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Applications of AI-Based Forecasts in Renewable 
Based Electricity Balancing Markets  

 

Abstract—Rising environmental concerns are integrating 

more renewables in power systems. This increase introduces 

uncertainty in generation and makes it challenging to maintain 

a balance between demand and supply. To avoid balancing 

problems and consequent stability issues, better forecast models 

are needed as traditional techniques are not fully equipped to 

deal with these new challenges. Thus, artificial intelligence (AI) 

based forecast techniques are gaining potential recognition in 

the realm of electricity markets. This paper aims at investigating 

the state-of-art of AI applications for price forecasts in 

electricity balancing markets (EBMs). The focus of previous 

studies extended in this direction has been towards the day-

ahead markets, whereas studies targeting EBMs are rather 

scarce. This paper shows how AI-based forecasts support EBMs 

modeling, resulting in more secure grid integration of 

distributed technologies. The benefits driven from such 

forecasts by market participants like brokers and customers are 

also investigated.  

Keywords—artificial intelligence, balancing markets, 

imbalance settlement, forecasts, classification, modeling, brokers 

I. INTRODUCTION  

For the past few decades, the dynamics of electricity 
markets have been changing. This is mainly due to the rising 
environmental concerns, which have led to greater renewable 
energy sources (RES) integration into the system [1]. On the 
one hand, higher RES has helped power markets achieve 
cleaner and greener energy portfolios, but on the other hand, 
their intermittent nature has resulted in greater stability issues 
[2]. For the maintenance of system stability, keeping a 
controlled flow of power to maintain a balance between the 
demand and supply is one of the most important roles of 
transmission system operators (TSOs). Increasing the RES 
mix in the power grid introduces uncertainty and variability in 
the supply and makes the balancing tasks more challenging. 
To avoid balancing problems and stability issues, better 
forecast models are needed [3]. Thus, AI and machine learning 
(ML) techniques, due to their advanced forecasting 
capabilities are gaining tremendous attention [4], [5]. 

But so far, studies have mainly been conducted for AI-
based estimations in day-ahead markets. From the review 
literature such as  [6]–[8], it can be seen that such studies for 
the case of balancing markets are rather scarce. Even though 
in [9], a range of models was benchmarked to forecast 
balancing market prices, but AI-based methods were not 
targeted. Currently, as growing volumes of RES generation is 
increasing system balancing requirements, the studies on 
changing dynamics of EBMs are becoming more important 
[10]. Therefore, this paper reviews the state-of-art on the role 

of AI-based forecasts in EBMs. It also investigates the 
applications of AI-based forecasts in balancing markets for 
system modeling, cost-effective services, customer 
participation, etc.  This is important as [11], [12] highlight that 
most of the forecasting literature has been directed towards 
bettering forecast accuracies, whereas, the applications of the 
results of the forecasts have largely been ignored. 
Furthermore, this paper also investigates how different players 
in EBMs like system operators, brokers, and customers can 
benefit from the applications of AI-based forecasts.  

The paper contains six sections. In section II, an overview 
of pricing mechanisms in EBMs is presented, the impact of 
high RES penetration on EBMs is discussed and the need for 
better forecasts in EBMs is established. In section III, key 
challenges in traditional forecasting techniques are identified. 
In section IV, the key advantages of AI-based techniques over 
traditional techniques are explored and the applications of AI-
based forecasts in EBMs are investigated. In Section V, the 
importance of deriving value in the form of trading strategies 
and risk management plans from AI-based forecasts is 
discussed. Finally, in section VI, the paper is concluded with 
a summary and final remarks.   

II. ELECTRICITY BALANCING MARKETS – KEY CONCEPTS 

AND THE NEED FOR FORECASTS 

A system that enables electricity trade is an electricity 
market. Depending on the time interval in which the trade 
occurs its operation can be divided into the bilateral, day-
ahead, intra-day, and balancing market [13], [14]. Balancing 
markets take place just minutes before actual energy delivery. 
They are used to balance the production and consumption, as 
closely as possible, before it is supplied to the customers [15].  

