
Usable Cryptographic QR Codes
Riccardo Focardi

Università Ca’ Foscari Venezia, Italy

focardi@unive.it

Flaminia L. Luccio
Università Ca’ Foscari Venezia, Italy

luccio@unive.it

Heider A. M. Wahsheh
Università Ca’ Foscari Venezia, Italy

heider.wahsheh@unive.it

Abstract—QR codes are widely used in various settings such

as consumer advertising, commercial tracking, ticketing and

marketing. People tend to scan QR codes and trust their

content, but there exists no standard mechanism for providing

authenticity and confidentiality of the code content. Attacks such

as the redirection to a malicious website or the infection of a

smartphone with a malware are realistic and feasible in practice.

In this paper, we present the first systematic study of usable
state-of-the-art cryptographic primitives inside QR codes. We

select standard, popular signature schemes and we compare

them based on performance, size and security. We conduct tests

that show how different usability factors impact on the QR

code scanning performance and we evaluate the usability/security

trade-off of the considered signature schemes. Interestingly, we

find out that in some cases security breaks usability and we

provide recommendations for the choice of secure and usable

signature schemes.

I. INTRODUCTION

A barcode is a machine readable image that represents data
in parallel lines (one-dimensional, 1D, barcode), or as dots or
lines that are arranged in matrix form (two-dimensional, 2D,
barcode). Quick Response (QR) codes are the most widely
used 2D barcodes in the marketing world, in education and
in public services. Users believe that they are simple to use
and useful [20]. They are also the barcodes with higher data
capacity [4], and may store different types of data, such as
numeric, alphanumeric, binary and Kanji characters [10].

Barcodes are used in various scenarios for different pur-
poses. A typical application is to encode a URL that links
to a related Web page containing detailed information about
a product or service. When the barcode is scanned, the link
is usually shown to the user that can decide whether to open
it or not in the browser. Barcodes are also used for physical
access control, identification and logistics. In these cases, they
contain data that are given as input to back-end applications,
which interpret them and act consequently.

In general, barcodes are just a way to provide input to users
or applications and, since they do not offer any standard way
to guarantee content authentication, the input they provide is
in fact untrusted. Potential security risks regard the encoding
of malicious URLs that look similar to the honest ones and
the encoding of data that trigger vulnerabilities in the back-
end applications. Moreover, the barcode reader application
may become a point of attack since, independently of the use
case, the barcode content passes through it and might trigger
vulnerabilities directly on the user device.

In September 2011 the first malicious usage of QR code
was detected by the KasperSky Lab [12]. The attack was

performed using a malicious link that was encoded in a QR
code: the users were obliviously directed to a Web page, where
a malware was unconsciously downloaded in the connecting
device. In general, attacks can target barcode scanning de-
vices (e.g., smartphones) by reaching sensitive information
such as passwords, contact information, photos, videos, credit
card numbers, etc., and can thus violate the users’ privacy.
Attackers may also take full control of mobile devices by,
e.g., accessing E-mail, SMS, etc. [15].

In the last years there has been a large increase in the use
of barcodes in every day life, thus preventing attacks is a
necessary and challenging issue. In the literature, there are
some proposals and tools to improve QR code security but
none of them justifies the architectural choices and the usage
of the underlying cryptographic scheme, and often the adopted
schemes are vulnerable or deprecated [6].

In this paper, we present the first systematic study of usable

state-of-the-art cryptographic primitives inside QR codes. We
select standard, popular signature schemes and we compare
them based on performance, size and security. We conduct
tests that show how different usability factors impact on the
QR code scanning performance, and we evaluate the usabil-
ity/security trade-off of the considered signature schemes. Our
results show that secure QR codes can be used in practice, but
schemes with big size overhead might rise usability issues.
Moreover, secure QR codes are denser and cannot be printed
on small areas without compromising usability. In particular,
we show that in some cases providing a high degree of
security breaks usability, and we provide recommendations for
the choice of secure and usable signature schemes. We have
implemented a proof-of-concept Android app that confirms our
findings. In particular, when the scheme and the printing size
are chosen appropriately with respect to usability constraints,
the QR codes can be scanned without affecting the user
experience.

Contributions: Our contributions can be summarized as
follows: (i) we survey attacks on QR codes and discuss the
potential benefits of enhancing them with digital signature; (ii)
we present the results of extensive experiments to determine
the impact of usability factors on QR code scanning; (iii)
we analyze the time and space overhead of a selected set of
digital signature schemes, with various key sizes and formats;
(iv) we evaluate the digital signature schemes with respect to
the usability analysis.

