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Abstract—In this paper, a computationally efficient data-driven
hybrid automaton model is proposed to capture unknown com-
plex dynamical system behaviors using multiple neural networks.
The sampled data of the system is divided by valid partitions
into groups corresponding to their topologies and based on
which, transition guards are defined. Then, a collection of small-
scale neural networks that are computationally efficient are
trained as the local dynamical description for their corresponding
topologies. After modeling the system with a neural-network-
based hybrid automaton, the set-valued reachability analysis with
low computation cost is provided based on interval analysis and
a split and combined process. At last, a numerical example of the
limit cycle is presented to illustrate that the developed models
can significantly reduce the computational cost in reachable set
computation without sacrificing any modeling precision.

Index Terms—data-driven modeling, hybrid automata, neural
networks

I. INTRODUCTION

Data-driven methods such as neural networks are widely
used in modeling for their effectiveness without relying on the
explicit mathematical model or prior knowledge of the system
in a variety of research activities, e.g., modeling nonlinear
dynamical systems in the description of Ordinary Differential
Equations (ODEs) [1] such as modeling thermal conductivity
of water-based nanofluid containing magnetic copper nanopar-
ticles in [2], modeling groundwater-level variation in coastal
aquifers in [3], etc. However, due to the high complexity
of large-scale neural network models, some computationally
expensive tasks such as reachability analysis are difficult to
perform on neural-network-based models. Therefore, compu-
tationally efficient modeling methods are in critical need for
neural-network-based models.

To improve the performance of the model and ensure that
the model is matching the characteristics of the system, e.g.,
robustness, stability, etc, modeling is becoming a challenging
task. The training of neural network models has received
particular attention in the machine learning community. For
instance, adding Lyapunov constraints in the training neural
networks to enhance stabilization of learning nonlinear system
in [4], studying the adversarial robustness of neural networks
using robust optimization in [5], utilizing the idea of robust
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optimization in the training of neural networks in [6], esti-
mating the Lipschitz constant of neural networks in [7], etc.
Besides training, the verification for neural networks plays a
crucial part in the usability and safety of the neural-network-
based model is investigated in research such as providing
reachable set estimation and safety verification for multi-layer
neural networks in [8], verifying the neural network model
by the star set based set-valued reachability analysis in [9],
providing bound propagation-based neural network verifiers in
[10], [11], etc. Training and verification are related to the size
of the neural network, i.e., a single neural network that aims
to be trained with all samples may lead to the training and
verification for the neural network model becoming complex
and time-consuming works.

Inspired by [12], a dynamical system can be modeled by
a hybrid automaton with a finite number of local topologies
plus transitions among them. Furthermore, if the dynamical de-
scription for each topology of the hybrid automaton is a neural
network, and the neural network only needs to approximate the
local system dynamics within that topology, which means the
size of each neural network can be scaled down compared with
using a large-scale neural network approximating the entire
system dynamics. As a result, the computational complexity
in either training or verification will be reduced and moreover,
due to parallel training, the scalability can be further increased.
In this paper, a neural-network-based hybrid automaton is
proposed to reduce the computation cost in training and veri-
fication for modeling the dynamical systems. First, the given
region is divided into valid partitions representing topologies
of the proposed model, based on which the guards are defined.
Sample data are selected into different groups with which
the neural networks are trained respectively as the dynamical
description of their corresponding topologies. Then, the Mean
Square Error (MSE) and analysis of the set-valued reachability
of our proposed method are provided. Lastly, a numerical
example is given to illustrate the effectiveness of our approach.

The main contributions of this paper lie in the way to
model the dynamical system using our computationally ef-
ficient neural-network-based hybrid automaton and its set-
valued analysis. The neural-network-based hybrid automaton
models the system with multiple neural networks with each
trained with the sample group corresponding to its topology,
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which reduces the computational complexity while increasing
scalability. The set-valued analysis is given based on interval
analysis and a Split and Combined process.

