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Abstract—Accessing runtime information originated from Op-
erational Technology (OT) communication protocols by Infor-
mation Technology (IT) applications remains a challenging task.
Middlewares and gateways could provide a possible solution to
bridge this OT/IT gap. In this context, this paper examines the
feasibility of interconnecting legacy OT protocols via different
middlewares and gateways by presenting two simplified scenarios.
Each scenario exemplifies a possible use-case by either mimicking
bidirectional tunnelling or propagating (mirroring) of automation
data. Both scenarios use OPC Unified Architecture (OPC UA) and
Message Queuing Telemetry Transport (MQTT) and a respective
gateway prototype. The paper concludes by outlining future
research challenges by discussing the limitations of the selected
scenarios related to configuration, deployment and scalability.

Index Terms—Industrial communication, Industrial Internet
of Things, middleware, gateway

I. INTRODUCTION

Accessing and exchanging runtime information is the cen-
tral element in industrial automation [1]. However, a typical
hierarchical automation system architecture is not promoting
an ideal exchange of data. The reason lies in the diverse
types of used technology and software, often exhibited in the
automation pyramid [2] (cf. Figure 1). Referred to as opera-
tional technology (OT), the lower three levels represent sensors
and actuators, followed by controllers (e.g., programmable
logic controllers (PLC)) and Supervisory Control and Data
Acquisition (SCADA) systems. The OT levels are responsible
for the interaction with the underlying technical process and
the processing of automation functions (e.g., open/closed-
loop control), respectively [3]. Automation technology and
industrial communication systems fulfil the stringent OT re-
quirements, e.g., on real-time and safety. In contrast to OT, the
top two information technology (IT) levels use off-the-shelf
components and communication systems compatible with the
Internet Protocol (IP) suite, part of any enterprise / IT environ-
ment. Manufacturing Execution System (MES) and Enterprise-
Resource-Planning (ERP) tool suites are typical applications
in IT for processing and abstracting the data from the lower
levels. The differences in technology and requirements create
the OT/IT gap and limit the exchange of data [4].
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Fig. 1. Automation Pyramid

Initiatives such as the Industrial Internet of Things (IToT)
addresses the (OT/IT) gap by flattening the architecture and
introducing all-IP communication at all levels of the pyramid.
Such an architecture would allow a cloud application directly
accessing a single sensor. Newer technologies such as fog
computing [5], time-sensitive networking (TSN) [6] and mid-
dlewares (e.g., OPC Unified Architecture (OPC UA) [7], Data
Distribution Service (DDS) [8] or Message Queuing Telemetry
Transport (MQTT) [9]) could provide the means to implement
this vison [10].

An often neglected fact is that the industrial sector looks
back on a plethora of industrial communication technologies,
which has grown over the last four decades [11]. Therefore,
it is not uncommon to find a mixture of classical wired
fieldbus systems, Ethernet-based approaches and wireless so-
lutions [12]. Each protocol works ideally on its own, but their
design does not foresee the exchange of information with other
protocols since they all have their own application models
deeply embedded. Realising IIoT however, would require
full interoperability between all elements in the automation
pyramid [13]. Exchanging the entire old technology is not
feasible as it would require a considerable amount of time and
money. Therefore, interim solutions are required to mitigate
the transition [14].
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Gateways could be such a solution. Widely used in automa-
tion, gateways connect protocols with software applications
and provide the necessary abstraction. However, gateways are
complex artefacts and not simple to develop and maintain.
The considerable number of possible combinations between
applications and protocols would further create an unman-
ageable mix of gateways. Middlewares could help to reduce
the number of gateways by acting as a replacement. For
example, the OPC UA middleware offers drivers and APIs
to connect legacy protocols and provides IT applications with
the required abstraction based on means to define common
information models [7]. In the very best case, only a handful
of middlewares and vertical gateways would be necessary to
connect legacy protocols with IT.

In this context, the article reviews the feasibility of using
gateways in combination with middlewares to improve interop-
erability in automation. For this purpose, an OPC UA / MQTT
gateway prototype was built and applied in two scenarios that
would require connecting two or more middlewares. Each
of the scenarios revealed restrictions, e.g., in configuration,
scalability or latency that require careful consideration when
using middleware gateways. The results contribute to ongoing
research in the areas of automation systems and IloT.

Section II presents background information about gateways
and connectivity in automation, followed by Section III, that
introduces the middleware gateway concept and related work.
The architecture of the gateway prototype in Section IV lays
the ground for the two presented and evaluated scenarios in
Section V and VI. Section VII discusses the findings, and
Section VIII concludes the paper.

