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Abstract—This paper presents a novel approach for an energy
control of a DC microgrid. It combines decentralized grid
management and energy management. For this purpose, the
conventional voltage droop curves are extended to a characteristic
diagram with electricity costs as a further dimension. The support
points of these characteristic diagrams are then optimized with a
particle swarm optimizer. The target criterion of this optimization
is a monetary cost function, that takes several effects, such as
depth of discharge, on the operating costs into account. The
optimized characteristic diagrams are designed more robust by
a sensitivity analysis. The proposed method has been tested
successfully in simulations and experiment and was always more
cost-efficient than the initial characteristics diagram.

Index Terms—energy control, DC microgrid, characteristic
diagrams, voltage droop control

I. INTRODUCTION

The turnaround in energy policy is one of the major current
challenges for the manufacturing industry in Germany. In
addition to the creation of an efficient energy infrastructure
at a supraregional level, local efforts are required by every
energy user. Increasing energy efficiency in production, a
higher flexibility to respond to fluctuating energy supplies,
and increasing the robustness of production to varying energy
supply quality are tasks that must be intensified in the near
future.

In the industrial environment the 400V three-phase power
supply is the standard. The rotational speed of rotary field
machines, for this type of power supply system, depends on
the mains frequency of the power supply. So converter systems
are used to vary the frequency of the motor field and change
the motors speed. The converter systems consist of a rectifier
which supplies a DC voltage intermediate circuit, and a three-
phase pulse inverter, providing the rotating field for the motor.
Since the rectifiers are usually designed as diode bridges and
not as active front ends, no feedback to the 400V three-phase
system is possible.

By replacing the three-phase grid with a DC grid, in indus-
trial environments, it is possible to exchange electrical energy
within the entire factory, which allows the use of a central
energy storage at the factory level. Electrical energy generated
by braking processes no longer has to be converted into heat
in brake resistors, but can be distributed to other systems.
The decentralized rectifiers are eliminated, resulting in space
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Fig. 1. Overview images of the investigated DC microgrid

]

savings. The ability to integrate electrically commutated DC
motors (EC motors) is increased. These are characterized by
their high energy density and their ease of manufacture.

A typical DC microgrid is shown in Fig. 1. The supply is
shown on the left side of the grid and consumer are on the right
side. The supplier consists of an active front end converter
which supplies the grid from the main utility grid Tac. In
addition to the rectifier, the intermediate circuit capacity Cac
of this station can be seen in Fig. 1. The grid participants are
connected by a cable. These are shown by the cable equivalent
circuit Zac diagram. Fig. 1 shows, that renewable energy
source, such as wind turbines or photovoltaic systems, can as
well be considered in microgrid systems. An energy storage
system can save temporary energy overproduction and, in case
of a main supply error, can be used as an uninterruptible power
supply. These three suppliers are controlling the grid voltage
through their power input. The consumer power (shown on
the right side of Fig. 1), on the other hand, is fixed and can’t
be adjusted as the production process itself is unmodifiable.
Therefore all network users whose power consumption cannot
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be changed are hereinafter referred to as passive grid users
and whose power consumption can be changed are referred to
as active grid users.

The control concepts of DC microgrids can be divided
into two categories: central approaches with communication
between the participants and decentral approaches without
communication. Central approaches are not easy to expand,
have high computing time and poor reliability in case of
failure of a single DC user [1]. Therefore, this paper presents
a decentralized approach. Decentralized DC microgrid control
also has some weaknesses, such as suboptimal fulfillment of
the control strategy [2], but is a valid alternative to the central
approach [1].

Both control concepts have two different focuses. The first,
grid management, has the focus to keep the grid voltage
within a tolerance range and ensures that all network users
are in a suitable operating state. The second method, called
energy management, focuses on energy consumption reduction
or in the considered case monetary cost reduction of the DC
microgrid.

A. Grid Management

The regulation of the DC mains voltage must be controlled
very quickly. Therefore decentralized approaches are often
used [3]. Popular options are adaptive droop voltage [4] or
fuzzy control [5]. By using e.g. adaptive droop voltage control,
the DC mains voltage can be kept within limits. Some example
droop curves are displayed in Fig. 2. In this work, this
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Fig. 2. Exemplary droop curves for active grid users

The control loop for the trial cell is displayed in Fig. 3.
The controller provides the output current depended on the
measured DC voltage. Calculating the control deviation by
subtracting desired form measured voltage is done in the
controller through the droop voltage curves. The output current
of the active grid users feeds the DC grid. The passive grid
users on the other hand interfere the grid and are, therefore,
the disturbance of the control loop.