The paper is organized as follows: preliminaries and prob-
lem formulation are given in Section II. The main result,
modeling with neural-network-based hybrid automaton, and
the set-valued analysis are given in Section III. In Section IV,
a limit cycle modeling example is provided to evaluate our
method. Conclusions are given in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

The dynamical systems in the paper are in the general
discrete-time form of

x(k + 1) = f(x(k), u(k)) (1)

where x(k) ∈ Rnx is the system state, and u(k) ∈ Rnu is
the system input, respectively. The evolution of system state
is governed by f : Rnx+nu → Rnx , which is an unknown
nonlinear discrete-time process. In this paper, we aim to de-
velop a novel data-driven, i.e., neural-network-based, modeling
method to approximate this unknown nonlinear mapping f .

Assumption 1: It is assumed that state x(k) and input u(k)
are all measurable from unknown nonlinear system (1).

Under Assumption 1, the training data for modeling is
defined as follows.

Definition 1: Sampled data W = {w1, w2, · · · , wL} of an
unknown dynamical system (1) is a collection of sampled L
traces obtained by measurement, where for each trace wi,
i = 1, . . . , L, is a finite sequence of time steps and data
(k0,i, d0,i), (k1,i, d1,i), · · · , (kMi,i, dMi,i) in which
• k`,i ∈ (0,∞) and k`+1,i = k`,i + 1, ∀` =

0, 1, . . . ,Mi, ∀i = 1, 2, . . . , L.
• d`,i = [x>i (k`,i), u>i (k`,i)]

> ∈ Rnx+nu , ∀` =
0, 1, . . . ,Mi, ∀i = 1, 2, . . . , L, where xi(k`,i), ui(k`,i)
denote the state and input of the system at `th step for
ith trace, respectively.

In this paper, it is assumed that there exist sufficient
measurable input and state traces available in W for the
data-driven modeling of nonlinear system (1). Instead of
using one single large-scale neural network, e.g., Deep Neural
Networks (DNN), as in most of the existing results [8], [9],
[13] which commonly suffer overly expensive computation
in successive use especially for safety verification before
deployment on safety-critical systems, we aim to develop a
novel neural-network-based hybrid automaton consisting of
a family of small-scale neural networks, i.e., shallow neural
networks, along with inferred transitions to not only accurately
approximate the unknown nonlinear system model f , but also
hold a great promise in performing computational-efficient
verification.

In this work, we consider feedforward neural networks in
the form of Φ : Rn0 → RnL defined by the following recursive
equations in the form of{

η` = φ`(W`η`−1 + b`), ` = 1, . . . , L

ηL = Φ(η0)
(2)

where η` denotes the output of the `-th layer of the neural
network, and in particular η0 ∈ Rn0 is the input to the neural
network and ηL ∈ RnL is the output produced by the neural
network, respectively. W` ∈ Rn`×n`−1 and b` ∈ Rn` are
weight matrices and bias vectors for the `-th layer. φ` =
[ψ`, · · · , ψ`] is the concatenation of activation functions of
the `-th layer in which ψ` : R→ R is the activation function.

In this paper, we focus on reducing the computational
complexity of neural-network-based models in terms of reach-
ability analysis. The reachable set of neural network (2) is
given as follows.

Definition 2: Given neural network (2) with a bounded input
set V , the following set

Y , {ηL | ηL = Φ(η0), η0 ∈ V ⊂ Rn} (3)

is called the reachable set of neural network (2).
Remark 1: The computation complexity for reachable set

computation of Y heavily relies on the number of layers and
neurons. To enable computationally efficient neural-network-
based models in particular for reachability analysis and suc-
cessive verification procedures, we have to choose neural net-
works with fewer layers and neurons, however, it usually leads
to low training accuracy for complex nonlinear systems. Our
goal in this paper is to overcome this dilemma of computation
complexity versus training accuracy.

III. MAIN RESULTS

A. Neural-Network-Based Hybrid Automata

The main goal of this paper is to develop an efficiently ver-
ifiable data-driven model for nonlinear system (1). Inspired by
the hybridization methods for the analysis of nonlinear systems
in [14], [15] which enable the efficient verification procedures
of hybrid automata with complex, nonlinear dynamics through
an abstraction process of multiple local subsystems of sim-
plified forms, we propose a hybridization method to model
unknown nonlinear dynamics (1) in data-driven modeling
scenarios utilizing a collection of small/moderate-size neural
networks characterizing local system behaviors.