II. GATEWAYS IN AUTOMATION

Gateways have a long history in automation, either bridging
horizontally varying communication protocols or act vertically
as an abstraction layer for information transfer to high-level
IT applications [1] (cf. Figure 1).

In the lower levels of the automation pyramid, horizontal
gateways remain an exception. There were suggestions for
gateways since the early days of automation when fieldbus
systems replaced parallel cabling [15]. However, those turned
out to be challenging to implement as dedicated automation
networks (e.g. Controller Area Network (CAN), PROFIBUS
or INTERBUS) are solutions not designed for information
exchange with other protocols [15].

With the advent of the Internet, uniform Ethernet-based
networks also appeared in the automation environment and let
gateways seem to be a relic of the past. However, due to the
missing real-time capabilities of the Ethernet standard, the do-
main witnessed the development of several new dedicated real-
time protocols and reintroduced the need for gateways [16],
[17]. Protocols, e.g., PROFINET isochronous real-time (IRT)
or EtherCAT, are incompatible, as each uniquely adjusts the
OSI layers to be realtime capable. This peculiarity complicates
the development of horizontal gateways. Additionally, research
has shown that horizontally connecting OT protocols can pose
a security risk [1].

There are two types of vertical gateways (cf. Figure 1)
that transfer automation data to the IT domain. Either by
directly attaching protocols to enterprise tools and provide the
necessary data abstraction [18] or connect to a middleware.
The first case creates a unique combination between a pro-
tocol and an IT application and is therefore not reusable for
other pairings. Connecting to a middleware instead reduces
this effect as middlewares provide standard interfaces for IT
applications [14]. In some cases, middlewares (e.g. ,OPC UA)
also provide APIs and drivers that allow connecting protocols
directly [7].

The most complex gateways in automation are horizontal
middleware gateways that allow the data exchange between
middlewares. Each middleware might use a different com-
munication pattern, i.e., client/server (OPC UA), broker-based
(MQTT) or publish/subscribe (DDS) and different transporta-
tion protocols ranging from Transmission Control Protocol
(TCP)/TP, User Datagram Protocol (UDP) to HTTP and
Web Services [3]. Additionally, middlewares provide more
advanced features, (e.g., definition of Quality of Service, or
means for information modelling) that need to be adequately
handled by a gateway. Despite their complexity, middleware
gateways play an essential role in interconnecting OT and IT.

III. MIDDLEWARE GATEWAY CONCEPT

Considering the various possibilities to connect legacy pro-
tocols with the IT-level applications, a mix of middlewares and
gateways might be a rational solution. Based on that idea, the
Industrial Internet Consortium (IIC) investigated which mid-
dlewares are most suitable for such a task [19]. Their results
indicate that OPC UA, DDS, oneM2M and Web Services are
the best candidates, as they are widely used in various domains
and provide advanced functionalities. Moreover, the concept,
as shown in Figure 2, foresees adding middleware gateways
and connecting legacy protocols or less common middlewares
to the identified middlewares. This combination would im-
prove the interoperability between OT/IT significantly. Despite
the feasibility of the IIC concept, there is little research done
about the possible challenges.
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Fig. 2. Middleware gateways concept

The situation presents itself differently when focusing on the
middleware gateways. Research proposed several prototypes
to connect numerous types of middlewares in various use
cases. For example, [20] uses a simplified OPC UA / MQTT
gateway based on Node-RED in a “loom machines” use
case or [21] proposes a Phyton based OPC UA / Modbus
gateway. Authors around [22] implemented a gateway between



OPC UA and VSOMEIP (Scalable service Oriented Middle-
ware over IP) to cover the automotive context, and other
solutions approach middleware gateways from a software-
defined perspective [23]. Some designs aim to bridge protocols
such as MQTT, DDS, and Websockets messages into HTTP
to reduce overhead [24].

The Object Management Group (OMG) took a more general
approach by publishing a detailed OPC UA / DDS gateway
specification [25] in 2019. Two internal configurable bridges
allow the gateway to connect the client/server (OPC UA)
and publish/subscribe (DDS) middlewares with their advanced
features. Based on the specification, authors presented im-
plementations and evaluations of prototypes with reduced
functionality [26]. In a recent use case study to consolidate
SCADA functionality onto a fog computing platform, the
usage of such a prototype gateway revealed open issues
regarding deployment, configuration, security and latency [27].

