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Abstract—This paper presents a novel approach for modelling
the energy consumption of the coupled parallel moulding sand
mixers of a foundry as an optimal control problem. The mini-
mization of energy consumption is optimized by scheduling the
mixing processes in a linear integer programming scheme. The
sand flow through the foundry’s sand preparation is charac-
terized by a physical model. This model considers the sand
demand of the moulding machine as disturbance, the stored sand
masses in the mixer hoppers and machine hoppers, respectively.
The novel approach of handling dwell-times for dosing, mixing
and transport processes using dead-time systems and constraint
pushing allows the application of a linear model. The formulation
of the optimal control problem aims at real-time application as
model predictive control at the production plant. Initial applica-
tion results indicate an improvement in energy consumption of
approximately 8 %.

Index Terms—model predictive control, linear integer pro-
gramming, scheduling, dwell-time, constraint pushing, soft con-
straint, batch-wise parallel process, foundry

I. INTRODUCTION

Electrical energy consumption in a foundry is an important
factor to reduce costs and tackle the rising requirements of
environmental legislation. The sand preparation is an essential
driver for energy consumption especially in green sand casting
with cupola furnace. The moulding sand is strongly affected
by environmental conditions [1]. The mixed sand is stored in
the hoppers. Storing the sand needs space in the production
plant. Therefore, the dimension of the sand hoppers after the
mixers is small. Thus, the mixers have to react quickly to the
changes in moulding sand demand. In practice, the operation
strategy is typically controlled by a few discrete measurements
of sand level in the hoppers.

In the exemplary foundry Heinrich Meier Eisengießerei
GmbH & Co. KG in Rahden, both sand mixers operate batch-
wise. The operation strategy aims at maximum filling of
the hoppers without taking energy cost into account. Due to
process stability the mixing time is fix [2]. The operating
strategy generates idle times, while the mixers are running
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and waiting for the next batch. In international comparison,
energy costs and capacity utilization in Germany are high [3].
In the industry with energy-intensive processes, the efficient
use of energy will be a decisive competitive advantage [4],
[5]. Actual exemplary investigations in the sand preparation
of a foundry show a potential for energy saving up to 10 %
[6]. Investigations on the energy consumption of the mixing
process at the exemplary foundry confirm this potential. There-
fore, managing the sand flow through the sand preparation and
switching-off the mixer during idle time offers optimization
potential.

Scheduling for production planning in foundries with binary
integer programming for optimizing the production planing
can be found in [7]. In this approach the trade off between
model complexity and calculation time is discussed. An
overview of various optimization approaches and an improved
variable neighbourhood search to find a near-optimal solution
for batch delivery planning in steel production can be found in
[8]. A tailored branch and bound algorithm to reduce the com-
putational effort when scheduling parallel processes in a steel
foundry is presented in [9]. Scheduling of parallel industrial
processes with mixed integer programming are shown in [10],
[11]. The related work aims at offline production planing. A
stochastic approach to energy efficient switching of a machine
tool using buffer level can be found in [12] and related work.

In this paper, we discuss a novel optimal control approach
for real-time application on the mixing process at the pro-
duction plant. The novel approach for integrated modelling
of the processes in sand preparation, from dosing in the
scale to moulding in the machine, allows the optimization
of the mixers’ energy consumption. The optimization model
captures the dependence of batch processes, sand flow and
buffered sand masses on the energy consumption. The essential
challenge is handling of dwell-times for sand dosing, mixing
process and sand transport. We tackle this challenge by using
discrete dead-time systems. Initial application results at the
real production plant indicate an improvement in energy
consumption of approximately 8 %.



Section II introduces the mathematical representation of
the optimal control model with a linear model approach. In
section III the optimal control problem with the economic
formulation of the cost function including the energy demand
of the moulding sand mixers and the constraint treatment is
presented. The results of the optimal control and first test
results at the production plant, presented in section IV, suggest
an advantage in energy consumption.

II. OPTIMAL CONTROL MODEL

First the process is discussed and the optimal control model
with state variables, manipulated variables and the process
disturbance is presented. The real process at the production
plant includes dosing the sand into a scale, mixing in the
mixers to adjust the moulding properties, transporting the sand
to the machine hopper and buffering the sand for the moulding
process, see Fig. 1. We use a time-discrete model formulation
with time-steps k. For solving the optimal control problem we
consider a simple process model, which
• represents the scale as two interdependent scales,
• captures the aspects of dosing, mixing and sand transport

as discrete dead-time system,
• omits the influence of the mixer hopper extraction belts
• and combines the two machine hoppers into one.
Starting point of the sand flow is the scale, see Fig. 1 (top).