Related work: In [9], it is proposed a tamper detection
system for QR codes based on steganographically embedding

Preprint
The final version is available at https://ieeexplore.ieee.org/document/8352431

a digital signature into the error correcting area. However,
the paper appears preliminary as it only considers small
sizes for signatures and the embedding of actual signatures
is left as a future work. In [19], the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA) is used to digitally sign
barcodes. Experimental results on different key lengths and
hash functions for ECDSA show a reasonable space overhead
but, with respect to our paper, no comparison with other
signature schemes is done and there are no considerations
about usability. The reported time overhead might also, by
itself, break usability. We show that with modern smartphones
time is not anymore an issue. In [17], a group of students from
MIT have performed preliminary experiments about enhancing
QR codes with cryptography and digital signature.

We also find proposals that are not based on security en-
hanced QR codes. For example, the study of [23] investigates
the security features of existing QR code scanners for prevent-
ing phishing and malware propagation. Authors propose a new
scanner, named SafeQR, based on two existing Web services:
the Google Safe Browsing API [8] and the Phishtank API [18].
There exists some commercial solutions for secure QR codes,
e.g. [3], [22], but there is no publicly available description of
the proprietary technology which prevents us to perform any
security analysis.

Paper Structure: The rest of the paper is organized as
follows: in Section II we present well known attacking sce-
narios and discuss which are prevented by adopting digitally
signed QR codes. Section III analyzes the performance of QR
code scanning with respect to different usability factors, and
discusses the results of different usability tests. In Section IV,
we analyze the overhead of time and space introduced by the
addition of cryptographic primitives inside QR codes, using
different standard formats, and we evaluate the cryptographic
primitive with respect to usability. Section V draws some
concluding remarks.

II. SECURITY OF DIGITALLY SIGNED QR CODES

In the following, we consider the most prominent attack
scenarios for QR codes and discuss in which extent digitally
signed QR codes prevent them.

Phishing: In a barcode phishing attack, the attacker tries
to get sensitive information such as the login details and the
credit card number of a user by, e.g., encoding a malicious
Web address inside the barcode that redirects the user to a
fake Web page which appears very similar to the legitimate
one [15], [16], [20].

Malware propagation: In [13] it is discussed how QR
codes can be used by attackers to redirect users to malicious
sites that silently install a malware by exploiting vulnerable
applications on the device. This is typically done through
an exploit kit that fingerprints the device and selects the
appropriate exploit and malware.

Barcode tampering and counterfeiting: Since QR codes
can be used to provide information about a good, an attacker
can benefit by pasting a fake QR code so to advertise false

products information or false special offers in which the
adversary will sell another product to the victims [4], [15].

SQL and command injections: The study of [15] refers
to automated systems using the information encoded in the
barcodes to access a relational database. If the string in the
barcode is appended to the query without proper sanitization,
the attacker may easily trigger a SQL injection attack.

Cross-site scripting attacks (XSS): Mobile apps are often
based on Web technology and this may allow malicious
JavaScript code to be injected into trusted HTML pages, and
executed in the app, for example when the server does not
sanitize the user data that is rendered in a page [11].

Reader applications attacks: During the installation pro-
cess, many barcode reader applications ask for full permissions
to access user’s resources such as the device location, the
contact list and the photos. In case of a vulnerability that can
be triggered by a suitable crafted barcode, the attacker would
get access to private user’s data [14].

Discussion: Enhancing QR codes with digital signature
prevents the above attacks only when it is not possible for an
attacker to perform a legitimate signature. In an open environ-
ment this can be hard to achieve, since a Public Key Infrastruc-
ture (PKI), similar to the one for the HTTPS protocol, would
be vulnerable to the “HTTPS phishing problem”, i.e., attackers
that have a valid certificate and use names similar to the one
of legitimate entities [21]. However, in a closed/controlled
environment, the reader might be configured to only recognize
internal certificates and verifying the signature would prove
the trustworthiness of the QR code content. For example, a
supermarket with its own app might be configured to only
user the supermarket’s public key for signature verification.

III. USABLILITY OF QR CODE SCANNING

In this section we study the degree of usability of QR code
scanning with respect to the size of the payload. This is of
ultimate importance in order to establish the maximum space
overhead available for cryptographic material. Interestingly,
we will see (cf. Section IV) that, for some cryptographic
schemes, using strong key lengths might compromise usability.