In the following sections, the paper presents two scenarios
that represent possible use cases when connecting legacy
protocols with different middlewares that are interconnected
by middleware gateways. The first scenario mimics the bidi-
rectional tunnelling of automation data from one OT protocol
through different IP middlewares to another OT protocol.
In the second scenario, the automation data is propagated
“mirrored” from one OT protocol to (an)other protocol(s) via
different IP middlewares. By assessing the limitations of each
scenario, the intent is to gain knowledge and understanding
of the challenges involved and evaluate the feasibility of the
proposed concept.

IV. GATEWAY ARCHITECTURE

In order to facilitate the scenarios, a bidirectional
OPC UA/MQTT gateway, leaning on the OMG gateway spec-
ification [25] was implemented. One side connects to OPC UA
servers and clients and processes their requests and responses,
while the other side of the gateway connects to a MQTT
broker. The internal OPC UA client and server as well as an
MQTT client handle the internal bridging process (cf. Figure
3). A configuration file defines the necessary internal gateway
mappings and routings.
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Fig. 3. Architecture overview

A. Middlewares (OPC UA and MQTT)

OPC UA is an object oriented client/server-based infor-
mation exchange standard for industrial automation systems,
that supports various IP-based networking technologies.. The

request-response message pattern allows clients to access the
server’s services, for manipulating Nodes by addressing their
unique Nodeld. These services split into OPC UA’s Service
Sets, which provide access to the server’s address space model,
that represents Nodes to a client. Each Node can contain
Variables, that describe the content type, and Methods, that
provide lightweight and stateless functions [7].

MQTT is a TCP/IP based publish/subscribe protocol which
enables communication for constrained devices in unreliable
networks. MQTT provides so called Topics to which clients
can publish data and subscribe for updates. A client publishes
payload-agnostic messages to the MQTT-Server (Broker),
which handles the distribution to every subscribed client.

B. Gateway component details

In order to bridge messages, the internal OPC UA server
needs to represent MQTT topics and their corresponding data
types within its address space. Changes made to these nodes
will be reflected as published messages to the MQTT broker,
so that subscribed MQTT applications and other gateways will
receive these updates. Complementary, the internal OPC UA
client provides access for MQTT applications to issue requests
to OPC UA servers.

In order to connect OPC UA and MQTT, the gateway
internally implements a request-response pattern. This pattern
foresees one typed request topic and one corresponding typed-
response topic. Therefore, each request and response pair is
required to have a unique identifier (id). As every gateway
issues requests over the same request-specific MQTT topic
(e.g., write-request-topic), this unique id ensures, that the
initiator of the request processes the generated response.
The gateway’s internal service (“RequestResponseHandler’)
handles the entire id mapping.

Another task of the "RequestResponseHandler” is to man-
age the requests issued from OPC UA to MQTT and vice
versa. After forwarding such a request, the service waits for
the response and propagates it back to the request initiator.
As MQTT requires byte-encoded messages, the “"RequestRe-
sponseHandler” uses so called "Wrappers” for serialization.
Depending on the request’s source, the service either wraps or
unwraps a request/response as necessary.

C. Gateway configuration

Another essential part of the gateway is the configuration
file that defines the internal and external mappings. The
configuration specifies the typed MQTT topics represented by
the gateway’s internal OPC UA server. Moreover, for enabling
MQTT to access Nodes of OPC UA servers connected to the
gateway, the configuration defines the network addresses and
Nodes of those servers. Furthermore, the configuration allows
specifying scenario-specific nodes and their corresponding
OPC UA servers.

D. Implementation details

The gateway prototype implementation uses the SDKs,
Eclipse Paho v1.2.1 (MQTT) and Eclipse Milo v0.2.5
(OPC UA) and an XML-encoded configuration file [28], [29].



Mirroring Scenario

Tunnelling scenario

(@
c

Fig. 4. Simplified scenarios

V. MIDDLEWARE SCENARIOS

The two scenarios (“Tunnelling” and “Mirroring”), repre-
sent possible use cases when connecting legacy protocols with
different middlewares (cf. Figure 4). The Tunnelling scenario
connects two OT protocols by using an IT based middleware
for transporting the issued requests and resulting responses.
The Mirroring scenario aims to send the data from one to
potentially multiple other OT protocols by using an IT based
middleware for data delivery. To reduce the complexity, the
scenarios are limited to the OPC UA and MQTT middlewares
and the presented prototype gateway.