B. Energy/Cost Management

Energy management is often implemented via central ap-
proaches, since external information such as battery status or
electricity price is required [6]. There are different approaches
for central control e.g. model predictive [7] or scheduling
and a short-time predictive control [8]. Although a central
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Fig. 3. Block diagram of the trial cell

approach for energy management is appropriate, due to the
aforementioned disadvantages, some work has focused on de-
centralized approaches [9], [10]. A possibility of decentralized
energy management with characteristic lines is [9]. Here the
curves is adapted online by a genetic algorithm. An essential
difference in the literature is the optimization criterion, the
cost function. Here often only the electricity costs are used to
evaluate the absorbed energy [8]. In manufacturing industry
electricity costs are usually fixed, but these get updated every
15 minutes at the electricity stock exchange [11]. There are
already electricity rates who offer this fluctuating price [12]. A
detailed approach for a cost function can be found in [9] where
various operating costs are integrated. However, the discharge
depth is neglected, which has a strong influence on the lifetime
and thus on the operating costs.

We propose a new approach to achieve this cost efficient
grid management concept. First, the voltage droop curves have
to be extended to a characteristic diagram with the electricity
costs as a further dimension. A particle swarm optimizer is
used to simplify and optimize the design of the new diagrams.
The entire optimization process is performed offline. As an
optimization criterion, a cost function was set up which,
among others, takes into account the energy storage service
life reduction through usage. To make these characteristic
diagram more robust, a sensitivity analysis is applied and the
characteristic diagram is revised with respect to the result. In
the end, the results are compared and analyzed.

The article is organized as follows: In Section II, the layout
of the system is described and the modeling is presented.
Moreover the modeling is validated with an experimental set-
up. The structure of the characteristic diagrams is described in
Section III, followed by the formulation of the cost function
for the optimization. Based on a sensitivity analysis the
final characteristic diagrams are created. The results will be
discussed in Section IV. The paper closes with a conclusion
in Section V.

II. SYSTEM DESCRIPTION AND MODELING

At first we take a look at the trial structure. To really take
benefits from the change to a DC microgrid the consumers
need to offer a lot of breaking energy to the DC microgrid.
Robots have synchronised movements, so all axes of one
robot are breaking at the same time and a lot of breaking
energy is generated, which is normally converted into heat.
By establishing a DC microgrid this energy can be distributed
to other robots. Due to the outlined benefits, the DC microgrid
considered in this paper is an exemplary robot cell. Its design
and modeling will be presented in this section.
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A. Trial Cell

The trial cell is composed by four KUKA KR 16-2 robots
as seen in Fig. 1. As shown in previous work [13], the
energy consumption of each robot can be simulated with
high accuracy. As renewable energy source a photo voltaic
system was added. For interruptibility power supply purposes
a generic lithium-ion battery was included into the grid. The
supply is realized as an active front end converter.

For the optimization, a randomized data set was generated
for each robot covering two times 50 point to point move-
ments. The power curves of these four robots were merged
together with different pause lengths. The data for the photo
voltaic system are measurements originated from a private
facility. To increase the variance in the data, measurements
were scaled down from 2.5 days to 2 hours. This also has
the effect that a more complex test scenario has been created.
The power curve used for optimization is shown in Fig. 4.
The electricity price change was reduced from 15 minutes to
5 minutes for the same reason as mentioned previously. Its
change was modeled based on a real price of electricity course
on the stock exchange in Germany [11]. In order to show that
the optimization results are not only valid for the power curve
used for optimization, a validation power curve with the same
criteria was generated.
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Fig. 4. Representation of the power curves which were used for optimization.

B. DC-Grid Modeling

For optimization proposes a fast model needs to be de-
signed. This is done by neglecting cable losses. Each producer
and consumer has a huge DC link capacity. Compared to these
capacities the cables losses, for short cables, have nearly no
effect. Without cables losses the DC link capacities can be
merged into one capacity. The general idea behind the DC
grid modeling is that the energy E' stored in the electric field
of a capacitor can be described by:

E:%~C-U2 (1)

with C' being the capacity of a general capacitor and U being
the applied electrical voltage, utilized to our case, U is the
grid voltage. The controller output I, which dependents on the
DC gird voltage, needs to be converted to DC grid power by
multiplying it with the DC grid voltage. The DC link power
of active users can be calculated on this way, the DC grid
power of passive users are given as a load profile or can be
measured. By multiplying the DC grid power Py, of each

DC grid users by the time step AT used in the simulation the
realized work AWy, in time step k is received

AWeum(k) = Pom(k) - AT. @)

Under the assumption, that the realized work AWy, is stored
in the electrical field, Eqn. 1 can be rewritten as:

2

Whereas Cpc is the DC link capacity and Upc(k) is the
resulting DC grid voltage for the time step k. With this
equation the DC voltage can be calculated based on the
consumer power.