We focus on phone-based readers, as we believe this is the
most common use case. Below, we describe the experiments
that we performed to measure the average time for scanning
barcodes of various sizes which, in turns, can be interpreted
in terms of usability.

A. Usability parameters

We define QR code usability based on the success and
performance of scanning. Along ISO 9241, we consider:
satisfaction, the user comfort in terms of simplicity to perform
the scanning; efficiency, the time required to perform the
scanning; effectiveness, the possibility of successfully scanning
a barcode. We have conducted a usability survey among 351
users from 8 universities in 5 different countries. Participants
were about 50% males and females, 65% were between 18
and 24 years old and 35% between 25 and 35 or over. The
survey (that we do not include for lack of space) proposed

some barcodes to users and asked questions about their scan-
ning experience. Based on the answers we have distilled the
following usability parameters.

We first introduce the Readability Range, i.e., the range of
distances inside which a barcode is readable.

Definition 1: The Readability Range (RR) is the difference
between the maximum (DMax) and minimum (DMin) distances
in centimeters between the scanning device and the barcode,
inside which the barcode is readable, i.e., RR = DMax � DMin.

Intuitively, the larger is RR the bigger is the tolerance over
the scanning distance, which naturally makes scanning more
user-friendly, improving satisfaction. Our users considered
usable an RR of at least 20 centimeters.

For what concerns efficiency, we consider the Scanning Time

(ST), i.e., the time, expressed in seconds, required to scan
a barcode and extract its content. Barcode Readability (BR)

classifies the user scanning experience in term of ST . Users
of our survey gave the following classification:

Definition 2: Barcode Readability (BR) is defined as:

Normal if ST < 5;
Reasonable if 5  ST < 10;
Hard if 10  ST < 15;
Unreadable if ST � 15, or failure.

We will call Normally Readable barcodes (NR) the barcodes
with Normal BR. We will consider usable a barcode that is
NR at least 75% of the times.

We now consider effectiveness in terms of percentage of
barcodes that are correctly read. In fact, it might happen that
some patterns in a barcode image correspond to another valid
barcode. In this case, the application might return the payload
from the spare barcode with unexpected consequences [4].

Definition 3: Given a set of barcodes B, let BM be the set
of barcodes that are incorrectly decoded. Then, the Misleading

Percentage (MP) is defined as MP =
|BM |
|B| .

Misleading confuses users and is source of attacks. Our users
considered tolerable a Misleading Percentage of at most 5%.

B. Estimating usability

In order to evaluate how the various parameters discussed
in Section III-A may affect the usability of barcode scanning,
extensive experiments where conducted with different image
and data sizes. For the experiments, we have used an Android
smartphone with a 1.2 GHz dual-core CPU, 1 GB of RAM
and a 8 MP Camera. An application running on a laptop
computer generated and displayed 480 different barcodes
containing random data that were automatically scanned by
the smartphone. In order to simulate human hand shaking, the
barcode images were moved and zoomed. To confirm results,
more experiments were conducted by humans, so to have real
hand shaking in place.

The generated barcodes were of four different sizes: 200⇥
200, 300⇥300, 400⇥400, 500⇥500 pixels that, visualized on a
96 DPI screen, correspond to 5.29⇥5.29, 7.93⇥7.93, 10.58⇥
10.58, 13.22 ⇥ 13.22 centimeters. The idea is to cover both

(a) RR for 300⇥300. (b) RR for 500⇥500.

Fig. 1: Measuring the Readability Range (RR).

(a) BR for 300⇥300. (b) BR for 500⇥500.

Fig. 2: Measuring the Barcode Readability (BR).

barcodes that can be printed on small areas, e.g., in products,
and bigger ones that might be printed on advertisements, bus
stops, etc. For readability, in the following we will always
refer to the size in pixel (assuming implicitly 96 DPI) but, of
course, what matters in the experiment is the actual size. The
generated barcodes contain random data of various sizes from
100 to 2000 bytes. For lack of space we show only parts of
the results for the different sizes.