In the real process, one scale doses the sand batch-wise for the
two mixers. The scale can only fill one mixer simultaneously.
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Fig. 1. Schematic process description with the scales (top), the mixers, mixer
hoppers and sand transport belt (middle) and the machine hoppers combined
into one (bottom).

TABLE I
STATES AND INPUTS

Description Units
k discrete time-steps
K prediction horizon
◦ abbreviation for scales and mixers {1, 2}

c: counting variable for scales and mixers
Inputs
IOS◦ start dosing scales {0, 1} –
IOM◦ switch mixers states {-1, 0, 1} –
IOT◦ ON/OFF extraction belts {0, 1} –
States
m̃S◦,i DS normalized masses dosing each mass {0, 1}

i: counting variable for the dosing process
–

SM◦ mixers’ states {0, 1} –
m̃M◦,j DM normalized masses mixing each mass {0, 1}

j: counting variable for the mixing process
–

mMH◦ masses in the mixer hoppers kg
mT,n mass on transport; number states: DT

n: counting variable for the transport process
kg

mH mass in the machine hopper kg
ṁHD mass flow to the moulding machine (disturbance) kg/s
Slacks
sS◦ buffering sand in scales each {0, 1} –
sMS◦ mixers’ starts each {0, 1} –

sMH◦,LB soft constraints mass mixer hoppers lower bound –
sMH◦,UB soft constraints mass mixer hoppers upper bound –
sH,LB soft constraint mass machine hopper lower bound –
sH,UB soft constraint mass machine hopper upper bound –

Before dosing, the scale output switches to one of the two
mixers. In the model we treat this with two interdependent
scales. The starts of the dosages are controllable with the input
variables IOS◦, see table I (section Inputs). The variables of
the two scales are abbreviate with ◦ = {1, 2}. The dwell time
in the scale due to dosing is modelled as a dead-time system
with DS discrete time-steps, see table II (section Parameters).
Modelling dwell-time for dosing as dead-time system results
in i = DS state variables, see table I (section States). The
process may prohibit the discharge of sand into the mixer,
e.g. if the mixer cannot start processing. Therefore, a soft-
constrained formulation with slack variables [13] sS◦ ∈ {0, 1}
allows buffering sand in the scale, see table I section Slacks.
Within the dead-time system, the entire mass of the batch
is transferred with each time step from the actual state to

TABLE II
PARAMETERS AND BOUNDS

Description Units Size
Parameters

DS dosing time scale in steps – 5
DM mixing time in steps – 9
CS◦ mass batch mixer kg 6000
DT transport time in steps – 2
CT◦ mass extraction mixer hoppers kg 58∆t
∆t sample time s 15

Bounds
mMH◦,LB mass mixer hoppers lower bound kg 0
mMH◦,UB mass mixer hoppers upper bound kg 14000
mH,LB mass machine hopper lower bound kg 3000
mH,UB mass machine hopper upper bound kg 19000



the following state until the dosing time is reached. Due to
the process the sand mass per batch is fixed. Therefore, we
normalize the state variables with the fixed sand mass per
batch to {0, 1} and store the mass information in a variable
CS◦. The normalized masses are marked with a tilde. Through
this modelling the state variables can be treated as binary in
the optimization. The model for the entire dosing process with
i = DS states denotes

m̃S◦,1(k+1) = IOS◦(k) (1a)
m̃S◦,i(k+1) = m̃S◦,i−1(k), i = 2,· · · , DS − 1 (1b)
m̃S◦,DS

(k+1) = m̃S◦,DS−1(k) + sS◦(k). (1c)

At the end of the dosing process the sand is emptied into
the related mixer and the mixing process starts immediately.
The mixers prepare the sand for the moulding machine, see
Fig. 1 (middle). Each mixer has a hopper to buffer the sand
after the mixing process. The state of the mixer SM◦ can be
zero (OFF), no current or one (ON), ready for process. The
control variable IOM◦ ∈ {-1, 0, 1} switch the mixer state:

SM◦(k+1) = SM◦(k) + IOM◦(k). (2)

The specification for the sand quality requires emptying the
mixer at the end of process time. The mixing process is also
modelled by a dead-time system based on normalized masses.
This results in j = DM state variables reads

m̃M◦,1(k+1) = m̃S◦,DS
(k)− sS◦(k) (3a)

m̃M◦,j(k+1) = m̃M◦,j−1(k), j = 2,· · · , DM. (3b)

At the end of the mixing process, the sand mass is emptied
into the related mixer hopper. From the sand mass in the
hoppers mMH◦ infinitesimal short extraction belts with binary
control IOT◦ ∈ {0, 1} extract sand by the factor CT◦, see
table II section Parameters. The sand mass in the mixer
hoppers results as

mMH◦(k+1) = mMH◦(k) + CS◦m̃M◦,DM
(k)

− CT◦IOT◦(k).
(4)

Both belts convey sand from the hoppers to one constantly
running transport belt. This results in the mass on the transport
belt, modelled as dead-time system, with n = DT states:

mT,1(k+1) =
∑
◦∈{1,2}

CT◦IOT◦(k) (5a)

mT,n(k+1) = mT,n−1(k), n = 2,· · · , DT. (5b)

At real production plants, the sand can be divided among
several machine hoppers at the end of the transport belt.
Dividing the sand into these machine hoppers is an underlying
control problem and typically varies with the production. Thus,
in the model, the sand flows to one common machine hopper.
The fluctuating sand demand of the moulding machine also
influences the machine hopper mass. The sand demand is
modelled as disturbing mass flow ṁHD with sample time ∆t.
The mass in the machine hopper can be represented by

mH(k+1) = mH(k) + mT,DT
(k)− ṁHD(k)∆t. (6)

III. OPTIMAL CONTROL PROBLEM

The optimal control problem contains the economic cost
function and the constraint treatment. The economic formu-
lation of the costs J contains the buffering of sand in scale
hS, the mixers’ energy consumption (starting hMS and idling
hMI) and the hopper restrictions hMH and hH, respectively.
The energy demand of the sand transport is constant and is
neglected in the cost function. Penalizing buffering of sand in
the scale, see table III, yields

hS =
∑
◦∈{1,2}

wS◦sS◦(k). (7)

The dosing process is restricted. During the dosing time of
one scale the other scale is locked by

∑
◦∈{1,2}

∑k

i=k−DS

IOS◦(i) ≤ 1. (8)

The information for the time steps k−DS < 0 is stored in the
normalized masses m̃S◦,i. The formulation (1a–1c) yields the
restriction DS ∈ N>1. Thus, the lock condition for the scales
(8) can be reformulated as

∑
◦∈{1,2}

[
IOS◦(k) +

∑DS

i=1
m̃S◦,i(k)

]
≤ 1. (9)

The energy consumption of the mixers includes the cost for
starting the mixers and the cost for idle times. The energy
consumption for the mixing process itself is constant because
of

• constant sand masses per batch,
• a invariable mixing time,
• equal processing costs per mixer
• and invariant number of batches over a infinitely long

prediction horizon.

Therefore, the energy costs for the mixing process is elim-
inated for the cost function. Through pushing constraints
sMS◦ ∈ {0, 1}, starting the mixers are separated from the
switching variables. Due to mixing process time, sand from
a batch near the end of the prediction horizon K ∈ N has
no impact on the hopper masses. Therefore, the mixers shut
down at the end of the prediction horizon. As a result, the
optimizer tends to push switch-offs to the end. Adding terminal
constraints to the cost function eliminate this effect. The

TABLE III
WEIGHTS

Description Units Value
wS◦ buffering sand in scales – 106

wMS◦ mixers’ starts – 2025
wMI◦ mixer idle times – 75∆t
wMH◦ soft constraints mixer hoppers [– –] [106106]
wH soft constraints machine hopper [– –] [106106]



penalty for the mixers’ starting cost wMS◦ comprises energy
consumption and wear.

hMS =
∑
◦∈{1,2}

wMS◦sMS◦(k)

s.t. IOM◦(k)− sMS◦(k) ≤ 0

sMS◦(K) = 1.
(10)

Until the actual batch is in process, the mixers are disabled
for the next batch by∑DM

j=1
m̃M◦,j(k) ≤ 1. (11)