A. Pricing Mechanisms in Electricity Balancing Markets 

The EBMs function under the supervision of TSOs, who 
receive up and down-regulation bids from different producers 
depending on the needs of the system [16]. When there is 
excess demand in the system, the up-regulation bid is 
activated. This implies that there is a need to increase the 
production that was originally left out of the day-ahead 
market.  As this increase should occur in a relatively short 
notice period, hence this production is relatively costlier than 
the one dispatched in the day-ahead market [17]. This is 
illustrated in Fig.1. in green color. Here, PN

S represents the 
production scheduled in the day-ahead market. It can be seen 
that when there is excess demand in the system, a dispatchable 
generator can offer balancing power PBi

Umax for a price λBi
U 

that is higher than the market-clearing price λS of day-ahead 
market. Thus, the generator earns a profit as the following 
equation holds [17].  

   λBi
U ≥ λS         (1) 
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On the other hand, when the system has excess production 
it implies submission of down-regulation bids. This means 
that the dispatchable generator is willing to repurchase part of 
its dispatched production. Such a repurchase pays off, only if 
its price is lesser than what it was in the day-ahead market 
[17]. This is also represented in Fig.1. in red color. In this case, 
a generator can offer to repurchase power PBi

Dmax for a price 
λBi

D that is lower than market-clearing price i.e. 

    λBi
D ≤ λS         (2) 

B. Renewable Integration in Electricity Balancing Markets 

The balancing mechanisms discussed above are straight 
forward for the case of dispatchable generators such as 
hydroelectric and gas power plants. On the other hand, 
stochastic generators, like solar and wind plants, cannot 
control the level of their production, thus complicating the 
balancing procedures. Consequently, to handle the 
complications, different pricing mechanisms exist in EBMs, 
such as, 

• Single-price imbalance settlement  

• Two-price imbalance settlement  

In single-price imbalance settlement, both the dispatchable 
and stochastic generators are treated in the same way. Thus, in 
case of excess demand in the system, the stochastic generator 
that is producing higher energy than its scheduled value of the 
day-ahead market can also sell it for a price λBi

U and earn a 
profit. On the other hand, a stochastic generator that has a 
lower production than scheduled has to purchase energy at a 
higher price thus experiencing a revenue loss [17].  

But in two-price imbalance settlement, imbalances of any 
kind from the stochastic generators are not incentivized. 
Therefore, when there is excess demand in the system, and the 
stochastic generator has higher production than scheduled, it 
is paid with the day-ahead market clearing price λS and not the 
higher price λBi

U. In the case of excess production in the 
system, the stochastic generator with lower generation than 
scheduled, repurchases with the price λS and not a lower price 
λBi

D, thus experiencing a revenue loss [17]. In this case, the 
stochastic generator with higher production than scheduled 
experiences an opportunity loss because it has to sell at a lower 

market price λBi
D. A summary of the participation of 

stochastic and dispatchable generators in both types of 
settlements is presented in Fig.2. The value of transactions in 
the form of profit, extra revenue, loss, and opportunity loss is 
also highlighted in Fig.2.  

C. Importance of Forecasts in Electricity Balancing Market 

From the above discussion, it is clear that output power 
forecasts are of paramount importance for RES generators. It 
is due to discrepancies in their forecasted and real values that 
imbalances exist in the system, which in many cases lead to 
revenue and opportunity losses for RES owners [18]–[20].  

Furthermore, these imbalances also put other market 
participants such as dispatchable plant owners, brokers, etc. 
under higher uncertainty. This is because larger RES 
penetration introduces higher price fluctuations in markets 
which makes it challenging for the participants to decide 
whether they should trade in the day-ahead market or the 
balancing market. This causes a negative impact on their 
trading strategies which effects market prices. Consequently, 
customers end up paying higher electricity bills.  

Therefore, for the smooth functioning of electricity 
markets, better models to incorporate RES power forecasts are 
needed. Additionally, careful considerations on EBMs pricing 
mechanisms are required [10]. But as electricity prices show 
higher volatility as compared to other commodities they are 
harder to predict [21]. Key challenges in using traditional 
forecast techniques are presented in the next section.  