The first set of experiments measures the Readability Range
(RR). Figure 1a and Figure 1b show the measured RR for (300
and 500 pixels) barcodes, where the X-axis represents the data
size in bytes and the Y-axis represents the distance between the
scanning device and the barcode image. We observe that when
the data size increases, the RR becomes narrower. For small
data size, barcodes can be read with wide RR, for example the
barcode with 100 bytes data size is readable from a distance of
31 to 190 cm (RR = 159 cm) for 500⇥500 barcodes, while the
same barcode size with 900 bytes data size is readable from
31 to 60 cm (RR = 29 cm), reducing usability. Results also
show that the image size plays important role. When the image
size is larger, the RR becomes wider for the same data size.
For example, if we compare the RR for two barcode images
with the same data size (500 bytes) and different image sizes
of 300 and 500 pixels, we have that RR is 30 cm and 52 cm,
respectively.

The second set of experiments evaluates the relation be-

(a) MP for 200⇥200. (b) MP for 400⇥400.

Fig. 3: Measuring the Misleading Percentage (MP).

tween barcode data size, image size and the Scanning Time
(ST) in terms of Barcode Readability (BR). Figure 2a and
Figure 2b show the BR measurements with 300⇥300 and
500⇥500 pixel barcodes. The data sizes were grouped into
five ranges of 100-400, 500-800, 900-1200, 1300-1600 and
1700-2000 bytes. The X-axis represents the data size groups,
the Y-axis represents the measured BR. E.g., in the first
group of 100-400 bytes, the first blue bar represents the total
Barcode Readability with a value of 100%. Note that, the
total Barcode Readability is the summation of normal (75%),
reasonable (25%) and hard (0%), in other words, we include
the barcodes with Scanning Time less than 15 seconds (cf.
Definition 2). The yellow bar represents the percentage of
unreadable barcodes. The summation of the percentage of total
Barcode Readability and of unreadable barcodes represents the
whole set of barcodes (100%).

We observe that, when the data size increases, readability
becomes harder and requires more time, i.e., ST increases. For
example, barcodes of size 500⇥ 500 with 100-400 bytes data
size are all readable, and 95.8% of them with normal Barcode
Readability (i.e., ST less than 5 seconds, cf. Definition 2).
When data size increases to 1700-2000 bytes, barcodes are all
readable: 41.7% with normal readability, 50% with reasonable
readability (5-10 seconds) and 8.3% with hard readability (10-
15 seconds). We also notice that larger printing image size
gives smaller ST ’s. For example, comparing the groups 900-
1200 bytes in Figures 2a and 2b, we notice that the ST has
lower values in larger images: 91.6% normal, 8.4% reasonable
and 0% hard for 500⇥500 images with respect to 50% normal,
45.8% reasonable and 4.2% hard for 300⇥300 images.

The third set of experiments evaluates the relation between
barcode data size, image size and the correct barcode de-
coding. Figure 3a and Figure 3b show the percentage of
correct reading versus the Misleading Percentage (MP) for
200⇥200 and 400⇥400 pixels barcodes, respectively. The X-
axis represents data size groups while the Y-axis represents
the fraction of barcodes that are correctly and incorrectly
decoded, among the ones that are readable. We notice that
MP increases when the data size increases. In fact, barcodes
become denser and the probability of misleading barcode

TABLE I: Usability summary.

Size RR � 20
(bytes)

NR � 75%
(bytes)

MP < 5%
(bytes)

Max size
(bytes)

200⇥200 400 400 800 400
300⇥300 700 400 800 400
400⇥400 1100 1200 1200 1100
500⇥500 1100 1200 1200 1100

decoding increases. E.g., for 400⇥400 barcodes MP is 0%
for the group of 100-400 bytes and becomes 29.2% for 1700-
2000 bytes. Interestingly, MP generally decreases when the
image size increases, since larger image sizes allow for a
more accurate scanning of barcodes with large amount of data.
For example, comparing MP values for two barcode images
of 400⇥400 and 200⇥200 pixels with the same data size of
900-1200 bytes, we observe that MP is 12.5% for 200⇥200
barcodes and 4.2% for 400⇥400 barcodes.

Table I summarizes the results of our experiments on the
usability of QR code scanning. For each of the tested barcode
sizes we report the maximum data size, in bytes, that can be
included in the code providing a good level of usability. As
we have previously indicated, we require that the Readability
Range (RR) is at least 20 cm, that the percentage of Normally
Readable barcodes (NR) is more than 75% and the Misleading
Percentage (MP) is less than 5%. Interestingly, we get similar
values for the various parameters. In the last column we pick
the lowest one, i.e., the maximum size that is compatible with
all the selected parameters.