C. Model Evaluation

The model is compared with a test setup consisting of two
active front ends and a DC-DC converter with a lithium-ion
battery. Fig. 5 shows a comparison of the qualitative model
and the measured values from the test setup. The measured
DC grid voltage is obtained through the internal voltage sensor
of the active front end, the DC grid power by multiplication
of voltage and current sensor data. The grid voltage is well
approximated by the model, considering how noisy (£ 5 V see
Fig. 5) the voltage measurement is. The power measurement
also fits the model prediction. The power peaks are slightly
overestimated and the constant interval following the peaks
are somewhat underestimated, but the energy error between
measured and simulated energy is 4.5 % with a measurement
duration of 16 minutes. Fig. 5 shows only the first minute of
the evaluation, since the other 15 minutes show no differences
in behavior.

The test setup is not part of this paper and will be discussed
in future work [14].
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Fig. 5. Comparison of the proposed model with a measurement of the test
setup.

III. OPTIMIZATION

In this section the optimization of the controller’s behavior
is addressed. For this purpose the adaptive droop voltage
control approach, previously proposed by [15], is extended by
an additional dimension. The grid points of the characteristic
diagram are then optimized using a monetary cost function.
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A. Characteristic Diagram

The behavior of the DC grid needs to be adapted depending
on the electricity price, therefore, it is added as further dimen-
sion to the characteristic diagram. The characteristic diagram
is defined by 45 support points: nine voltage steps (400 V to
800 V in 50 V steps) and 5 cost steps (-10, 0, 10, 100 and 1000
1\];3[‘\‘,5% ) These voltage steps and cost steps are fixed. At each
of these support points an adequate feeding current / must
be determined. This set-up has convergence reasons, because
dependencies of parameter are reduced. Before starting, the
optimization initial diagrams for the active front end (Fig.
6(a)) and for the storage (Fig. 6(b)) are defined. The voltage
u in V is plotted on the z-axis, the electricity costs K in
e on the y-axis and the current i(u, K) in % normalized
to the maximum value /. The initial diagrams (Fig. 6) were
designed as an approximation of the diagrams in Fig. 2. The
working voltage of the DC grid was set to 650 V and not 750
V as in Fig. 2.

It is important to notice, that in Fig. 6(a) the current values
for electricity costs above 1000 ﬁ‘\l{,% are set to 0, because
it can be assumed that such values are equivalent to a power
failure. This feature can later be used to ensure uninterruptible

power supply.
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(a) Initial characteristic diagram for (b) Initial characteristic diagram for
AFE control. energy storage control system.

Fig. 6. Display of the initial characteristic diagrams.

B. Cost Function

In order to obtain conclusive optimization results, a cost
function standardized to monetary costs was created. This
has the advantage that reduction in service life of the energy
storage device and also the energy consumption from the three-
phase network can be taken into account easily. First, the
energy consumption Eapg from the three-phase network can
be converted into costs via the electricity price K:

CarE = K - EApE. 4

The converted energy of the active rectifier Fapg is calcu-
lated by

tend
EarE = / Papg dt, )]

to
where Parg is the converted rectifier power, ¢ is the point
in time at which the electricity costs change and ¢.,q up to
which the costs remain constant. Assuming that the lifetime
of the energy storage is reduced during discharge/charge, the

following costs (1t for each charging cycle can be calculated
with:

Kiny - By
Chat = . obDOD (6)

whereas Kj,, is the investment cost for the energy storage,
Eir; is the storable energy, a and b are the fitted parameters,
that describe the relationship between depth of discharge
(DOD) and the cycle reduction. Data on the discharge depth
and Lifetime were taken from [16]. The investment cost for
lithium-ion batteries was set to 200 ﬁ%‘; based on [17]. The
energy in the energy storage Fhat stor at the end of simulation
is evaluated with the latest electricity price Konq and included
in the cost function. The total costs (it are thus calculated as

follows:

Ctot = CAFE + Cbat - Kend . Ebat,stor- (7)

C. Optimization Result

Since the cost function has many local minima a particle
swarm optimization (PSO) was used for minimization. The
PSO does not guarantee that the global minimum will be
found, but an acceptable solution in reasonable time. The
results of the optimization can be seen in Fig. 7.
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(a) Optimized characteristic diagram (b) Optimized characteristic diagram
for AFE control. for controlling the energy storage sys-
tem.