III. KEY CHALLENGES IN TRADITIONAL FORECAST METHODS 

Four types of forecasting methods have mainly been used 
for forecasting in electricity markets, namely, persistence 
methods, physical methods, statistical methods, and AI-based 
methods. They are represented in Fig.3.  

When persistence methods are used, future observations 
are considered to have the same values as those of current 
instances. Due to the simplicity and naivety of these methods, 
they have limited applications in decision-making processes 
in EBMs and are usually used only to test the forecast 
accuracy of other methods [22], [23]. Physical methods on the 
other hand require complex mathematical modelling of 

 
 
Fig. 1: Pricing Mechanism in Electricity Balancing Markets 

 
 
Fig. 2: Summary of Benefits/Losses in Single-Price and Two-Price 
Imbalance Settlement Schemes 



environments in which variables of interest are being 
governed. For example, in the case of electricity markets, if 
price prediction is desired, it would imply devising a complex 
model of market rules and market players’ behaviours [24].  

In statistical methods, models are devised using principles 
of statistics, and inferences are drawn from historical 
observations [25]. Using these methods in EBMs does not 
give accurate results as many influential factors such as load, 
generation price, and fuel cost, etc. are neglected [26].  

Statistical methods using autoregressive techniques 
deploy simple linear forecasters which prevent them from 
capturing the non-linearities of the system. For example, in 
[27] the statistical price model did not explicitly consider the 
market structure and used scenario trees for generating a large 
number of representative market scenarios. But such 
representations are not always possible or desired.  

IV. KEY APPLICATIONS OF AI-BASED FORECAST METHODS 

AI-based methods present higher accuracy and fulfil better 
computational requirements in terms of performance as 
compared to traditional methods. For example, in artificial 
neural networks (ANN), trend and pattern detection are easier 
than statistical models. They also present better capability in 
handling classification, clustering, estimation, recognition etc. 
They can also handle non-linear dependencies, a feature 
which is not possible in statistical or physical methods [28], 
[29]. Therefore, in [30]–[32] AI-based methods are presented 
as a solution to forecasting problems in electricity markets.   

Some shortcomings exist in AI models as well. For 
example, from [8], it can be seen that when neural network 
and fuzzy logic models were used in electricity markets’ 
forecasts they experienced generalization problems and 
proved to be unsuitable for unseen data.  But fortunately, other 
AI-based approaches such as support vector machines 
(SVMs), can help in such cases by reducing the model 
complexities. In [8], [31] a smaller training data for price 
forecasts using SVM helped to resolve the drawbacks of 

neural networks. In this section, applications of AI-based 
methods in EBMs are investigated for different roles.  

A. AI-Based Market System Simulation 

As balancing markets involve complex interactions 
between numerous participants, therefore simulation of EBMs 
as multi-agent models play a crucial role in understanding 
market dynamics. Such understandings help in evaluating the 
economic impact of systematic imbalances as seen in [33].  

In the literature, an AI-driven reinforcement learning-
based platform known as power trading agent competition 
(PowerTAC) has been repeatedly used for EBM system 
simulation [34]. It simulates the EBMs structure, which is 
tuned after each simulation step according to the changing 
market demands. It incorporates RES output forecasts, 
weather forecasts, and price forecasts for regulating agent’s 
behavior patterns. This technique has been used in [35]–[37], 
where pricing methodologies and trading strategies have been 
developed for brokers involved in EBM transactions.  

AI-based techniques also help brokers in clustering 
customers into different groups based on their needs. In [35] 
such groupings helped brokers in formulating a variety of 
pricing mechanisms to satisfy the varying requirement of 
different clusters of customers.  It also helped them in earning 
higher rewards by outperforming those brokers who used 
predetermined or randomized strategies.  

In Fig.4.  The AI-based EBM system model is illustrated. 
The agent is a broker who learns from the environment, which 
includes several entities such as balancing market, customers, 
weather services, and wholesale market. Based on the learned 
inputs from the environment, the broker makes decisions on 
balancing offers, price adjustments, and market bids. In Fig.4. 
AI-based clustering of customers is also illustrated.  