During the mixing process, the mixers have to be switched
on. While the last mass is being dosed in the scale, the mixers
have to be started for the mixing process. Therefore switching
off the mixers is blocked by

m̃S◦,DS
(k) +

∑DM

j=1
m̃M◦,j(k) ≤ SM◦(k). (12)

Idle times occur when the mixer states are ON and waiting
for the next batch. Combining the constraints (11) and (12),
the cost of mixer idle times penalized by wMI◦ leads to:

hMI =
∑
◦∈{1,2}

wMI◦

[
SM◦(k)−

∑DM

j=1
m̃M◦,j(k)

]
s.t.
∑DM

j=1
m̃M◦,j(k) ≤ SM◦(k)

m̃S◦,DS
(k) ≤ SM◦(k).

(13)
The hopper masses are optimization variables. However,

in a soft-constrained formulation the violation of the hopper
mass restrictions lead to step costs. The production requires
emptying the hoppers at the end of the day. The optimizer
tends to empty the hoppers within the horizon. With an infinite
prediction horizon, here one production day, terminal cost can
be omitted. For industrial model application, the optimization
has to be performed in real-time. Therefore, the finite horizon
has to be much shorter than a production day and a terminal
constraint is added. The entire costs for the hopper masses
read

hMH =
∑
◦∈{1,2}

wMH◦

[
sMH◦,LB(k)
sMH◦,UB(k)

]
s.t. mMH◦,LB − sMH◦,LB(k) ≤ mMH◦(k)

mMH◦,UB + sMH◦,UB(k) ≥ mMH◦(k)

sMH◦,LB(k), sMH◦,UB(k) ≥ 0,

(14a)

hH = wH

[
sH,LB(k)
sH,UB(k)

]
s.t. mH,LB − sH,LB(k) ≤ mH(k)

mH,UB + sH,UB(k) ≥ mH(k)

sH,LB(k) sH,UB(k) ≥ 0

mH(0)−mH(K) ≤ 0.

(14b)

Thus, the resulting economic cost formulation is completely
linear. The entire cost function results in

min
Inputs,
Slacks
∀k≤K

J = hS + hMS + hMI + hMH + hH

s.t. (7), (9), (10), (13− 14b).

(15)

IV. RESULTS

The actual operation strategy of the mixers aims at filling the
machine hoppers of the plant. Therefore, both mixers produce
sand in alternating order. The extraction belts of the mixer
hoppers stop, when the machine hoppers are full. The mixer
hoppers are filled to their maximum and then the next batch
of sand is buffered in the scale. At the beginning of dosage,
the mixer for this batch is determined. The mixing process
starts immediately, when the mixer related hopper can store
the sand. The mixer runs in idle until the next batch starts.

The improvement of the optimal control approach† is re-
duction of energy consumption. Furthermore, first results of
the real-time test of the optimal control problem, in a model
predictive control scheme, are illustrated on the production
plant. For the parametrization of the optimal control problem
see table II. The parametrization of the weights is shown
table III. A reduced complexity of the optimization model
leads to lower calculation effort. The model complexity is
proportional to the number of dead-time steps for dosing DS,
mixing DM and transport DT, which have to be integer. The
minimal numbers of dead-time steps and the sample time ∆t
result from the process conditions at the production plant.

A. Solving the Optimal Control Problem

The disturbance, namely the moulding sand demand of
the plant, varies due to production changes and interrup-
tions, respectively. Especially interruptions are not predicted.
Therefore, the optimal control is performed with an constant
moulding sand demand as disturbance. The value of the
disturbance is 61 kg/s and corresponds to an average moulding
sand demand of the production plan. The prediction horizon is
160 steps (40 minutes). The sample time is fixed to 15 seconds
per step. The mixer states, see Fig. 2 (top), the starts of sand
dosing (second) and the inputs for the transport belts (third
and fourth) contain zeros for state OFF and ones for state ON.
In the prediction horizon both mixers shut down for several
consecutive time steps, see Fig. 2 (top, sectors A and A*). In
this example the mixers run without idle. In the actual heuristic
control the mixers are always switched on and ready for the
next batch.