Fig. 7. Display of the optimized maps, which were created by the optimization
of mesh points.

The diagram looks as if the mesh points have been dis-
tributed completely randomly and have not been optimized.
However, the costs for the simulation data shown in Fig. 4
have been reduced from over 15 Euro to under zero. Thus, the
characteristic diagram is optimally designed for the considered
load curve, but if this is no longer the case, it could lead to
instabilities due to the high variation. The reason why the
characteristic diagram shows such high variation is because
these areas have no influence on the cost function. These points
have not been excited within the simulation set-up and have,
therefore, no influence on the optimization results. In order
to make the characteristic diagram more generally valid, the
influence of the respective point has on the system will be
taken under consideration.

D. Sensitivity Analysis

Sensitivity analysis is an economic methodology for as-
sessing how sensitive key figures are to small changes in
input parameters [18]. A distinction can be made between
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local and global sensitivity analysis. In the global sensitivity
analysis, several input variables are randomly changed and a
large number of model runs have to be carried out to obtain
significant data. In the local sensitivity analysis, only one input
variable is changed by a defined value. If the change of the
output AY; is divided by the input AXj;, the sensitivity S; in
the node ¢ is obtained:

AY;
S = —*. 8
T AX, 3
This method is called normalized difference and differential
quotient and for reasons of runtime, this method was chosen.

The results of the local sensitivity analysis is shown in Fig. 8.
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(a) Sensitivity analysis of the charac- (b) Sensitivity analysis of the char-
teristic diagram for AFE control. acteristic diagram for enery storage
control system.

Fig. 8. Sensitivity analysis of the individual nodes to determine the influence
of these on the system.

The sensitivity displayed on the z-axis has been normalized
in total to one. The sensitivity analysis shows which param-
eters have a large influence on our system costs and must
therefore correspond to the optimized parameters. In addition,
the analysis shows which parameters have less influence and
can therefore be set to any desired value, e.g. all parameters
for 500 V and smaller. But the sensitivity analysis does
not include every possible parameter variation. By changing
certain parameters, the DC microgrid can reach areas that are
not permissible, e.g. resulting DC grid voltage is too high.
Since this case of operation is not permitted, it intercepted by
constraints and is not valued with cost. Because no result is
obtained with this parameter selection, it cannot be included
in the sensitivity analysis (Fig. 8). Therefore the triggering of
the constraints is used to create parameter limits, which can
be seen in Fig. 9.
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Fig. 9. Tuning limits of the characteristic parameters from the triggering of
the constraints in the sensitivity analysis, whereas orange is the upper limit
and blue is the lower limit.

The parameter limits show which parameter ranges are
permissible and which are not, with orange representing the
upper and blue the lower limit.

E. Creation of the Final Characteristic Diagram

The parameter limits in Fig. 9 can be used to create the final
characteristic diagrams. These diagrams can now be designed
by hand or with an algorithm automatically. The result of an
automatic design can be seen in Fig. 10.
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(a) Final characteristic diagram for (b) Final characteristic diagram for
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Fig. 10. Final and robust characteristic diagrams

The basic idea behind the automatic design was that before
a value with a high sensitivity (i.e. voltage low), the grid
users should only feed energy into the DC grid and after a
high sensitivity (i.e. voltage high), energy should be fed back
from the DC grid. The automatic design has set the minimum
parameter limits before parameter points with high sensitivity
and maximum after sensitivity increases. This property can
be seen in Fig. 10, because the maximum or minimum
parameter limit were often used. In areas of high sensitivity,
the optimization results are used, leading to a huge change
within the diagram.

IV. RESULTS

For evaluation reasons, the characteristic shown in Fig. 3
is now replaced by the initial and final characteristic diagram
shown in Fig. 10. In a first step, the simulation is performed
based on the same data set as used for optimization. In the sec-
ond step, the characteristic curves are validated on a new data
set. In addition, the characteristic diagrams are implemented
in the outlined test setup and the result is evaluated.

A. Simulations Results

In Fig. 11 the upper plot shows the DC grid voltage in blue
and the feed-in power of the active rectifier in orange. The plot
underneath shows the power curves of the individual network
users, using the load curve is shown in Fig. 4. The electricity
cost over time is plotted on the right y-axis.

The left y-axis limit corresponds to the power limit of the
AFE (30 kW) and the energy storage (30 kW), respectively.
Fig. 11 shows that the costs have no influence on the power
and voltage curves, because the output current of the initial
characteristic diagram is independent of the electric price. The
high operation costs (Tab. I) of the initial characteristic dia-
grams are due to the fact that the energy storage is constantly
in use and is constantly charged and discharged. These very
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Fig. 11. Plot of the different characteristics of the simulated DC microgrid
with the initial characteristic Diagrams

short loading times, often less than 1 s, result in a short service
life and thus high operation costs.