IV. DIGITALLY SIGNED QR CODES

In the following we discuss the time and space overhead
of selected cryptographic primitives implemented in standard
Android smartphone libraries. In particular, in Section IV-A
we study time and space overhead of digital signature standard
mechanisms; in Section IV-B we discuss time overhead of data
formats, which are necessary to embed the cryptographic data
together with the QR code payload; finally, in Section IV-C we
summarize the usability of QR codes with the various digital
signature algorithms and key sizes.

In order to compute the size of digital signatures and the
average needed time to verify a signature, we have considered
the two most commonly used digital signature algorithms:
RSA with key lengths 1,024 bits, 2,048 bits and 3,072 bits
and Elliptic Curve Digital Signature Algorithm (ECDSA) with
key length of 256 bits. We use SHA-256 as hash function.
For new applications, ENISA [5] recommends a key length
of 3,072 bits for RSA and of 256 bits for Elliptic Curve, so
we will consider RSA 1,024 as low-secure, 2,048 as medium-
secure, and RSA 3,072 together with ECDSA 256 as high-
secure. However, it is worth noticing that ENISA recommends
to adopt only certain variants of RSA and ECDSA for new
applications, i.e., the ones provided with a security proof
in a strong computational model. We believe that size and
performance are not significantly affected by picking a specific
variant. We thus report on results achieved using the default
implementations offered by the cryptographic library, and we

(a) Space overhead for RSA
and ECDSA signatures.

(b) Time overhead for RSA and
ECDSA signature verification.

Fig. 4: Space overhead, in bytes, and time overhead, in
milliseconds, for digital signatures in Android.

leave as future work a comparison between the different
variants of the signature algorithms. The interested reader can
refer to [5] for more detail.

A. Time and space signature overhead

Figure 4a presents the signature lengths for different key
lengths of RSA and ECDSA. Notice that, ECDSA signature
length is twice the size of key length, i.e., 512 bits = 64
bytes, while RSA signature length is equal to the key length.
However, adding a digital signature will require more control
data than just the digital signature itself as we will discuss in
Section IV-B.

We have developed an Android mobile application to test
signature’s verification overhead. The average signature ver-
ification delay is shown in Figure 4b. The tests has been
performed on an Android smartphone with 1.2 GHz dual-core
CPU, 1 GB of RAM. We notice that, digital signature verifi-
cation consumes only a small time interval in milliseconds for
the various key lengths and algorithms. Thus, the considered
digital signature algorithms and key lengths can in principle
be used in QR codes in terms of signature size and verification
delay. However, size can be critical with respect to usability
in some cases, as we will discuss in Section IV-C.

B. Format overhead

Since we have seen that size influences usability, we will
aim at the most concise possible format providing reliable
encoding and decoding. We aim at embedding the following:
Payload The actual data that we want to load in the QR code.

It can be offline information requiring no Internet con-
nection, or an URL referencing to an external resource;

Generator The identity of the QR code generator;
Algorithm The cryptographic mechanisms adopted;
Signature The digital signature;
Certificate The certificate of the QR code generator. This can

be included in the barcode or referenced through an URL.
We consider two possible standard formats: JavaScript Ob-

ject Notation (JSON) [1], and Abstract Syntax Notation One
(ASN.1) [2]. JSON is more verbose than ASN.1. For the
same data structure we have observed that ASN.1 requires

TABLE II: Overall size example.

Algorithm
Key

length
(bits)

with certificates without certificates
JSON
(bytes)

ASN.1
(bytes)

JSON
(bytes)

ASN.1
(bytes)

ECDSA 256 398 377 151 136
RSA 1,024 588 567 213 198
RSA 2,048 976 955 341 326
RSA 3,072 1,360 1,339 469 454

TABLE III: Overall size with 200 bytes of data using JSON.

Algorithm Key
length
(bits)

Signature
(bytes)

JSON
(bytes)

JSON
1 cert.
(bytes)

JSON
2 cert.
(bytes)

ECDSA 256 64 218 464 710
RSA 1,024 128 282 688 1094
RSA 2,048 256 410 1072 1734
RSA 3,072 384 538 1456 2374

about 75% of the space required by JSON. However, JSON
has the advantage of being human readable which might be
useful when the QR code is scanned using standard readers,
as it would provide a meaningful result anyway. Our best
encoding of all the required fields (including the certificate)
requires 83 and 104 bytes for ASN.1 and JSON, respectively.
Without certificate the overhead reduces to 39 and 54 bytes,
respectively. We have used very short but human readable
tags. In principle it would be possible to adopt ad-hoc, less
verbose, formats but at the price of a less reliable encoding
and decoding. So, even if there is margin for improvement,
we preferred to adopt standard formats in our study.