A. Tunnelling scenario

In this scenario, an OPC UA client issues requests to a
remote OPC UA server and receives responses (cf. Figure 5).
The client establishes a connection to the gateway and issues a
request. This request is then forwarded/converted by the gate-
way to MQTT. The MQTT broker distributes the request to
every subscribed gateway, which forwards it to the designated
OPC UA server. After processing the request, the OPC UA
server returns a response, which the gateway receives and
publishes. The initiator gateway forwards this response to the
initiating OPC UA client, which concludes this scenario. The
scenario’s message flow would apply to both directions.

OPC UAMQTT MQTT OPC UA/MQTT
Gateway Broker Gateway
Remote
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Server

Fig. 5. Tunnelling scenario
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Figure 6 depicts the respective message flow of the de-
scribed Tunnelling scenario.
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Fig. 6. Tunnelling scenario message flow
For this scenario, a prerequisite is the configuration of

the two gateway’s internal OPC UA servers holding a list of
remote OPC UA server addresses and corresponding nodes.

B. Tunnelling scenario limitations

A significant limitation of this scenario is based on the fact
that OPC UA is client/server-based. In detail, a request issued
by an OPC UA client can only contain nodes located at the
same remote OPC UA server. The reason lies in the fact that
client/server communication is not intended to split messages
or combine multiple responses. In OPC UA, for example, the
ordering of responses has to correlate to the order of nodes
within the request. Therefore, the OPC UA client would have
to issue single requests for each node.

C. Mirroring scenario

The second scenario allows mirroring specific nodes of an
OPC UA server to configured remote OPC UA servers (cf.
Figure 7). In this case, an OPC UA client issues a write request
to an OPC UA server, which processes the request, updates
the node and returns a response. As the gateway maintains
a subscription on this node, the OPC UA server will send
this update to the gateway. The gateway creates a new write-
request and publishes it to MQTT. The corresponding gateway
receives this request and forwards it to the designated OPC UA
server. After updating the node, the server returns a response,
which the initiator gateway receives, and this concludes the
scenario. If configured correctly, the Mirroring scenario allows
distributing the node change to a multitude of remote OPC UA

servers.
OPC UAMQTT

Gateway

Remote
SRS A oo

Server
*~{opcua
Client

Fig. 7. Mirroring scenario
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Figure 8 depicts the respective message flow of the de-
scribed Mirroring scenario.
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Fig. 8. Mirroring scenario measurements

Prerequisites for this scenario is the configuration of the
gateway’s internal OPC UA client holding a list of remote
OPC UA server addresses and corresponding nodes. Addi-
tionally, this client has subscriptions to configured nodes,
hosted by the connected OPC UA server. In this scenario, the
OPC UA client is not aware that its changes of its nodes will
be mirrored to other OPC UA servers.



D. Mirroring scenario limitations

As mentioned, the Mirroring scenario only distributes write-
requests; hence it is not possible to manipulate the address
space of any remote OPC UA server. The responses of write-
requests are not available to the initiating OPC UA client.
The reasons are twofold; firstly, the client does not expect a
subsequent response other from the original request. Secondly,
the responses from other gateways are not further propagated
by initiator gateway because the client does not require it.

VI. EVALUATION

Each message flow was measured on actual implementa-
tion to evaluate the described scenarios. The hardware setup
included one desktop PC and one laptop, both running on
Windows 10, and one Raspberry Pi 4B using Raspberry Pi OS.
The PC’s specifications include 16GB RAM and a quad-core
CPU with 3,4GHz clock speed; the laptop also features 16GB
RAM and a quad-core CPU with 2,7GHz clock speed. To
accommodate the scenarios on both computers, one gateway
prototype and one OPC UA server was installed and deployed.
The Raspberry Pi utilised Docker for the MQTT broker
functionality, which was provided by the Eclipse-Mosquitto
image. A Gigabit switch provided the network connections.

For monitoring the message sequences (and measuring
time), Wireshark was used, and the machines were time-
synchronised by using the network time protocol (NTP). For
both scenarios, a boolean value was changed, and this change
was sent over MQTT to the remote OPC UA server based on
the scenario. The request’s size was 233 bytes from OPC UA
and 1892 bytes forwarded to MQTT for the “Tunnelling”
scenario and 215 bytes and 1887 bytes for the “Mirroring”
scenario, respectively. Every wrapping and unwrapping of
requests and responses included adding or parsing gateway
specific information, like handling the server id, which influ-
ences the conversion times. This request was issued multiple
times. The provided measurements show the average values
gathered from this process.