Furthermore, such AI-based system models also help 
market players in predicting competitors’ responses. In [38] 
multiple market scenarios were generated to help the market 
participants in predicting the competitor's actions. Thus, AI-
based methods find extensive use in modeling EBMs. They 

 
 
Fig. 3: Forecast Methods in Electricity Markets 

 
Fig. 4: AI-based Market System Modelling  



help market players in developing profit-maximizing trading 
strategies. Such system simulations are not possible if physical 
methods are used instead of AI-based methods as they are 
characterized by high computational complexity which 
hinders their use in short-term predictions. 

B. AI-Based Market Price Classification 

Nowadays in smart grids, the consumers with locally 
installed RES can gain monetary benefits by signing up their 
resources for balancing services. For promoting such 
behaviours, classification of electricity prices is important 
because usually the customers are not well-equipped with the 
knowledge of electricity markets and all they are concerned 
with are the price thresholds instead of price values.  

AI technologies such as state vector machines (SVM) are 
well equipped to perform clustering and classification tasks on 
high-dimensional data sets. In [21], an AI-based extreme 
machine learning approach was developed for presenting 
price thresholds to customers which gave them adequate price 
statuses for making informed and timely decisions. Such 
classifications also find applications in incorporating virtual 
power plants (VPPs) into EBMs. VPPs use demand response 
(DR) and distributed generation (DG) units which are 
relatively small in size, and hence have to be clustered 
together to manage the required amount of reserve capacity 
[39]. In [40], when DGs and DRs were clustered using AI 
techniques, to provide distributed balancing services, they 
responded to predicted load and price signals and accordingly 
altered their operation.  

C. AI-Based Imbalance Capacity Prediction 

Capturing complex market system dynamics is important 
for the procurement of balancing capacity in EBMs. This is 
because if static approaches are used, they imply maintenance 
of a constant reserve for a certain period which puts customers 
under extra costs of unused capacity.  

On the other hand, in [42], when using AI-based dynamic 
approach different reserve capacities for every quarter-hour 
were proposed depending on the RES forecasts, load 
forecasts, their gradients, calendar, and time effects. It led to 
lower balancing costs. Thus AI-based techniques can 
accommodate changing market behaviors and produce 
accurate and realistic predictions.  

This would have not been possible if statistical approaches 
were used instead. For example, in [43], when the statistical 
method approach was used, only regulating volumes were 
considered to estimate regulating prices and other system 
dynamics were ignored. Similarly, in [44], the statistical 
methods were not able make accurate price predictions but 

instead only generated signals, to direct whether the energy 
should be sold in the balancing market, or traded in day-ahead 
market. On the other hand, in [41], improved predictions of 
the system imbalance based on deep-learning model were 
developed to incorporate uncertainty into decision procedure. 

D. AI-Based Demand Side Management 

Nowadays, as customers are also being able to actively 
interact with market players, new pricing schemes are gaining 
importance. One such example is dynamic pricing, which 
presents a choice to customers to be exposed to time-varying 
electricity prices and hence reduce the burden on EBMs 
during peak hours [45]. But such dynamic pricing schemes 
have certain challenges because when customers are free to 
choose between different utility companies, the companies 
have to consider the pricing possibilities of other utility 
companies along with the customer demands. Therefore, in 
[46], when AI-based machine learning methods were used for 
price estimation, the utility company achieved high profits.  

Furthermore, such AI-based pricing techniques also find 
applications in allowing customers who do not have local RES 
generators to participate in the balancing markets. This 
happens by enabling them to regulate their peak demands by 
forecasting high prices in advance. This helps them in 
escaping imbalance penalties, which they receive in the form 
of high electricity bills. Sometimes, such customer 
participation can be challenging, as it implies incorporating 
hundreds of customers in the markets through individual 
contracts. A solution to this problem was presented in [47], 
where AI-based neural network techniques were used to 
jointly optimize customer’s demands. In this way, they were 
able to collectively participate in maintaining system balance.  