The starts of sand dosing are related to the mixer states.
In the actual control, both mixers produce sand in alternating
order. In comparison, the optimal control approach leads to
consecutive doses, see Fig. 2 (second, sectors B and B*).
Switching the inputs for the extraction belts control the sand
transport between the mixer hoppers and the machine hopper,

†Solver for the optimal control problem is CPLEX ILOG v12.10. The
model is build in matlab R2020b and the interaction between them is
performed with YALMIP [14].



see Fig. 2 (third, forth). In the actual heuristic control the
inputs would be ON as long as the machine hopper mass
is below the maximum. The mass in the hopper also reacts
on the sand transport. The masses in both mixer hoppers
mMH◦ almost fluctuate in the full range between minimum and
maximum bound. The mass in the machine hopper mH varies
less and is in general below 50 % of the maximum mass, see
Fig. 2 (bottom, line C). By extending the prediction horizon
the range of fluctuation is relatively constant. This effect is
unexpected and could be a result of the interdependent batch-
wise mixing processes or the relatively small capacity of the
machine hopper in relation to the mixer hoppers, respectively.
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Fig. 2. Optimal control with the mixer states (top), dosing starts (second), the
inputs for the transport belts (third and fourth) and normalized hopper masses
with dotted shown bounds (bottom) for a prediction horizon of 160 steps.

As required, the machine hopper mass reaches the start level
at the end of the prediction horizon. In comparison, the
actual control only aims at filling the machine hopper to the
maximum. Therefore, the machine hopper is usually full. If
the moulding sand demand is less than the maximum capacity
of the mixers, the mixer hoppers are filled to the maximum
as well. Because of the batch process with fixed masses of
approximately 50 % of the mixer hopper capacity, the mixer
hopper masses fluctuate in range of approximately 40–100 %.
The variation of the disturbance has a remarkable impact on
the optimization potential of energy saving. The lower and
the more precisely the moulding sand demand is known, the
greater the potential.

B. Production Plant Test

Initial results of the previous optimal control approach at the
production plant of the exemplified foundry show a reduction
for energy consumption. The optimal control problem from
section III is solved at each time step ∆t in real-time with
configuration from table II. The real-time test is performed
for 120 time-steps (30 minutes) with an prediction horizon of
160 steps on a typical day with low moulding sand demand,
see Fig. 3. The mixers switch-off four times, see Fig. 3 (top,
sector A). The hopper masses are scaled to their maximum and
vary in range between the minimum and the maximum bound,
see Fig. 3, (bottom). The reduction in energy consumption is
approximately 7.9 %.
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Fig. 3. Initial test of the optimal control approach in a model predictive control
scheme on the production plant. Time series from 13.11.2020 with the mixer
states (top) and the measured hopper masses (bottom) for a prediction horizon
of 160 steps.



V. CONCLUSION

This paper illustrates an optimal control approach for the
energy consumption of interdependent mixing machines in
foundry. Due to the constant mass per batch, the dosing and
the mixing process can be modelled as dead-time systems with
normalized masses and binary state variables. The mass on
the transport belt is described as a discrete dead-time system
and the hopper masses are defined as discrete linear systems.
The switching function for the mixer state contains integer
values. Applying constraint pushing separates the starts of
the mixers and keeps the problem formulation linear. The
economic cost function can be formulated linearly, among
other reasons due to the modelling of the mixer idle time
from the state information of the normalized masses. A soft
constraint formulation for the bounds of the hopper masses
improves the solvability by increasing the number of possible
solutions near the boundaries.

The solution of the optimal control problem suggests sav-
ings in energy consumption in comparison to the actual heuris-
tic control. The production plant test shows the capability of
the presented approach. It yields a remarkable reduction of
energy consumption by scheduling the batches and switch-off
the mixers instead of idle times. Thus, the presented method
contributes to the qualification of optimal control for foundry
applications.

Future work will focus on the transfer of the optimal control
problem into model predictive control scheme and its appli-
cation at the production plant. Furthermore, the disturbance is
essential for the optimization. Actually the disturbance is not
predicted. In future studies, the energy consumption may be
further decreased by adaptive moulding sand demand predic-
tion, e.g. based on neural networks. Furthermore, improving
the interaction of model and solver is possible. Investigations
of the solver performance show a high computational effort
when detecting symmetries and preforming restarts in the
optimization process. Adjusting the model to the solver or op-
timizing solver settings itself can lead to further improvements.
Subsequently, an endurance test to evaluate the presented
method under a variety of environmental influences is planned
at the foundry.
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