A. Measuring results

The values in Table I represent the message flow as
visualized in Figure 6. A; symbolizes the time difference
between the OPC UA client issuing a request and the gateway
publishing this request to the MQTT topic. Ag represents the
time needed for the gateway to receive a published request
and forward it to the remote OPC UA server. A, shows the
amount of time necessary to convert the remote OPC UA’s
server response to a MQTT publish request. In the last step,
the client receives the answer from the gateway (Ag). Ay and
Ag are strongly depended on the MQTT infrastructure and
therefore not measured.

Similar to the measured times in the Tunnelling scenario,
Table II shows the time values of the "Mirroring” message
flow, as shown in Figure 8. A; includes issuing a write-request
from the OPC UA client and updating this node in the address
space of the OPC UA server. Additionally, Ay covers the re-
sulting subscription update of the gateway’s internal OPC UA

TABLE I
DELTA TIMES IN SECONDS, TUNNELLING SCENARIO

Ay Ax Az Ay As  Ag
0.0489s 0.0124s

Request

Response 0.06390s 0.0074s

server and the publishing to the corresponding MQTT topic.
Ag represents the retrieving of this request and updating
the specified node. The scenario concludes with Ay, which
symbolizes the conversion of the OPC UA server’s response
and the publishing of this response to the corresponding
MQTT topic. Ay and Aj are strongly depended on the MQTT
infrastructure and are not covered.

TABLE 11
DELTA TIMES IN SECONDS, MIRRORING SCENARIO

Ay Az Aj Ay As
0.54097s 0.01241s

Request

Response 0.00697s

VII. DISCUSSION

The results obtained from the scenarios show that the use of
a mixture of middleware and gateways is a possible solution
to connect OT protocols with IT applications. However, the
limitations of the individual scenarios allow some conclusions
for the use of gateways that need further clarification. While
the gateway implementation was not the main focus, it affected
both scenarios—the required in-depth knowledge about each
middleware to program a gateway directly transfers into the
configuration issue. The intended node communication via a
gateway requires the specification of e.g., addresses, topics
or datatypes prior deployment in the configuration file. Both
scenarios indicate that the complex and static configuration
limits the use of the gateway. It appears necessary to automate
the configuration file generation if gateway instances are
deployed dynamically, e.g., on fog or edge devices. This
finding would confirm the challenges described in [27], [30].
Moreover, the variations of available middleware program
language implementations (e.g., OPC UA is available in C,
JAVA, or Python) increases the complexity for implementation,
configuration and deployment of gateways.

Another dependency exists between scalability and the in-
tended node communication. While the second scenario allows
the distribution to several severs and connected nodes, the
first one is limited to the nodes of one server. Unquestion-
ably, the source of the limitation lies in the classical way
of a client/server architecture of OPC UA (excluding the
newly published OPC UA Publish/Subscribe specification).
However, from the broader perspective of connecting multiple
middlewares with gateways, such limitations require careful
consideration before implementation. A similar limitation ap-
plies related to message transfer and latency. The forward-
ing scenario delivers messages faster as the gateway simply



forwards them, while in the tunnelling scenario, the gateway
establishes a client/server connection first. In combination with
the quality of service of the transporting middleware, message
timings might become unpredictable. Therefore, applications
that involve safety aspects might not be realised with such a
concept.

Besides, security was not a centre topic within explored
scenarios; the experience indicates that security risks are
related to the middlewares not the gateways. The architecture
of the gateway prototype would require access by an intruder,
e.g., internal message exchange. As the implemented gateway
leans on the OMG specification, a similar conclusion could be
drawn for the OPC UA / DDS gateway.

Summarised, the findings indicate that the middle-
ware/gateway concept could be an interim solution to close the
OT/IT gap for specific scenarios. However, the configuration
issue needs to be addressed first, as the involved complexity
exceeds the general knowledge of a typical middleware user.

VIII. CONCLUSION

The paper explores the feasibility of interconnecting OT
protocols via different middlewares and gateways by present-
ing two simplified connection scenarios. Each scenario exem-
plifies a possible use case for connecting protocols by either
mimicking bidirectional tunnelling or propagating (mirroring)
of automation data. The found limitations in each scenario
point out challenges related to configuration, deployment and
scalability of the concept. Further studies should include
research for solving the identified challenges (e.g., automatic
model-transformations addressing semi-automatic configura-
tion) and investigating possible further limitations of gateways
in highly distributed and heterogeneous environments (e.g., fog
or edge).
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