Fig. 12 shows the voltage and power curve of the DC grid
using the optimized characteristic diagrams. The dependence
of the electricity price can be easily recognized: From 1000 s
the electricity price drops below 0 ﬁ‘\‘)\r,% and the AFE feeds
energy into the DC grid and the storage stores it. As soon as
the electricity price becomes high (approx. 2500 s) the AFE
feeds the energy back into the three-phase grid. The battery
does not change often between charging and discharging,
which results in lower running costs compared to Fig 11.
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Fig. 12. Plot of the different characteristics of the simulated DC microgrid
with the optimized characteristic diagrams

Fig. 12 area I shows that variation in the characteristic
diagram can lead to instabilities. Although the electricity
costs are lower, the power consumed by the battery increases.
However, as soon as the load consumes power, the DC voltage
drops and the battery greatly reduces the consumption.

Fig. 13 shows the model outputs with the final characteristic
diagrams. Compared to Fig. 12, the feedback from the main
grid is lower and therefore the operating costs are minimally
higher (Tab. I).

The switching points for charging and discharging the
battery have also shifted. It is noticeable that in Fig. 12 area
II energy is still pushed into the battery. In Fig. 13 area III,

30
15

— Preed-in
—Unc

P in kW

P in kW

N N N N N -60
1000 2000 3000 4000 5000 6000 7000
tins

Fig. 13. Plot of the different characteristics of the simulated microgrid with
the finalized characteristic diagrams

however, energy is fed back to the main supply. In addition,
the event which appear in Fig. 12 area I does not appear in
Fig. 13.

Fig. 14 does not use the power profile shown in Fig. 4
but a new validation profile. This can be seen in particular
in the fact that photo voltaic power is lower, the load power
profiles somewhat higher and the electricity costs only become
negative at 5600 s. The plot shown in Fig. 14 was simulated
with the final characteristic diagrams. In this process it can
be clearly seen that the initial value for the energy storage
charge was always zero at the start. Based on this plot, it
can be assumed that the final characteristic diagrams not only
achieve an improvement on the optimization data set but also
with respect to changed conditions.
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Fig. 14. Plot of the different characteristics of the simulated microgrid with
the finalized characteristic diagrams and the validation power curve

A comparison of the simulation results can be found in
Tab. I. It can be seen that in both cases the final characteristic
diagrams are worse than the characteristic diagrams optimized
on the data. In both cases, however, they are better than the
initial characteristic diagrams and more robust against changes
in the power curves.

B. Experimental Results

For experimental evaluation, the characteristic diagrams
were tested on the test setup, which was used on for the
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TABLE 1
COSTS FOR ONE MODEL RUN WITH DIFFERENT CHARACTERISTIC
DIAGRAMS (CD)

applied method initial CD | opt. CD | final CD | opt.”CD
optimization course 15.89 € -0.39 € -0.29 € -
of performance
new course 20.31 € -0.10 € -0.15 € -0.26 €
of performance

model validation, with the load profiles shown in Fig. 4. The
experimental results are showed in Fig. 15.
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Fig. 15. Plot of the different characteristics of the test setup with the finalized
characteristic Diagrams

In the upper plot the DC gird voltage is shown, whereas
in the test setup the AFE output voltage was assumed as DC
grid voltage. This also explains the large differences between
model and measurement at 3800, 5500 and 6100 s. Since the
AFE has pushed a lot of power into the DC grid, its voltage
is higher than that of the battery which stores energy. In the
simplified model there are no different voltages for different
grid users.

The performance curves fit together well. Only in the first
1000 s there is a apparent difference. This is due to the fact
that in the simulation the starting value of the battery is 0 Wh
and in the experiment is not. The power limit of the AFE and
the battery had to be limited to 10 kW due to line protection.

V. CONCLUSION

In this article a very simple modeling for a DC microgrid
was presented and validated. The usual droop voltage control
in the DC grid range has been extended with respect to the
electricity price. The resulting characteristic diagrams were
optimized to minimal monetary costs with a particle swarm
optimization and post-processed using a sensitivity analysis.

Icharacteristic diagram optimized for the new performance curve

The final characteristic diagrams were then evaluated against
each other on the basis of the optimization performance curve
and a validation curve and it can be stated that this procedure is
more cost effective in both cases than the usual characteristic-
based control.
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