E. AI-Based Distributed Technologies Integration 

Nowadays, electric vehicles (EVs) are gaining increasing 
importance in balancing markets. In [48], [49], by using the 
historical data available for a fleet of EVs, the price and 
location of the best-suited ones for absorbing or providing 
electricity during excess or shortage were determined. Thus, 
signifying the importance of AI-based forecasts in EBMs. As 
grid fluctuations cannot be compensated by only one or few 
EVs, AI-based classification techniques have to be used for 
developing pooling strategies and modelling behaviour 
patterns of multiple EVs at a time. This was done in [50] 
where AI-based classifications helped the prosumers in grid 
integration of their EVs to participate in system balancing.  

For all the AI-based forecasts discussed in this section, 
Fig.5 illustrates, how these applications can benefit the 
balancing market as well as different participants of the 
market such as brokers and customers. From the figure, it can 

 
Fig. 5: Qualitative Summary of Stakeholder Benefit from AI Applications in Electricity Balancing Markets 
 



be seen AI-based market system simulation helps the EBM in 
maintaining a system balance while helping the brokers in 
devising effective trading strategies. It also helps customers 
by presenting them with a variety of pricing mechanisms 
based on their needs. Hence the circle represents a colour for 
the beneficiaries, which are all three in this case.  

V. DERIVING VALUE FROM AI-BASED FORECASTS 

In the previous section, the role of AI-based forecasts in 
EBMs was investigated. It was seen that AI techniques can not 
only give more accurate power and price forecasts as 
compared to the traditional techniques but also use those 
forecasts for other applications such as modeling, 
classification, and clustering. These AI applications are 
important because a precise estimation is worthless if it cannot 
be utilized [51]–[54]. The incremental economic or other 
benefit realized by decision-makers through the use of 
forecasts has been recognized as one of the key features of a 
good forecast [55]. In other words, once certain predictions 
are made, it is important to use those predictions in a 
meaningful way to achieve the desired results. Therefore, 
decisions based on forecasting scheme and analysed for their 
monetary effects are crucial to derive value from forecasts.  

This is usually done in EBMs by devising optimal trading 
strategies. From [56], [57], it can be inferred that these 
strategies do not necessarily have to be elaborate or complex; 
even the simpler ones can produce substantial economic gains 
when combined with strong AI-based forecasting techniques. 
Furthermore, as there is usually a high discrepancy in the data 
on which these forecasts are based, there are some inevitable 
errors associated with them. For example, uncertainties in 
weather data cannot be precisely estimated.  

Consequently, the characterization of the uncertainty 
included in such forecasts is of paramount importance. 
Therefore, operational solutions have to be developed for 
helping end-users, utilities, TSOs, etc. to better their decisions 
based on those forecasts. It is important because even if the 
levels of forecast error might appear acceptable to the user, 
there can be noteworthy risks associated with them. Therefore, 
uncertainty estimates should be integrated into the decision-
making process, for optimizing benefits gained from forecast 
predictions. This would help in quantifying the economic 
impacts of imperfect forecasts. Such quantifications can help 
the market participants design risk management strategies.  

VI. CONCLUSIONS 

In this paper, we investigated AI-based electricity market 
models for simulating actions of EBM participants from their 
price, power, and load forecasts. AI is playing a significant 
role in meeting changing demands of balancing markets, and 
with the higher renewable integration, the applications of AI 
in balancing markets will continue to increase. We recognized 
the importance of deriving value from price forecasts in 
helping market players devise risk management plans and 
quantifying the economic impact of AI-based forecasts. 
Furthermore, by investigating the benefits gained by different 
market players from AI-based forecasts, we identified key 
areas where customers and brokers can gain financial 
advantages. We found that AI-based demand-side 
management, dynamic pricing, and grid integration of RES, 
motivated customers in active participation in EBMs for 
reducing their electricity bills. Also, by investigating the 
classification and clustering capabilities of AI-based 
approaches such as SVMs, we presented how AI applications 

enabled aggregation of larger customer data sets; a task that 
was tedious to accomplish when statistical approaches were 
used. We concluded that reinforcement learning based 
platforms present advanced modeling capabilities and are 
preferred over traditional techniques as the latter involves 
incorporating complex environmental variables.   
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