Table II presents an example of the overall size of a signed
QR code with and without the certificate. The payload is a
33 byte long URL, and the certificate contains test data. We
notice that including the certificate significantly increases the
data size which, in turns, reduces usability.

C. Usability evaluation

Table III summarizes an estimation of the data size for the
various algorithms and key size, up to two certificates, using
the most verbose format (JSON), and assuming 100 bytes of
data for the payload, ID’s, etc. and 100 bytes for meta-data
of each extra certificate. Without certificates, we just sum up
the size of signature with the overhead for JSON structure
plus the 100 bytes of data. For certificates, we have to add
one more signature, one public key, JSON overhead and 100
more bytes, and so on. We consider more than one certificate
in order to evaluate usability with certificate chains. Crossing
Table I with Table III, we obtain Table IV.

ECDSA and RSA 1,024 without certificates are the only
ones that fit small and big QR codes. ECDSA with one
certificate and RSA 2,048 without certificates are borderline
(slightly bigger than 400 bytes), so for small payloads they
might provide usable QR codes. All other algorithms except
RSA 3,072 with one and two certificates and RSA 2,048 with
two certificates are fine with big QR codes (at least 400⇥400).
RSA 3,072 with one certificate and 2,048 with two certificates
are too big and might result in poor usability. Notice that with

TABLE IV: Usability of the cryptographic solutions.
Algorithm Key

length
(bits)

Signature
(bytes)

JSON
(bytes)

JSON
1 cert.
(bytes)

JSON
2 cert.
(bytes)

ECDSA 256 64 3 3a 3b

RSA 1,024 128 3 3b 3b

RSA 2,048 256 3a 3b 7
RSA 3,072 384 3b 7 7

a Requires at least 400⇥ 400 size; fits smaller sizes with small payloads;
b Requires at least 400⇥ 400 size;

two certificates ECDSA and RSA 1,024 require bit QR codes.
The only algorithm that scales up to 3 certificates is ECDSA.

We have implemented a proof-of-concept secure QR code
reader for Android based in the Zebra crossing (ZXing) library
[7]. The reader supports the various digital signature schemes
and key lengths discussed in Section IV-A. We have tested
our implementation on 480 different barcodes confirming our
usability evaluation on the various algorithms and key sizes:
the app is usable in all of the cases pointed out in Table IV.

V. CONCLUSION

QR codes may be subject to attacks in which malicious
content is embedded in the barcodes in order to break user’s
privacy, steal credentials, redirect to malicious websites or
install malware. In fact, a QR code is just a medium that
provides input and, as such, might easily become source
of attacks. Digital signature is a standard effective way to
authenticate the barcode content and prevent most of the
attacks on QR codes when adopted in closed environments,
i.e., when the public keys of trustworthy entities are clearly
established. However, it is rarely adopted in this setting since
QR codes have limited space and are usually scanned by
smartphones that do not generally offer the same performance
as personal computers or laptops. This motivated us to perform
a systematic study of usable digitally signed QR codes.

First of all we have tested that modern smartphones do
not have performance issues for what concerns signature
verification. Notice that, this was not the case a few years
ago [19]. Then we have considered size issues. QR codes can
potentially embed up to about 3Kbytes which would allow for
easily embedding digital signature and certificates. However,
we have performed a series of experiments to check in which
extent such “big” QR codes can be efficiently scanned, with a
reasonable user experience. We have considered the scanning
time, the distance range tolerated while scanning, and the
possibility of spuriously scanning other (simpler) barcodes that
appear, by chance, in the QR code.

Our results show that ECDSA and RSA with small keys
are usable on QR codes even when printed in small sizes (for
example on supermarket products). Bigger RSA keys requires
bigger print sizes, and RSA with 3,072 bit keys give usability
problems when one certificate is included in the QR code.
In fact, when certificates are included, we have pointed out
potential usability issues for all of the experimented signature
schemes. Despite these limitations, our results are promising

and we have implemented a proof-of-concept Android app
that performs the scan of cryptography enhanced barcodes,
confirming our findings. We have used standard algorithms
and formats so we are confident that our solution might be
employed in practice.

