, the presented
modeling approach grants a high model accuracy, as shown in
Fig. 4. However, this is only viable for laboratory conditions,
not for industrial applications, where the robot temperature
depends on its degree of utilization. Figure 5 demonstrates
the impact of the robot (i. e. motor) temperature on mechanical
power demand. A higher temperature leads to a decrease of
gearbox oil viscosity and, subsequently, to a reduction of
mechanical losses. The values are based on the traced values at
a KR 16 using its internal motor sensors for currents (torques),
velocities, and temperatures. While the motor temperature ϑi
does not necessarily equal the gear temperature, it sufficiently
displays the robot’s relative thermal state using built-in sen-
sors. The measured grid energy consumption for the same
motion at different temperatures is shown in section IV.

Fig. 3. Test setting for power and energy measurements

Fig. 4. Measured and simulated power demand (top) and energy demand
(bottom) for the KUKA KR 16 with ϑ = 60 ◦C

Fig. 5. Mechanical power comparison for axis i = 1 at different motor
temperatures based on measured (traced) values τ̃1 and ω̃1

It becomes obvious that a consideration of the temperature
within the model is inevitable, but previous works often ne-
glect this. While [9], [10] consider the robot temperature, only
temperature dependencies of motor resistors are taken into
account. However, it will be demonstrated that the dependency
of power consumption on temperature can be adequately
depicted by adjusting the friction parameters, as presented in
sections III and IV.

III. IDENTIFICATION OF TEMPERATURE-DEPENDENT
FRICTION PARAMETERS

This section describes the approach to correctly depict the
behaviour presented in Fig. 5 in the energy model. For this,
the previously introduced friction model (3) will be expanded.
In [11], it is stated that fC,i is not affected by temperature
changes, but fv,i holds a logarithmic dependency. Therefore,
only fv,i will be modeled as temperature-dependent:

This is the author’s version of an article that has been published in the ICIT 2018 proceedings.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://dx.doi.org/10.1109/ICIT.2018.8352183

Copyright (c) 2019 IEEE. Personal use of this material is permitted. For any other purposes,
permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



τf,i(t) = fc,i sign(ωi(t)) + fv,i(ϑi) ωi(t). (8)

Now, fv,i is identified for each axis on varying temperatures,
utilizing the test rig described in II-C. For identification, the
robot executes a warm-up program until the specified motor
temperatures are reached. Actual motor torque values τ̃i are
traced as provided by the robot controller. Values for fv,i are
obtained by solving the linear least-square problem for each
axis i:

fv,i(ϑ) = min
fv,i
||(∆τij(ϑ, fv,i))||22,with (9)

∆τij(ϑ, fv,i) = τij(ϑ, fv,i)− τ̃ij(ϑ), (10)

where j represents discrete time step and m the number
of time steps within the measurement. Friction identification
by solving a least-square problem is a common approach.
More detailed information can be found in [12]. The identified
temperature-dependent viscuous friction coefficients can be
used to fit an exponential function or saved directly.

IV. RESULTS

The method introduced in section III is applied to a KUKA
KR 16 industrial robot. The robot executes a set of 20 PTP
motions and values for τ̃i are traced for all axes. The viscuous
damping parameters are identified according to (9).

(a) fv,i for main axes i = 1..3

(b) fv,i for hand axes i = 4..6

Fig. 6. Identified viscuous damping fv,i over motor temperature ϑi for all
axes i = 1..6

Then, robot temperature is raised by performing a desig-
nated warm-up motion for one minute, followed by a new
measurement with the same set of PTP motions, and so forth.
The identified damping parameters are shown in Fig. 6. Values
at very low temperatures feature a slight systematic error
because robot temperature rises up to two degrees during
measurement. The modeled energy consumption over robot
temperature is displayed in Fig. 7a, along with the measured
grid energy demand (measured with the test setting shown
in Fig. 3). The corresponding model deviation is shown in
Fig. 7b. Since the original approach utilizes friction parameters
of a fixed operating point, the modeled energy consumption
is not affected by changes of robot temperature. In contrast, it
can be seen that the presented approach enables high modeling
accuracy across the whole operating temperature spectrum.

The remaining model deviation of approx. 5 % mainly
results from deviations of torque set and actual values as pro-
vided by the robot controller. The torque error emerges from
parameter dispersion for all components as well as several
model simplifications, such as the negligence of structural
and drive oscillations, influence of drive control, and motor
demagnetization effects.

V. CONCLUSION

This paper presented an approach to increase modeling
accuracy for the energy consumption of industrial robots.

(a) Dependency of Egrid on temperature, normalized to Egrid,22 at 22 ◦C

(b) Model deviation in % for original (red) and proposed model (green)

Fig. 7. Comparison of measured and modeled grid energy demand at varying
robot temperatures
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The improvement is achieved by taking the robot tempera-
ture into account. In detail, the viscuous damping parame-
ters are modified based on the motor temperature of each
axis. Validation measurements have shown that the approach
significantly increases modeling accuracy across the whole
operating temperature spectrum. The enhanced model can be
applied to existing efficiency optimization approaches, where a
more accurate model yields better (i. e. more energy-efficient)
results.
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