As a future work, we intend to study less popular signature
schemes to look for potential secure-and-usable alternatives to
the popular ones, and we want to extend our solution to also
provide confidentiality through encryption.

Acknowledgment: Work partially supported by CINI Cy-
bersecurity National Laboratory within the project FilieraSi-
cura funded by CISCO Systems Inc. and Leonardo SpA.

REFERENCES

[1] JSON, 2016. http://www.json.org.
[2] ASN.1, 2017. http://www.itu.int/en/ITU-T/asn1.
[3] 2D Technology Group Inc. Barcode Security Suite, 2016. http://www.

2dtg.com/node/74.
[4] A. Dabrowski, K. Krombholz, J. Ullrich, and E. Weippl. QR Inception:

Barcode-in-Barcode Attacks. In Proc. of SPSM’14, pages 3–10, 2014.
[5] European Union Agency for Network and Information Security

(ENISA). Algorithms, Key Size and Parameters Report, 2014.
[6] R. Focardi, F.L. Luccio, and H.A.M. Wahsheh. Security Threats and

Solutions for Two Dimensional Barcodes: A Comparative Study. In
Daimi K., editor, Computer and Network Security Essentials, pages 207–
219. Springer, 2018.

[7] GitHub. ZXing project home. https://github.com/zxing/zxing/.
[8] Google. Google Safe Browsing API. https://developers.google.com/

safe-browsing/.
[9] T. Ishihara and M. Niimi. Compatible 2D-code Having Tamper Detec-

tion System with QR-code. In Proc. of the IIHMSP’14, pages 493–496.
IEEE, 2014.

[10] ISO/IEC Standard. ISO/IEC 18004:2015, Information technology –
Automatic identification and data capture techniques – QR code 2005
Bar code Symbology Specification, 2015.

[11] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. Peri. Code Injection
Attacks on HTML5-based Mobile for Apps: Characterization, Detection
and Mitigation. In Proc. of ACM CCS’14, pages 66–77, 2014.

[12] Kaspersky Lab. Malicious QR Codes: Attack Methods & Techniques
Infographic. http://usa.kaspersky.com/about-us/press-center/press-blog/
2011/malicious-qr-codes-attack-methods-techniques-infographic, 2011.

[13] A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti, and A. Francillon.
Optical Delusions: A Study of Malicious QR Codes in the Wild. In
Proc. of IEEE/IFIP DSN’14, pages 192–203, 2014.

[14] P. Kieseberg, M. Leithner, M. Mulazzani, L. Munroe, S. Schrittwieser,
M. Sinha, and E. Weippl. QR Code Security. In Proc. of MoMM’10,
pages 430–435, 2010.

[15] P. Kieseberg, S. Schrittwieser, M. Leithner, M. Mulazzani, E. Weippl,
L. Munroe, and M. Sinha. Malicious Pixels Using QR Codes as Attack
Vector. Trustworthy Ubiquitous Computing, 6:21–38, 2012.

[16] K. Krombholz, P. Fruhwirt, P. Kieseberg, I. Kapsalis, M. Huber, and
E. Weippl. QR Code Security: A Survey of Attacks and Challenges for
Usable Security. In Proc. of HAS’14, 8533, pages 79–90, 2014.

[17] K. Peng, H. Sanabria, D. Wu, and C. Zhu. Security Overview of QR
Codes, 2014. MIT Student Project.

[18] Phishtank. https://www.phishtank.com/.
[19] F Razzak. Spamming the Internet of Things: A Possibility and its

Probable Solution. In Proc. of MobiWIS’12, pages 658–665, 2012.
[20] T. Vidas, E. Owusu, S. Wang, C. Zeng, L. Cranor, and N. Christin.

QRishing : The Susceptibility of Smartphone Users to QR Code Phishing
Attacks. In Proc. of FC’13, LNCS, Springer, 7862, pages 52–69, 2013.

[21] Wired. Sneaky exploit allows phishing attacks from sites
that look secure, 2017. https://www.wired.com/2017/04/
sneaky-exploit-allows-phishing-attacks-sites-look-secure/.

[22] V. Yakshtes and A. Shishkin. Mathematical Method of 2-D Barcode
Authentication and Protection for Embedded Processing, 2012. https:
//www.google. com/patents/US8297510.

[23] H. Yao and D. Shin. Towards Preventing QR Code Based for Detecting
QR Code Based Attacks on Android Phone Using Security Warnings.
In Proc. of ACM ASIA CCS’13, pages 341–346, 2013.