A neural-network-based hybrid automaton consists of vari-
able components describing both dynamics and the discrete
transition logic of a system, which will be used as the
modeling framework in the rest of this paper.

Definition 3: A neural-network-based hybrid automaton is
defined by a tuple H , 〈Q,X , init,U , E , g,G, inv,F〉 in
which the components are defined by:
• Topologies: Q , {q1, q2, . . . , qN} is a finite set of

topologies.
• State Variables: X ⊂ Rnx is the set of state variables

with the state defined by (q, x) ∈ Q× X .
• Initial conditions: init ⊆ Q0 × X0 is the initial state set,

in which Q0 ⊆ Q and X0 ⊆ X .
• Inputs: U , {u1, u2, . . . , uM} is the set of inputs for

each topologies.
• Transitions: E ⊂ Q × Q is the set of transitions where

a discrete transition from ith topology to jth topology is
taking place, i.e., qi → qj , eij = (qi, qj) ∈ E .



• Guard functions: g : E → G is the guard function map-
ping each transition element eij to its guard g(eij) ∈ G.

• Guards: G ⊆ 2X is the guard set which satisfies ∀eij ∈ E ,
g(eij) ∈ G. The guard is satisfied by the state when
the hybrid automaton model takes a transition from
the current topology to another given topology, i.e.,
(qk, xk) � g(eij) if and only if qk = qi and xk ∈ g(eij).

• Invariants: inv : Q → 2X is a mapping that assigns
an invariant inv(q) ⊆ X for each topology q ∈ Q. An
invariant is satisfied by all the states of a hybrid automata
model for a given topology, i.e., (q, x) � inv(q) if and
only if x ∈ inv(q).

• Set of Dynamical Description: F is the set of dynamical
description which describes the dynamical process for
each given topology q ∈ Q. In this paper, neural network
Φq(x(k), u(k)) ∈ F defines the dynamics for each
topology q ∈ Q in a given time step k ∈ [k1, k2].

Given sampled data setW defined by Definition 1, the data-
driven modeling problem for unknown dynamical system (1)
is to establish a neural-network-based hybrid automaton, i.e.,
H = 〈Q,X , init,U , E , g,G, inv,F〉 with F represented by
a collection of neural networks Φq , q ∈ Q. In addition, the
constructed neural-network-based hybrid automaton model H
is expected to be with low computational complexity without
sacrificing training accuracy. Specifically, the modeling and
verification challenges are described as follows.

Problem 1: Given sampled data set W collected from
measurable input and state traces of dynamical system (1),
how does one construct a hybrid automaton H embedded with
neural network in the form of (2) to accurately capture the
system dynamical behaviors of system (1)?

Problem 2: Given neural-network-based hybrid automaton
model H as defined by Definition 3, how does one perform
efficient verification procedures on H?

B. Data-Driven Modeling Processes

To learn local system behaviors, state space partitioning is
required for the segmentation of training data set W .

Definition 4: Given a compact set X ⊂ Rnx . A finite
collection of sets X , {X (1),X (2), . . . ,X (N)} is called
a partition of X if (1) X (q) ⊆ X , ∀q = 1, . . . , N ; (2)
int(X (q))∩ int(X (p)) = ∅,∀q 6= p; (3) X ⊆

⋃N
q=1 X (i). Each

elements of X (q) of partition X is called a cell.
Remark 2: In this paper, we use cells defined by hyper-

rectangles which are given as follows: For any bounded
state set X ⊆ Rnx , we define X ⊆ X̄ , where X̄ =
{x ∈ Rnx | x ≤ x ≤ x̄}, in which x and x̄
are defined as the lower and upper bounds of state x
in X as x = [infx∈X (x1), . . . , infx∈X (xnx)]> and x̄ =
[supx∈X (x1), . . . , supx∈X (xnx

)]>, respectively. Then, we are
able to partition interval Ii = [infx∈X (xi), supx∈X (xi)],
i ∈ {1, . . . , nx} into Ni segments as Ii,1 = [xi,0, xi,1],
Ii,2 = [xi,1, xi,2], . . ., Ii,Ni

= [xi,Ni−1, xi,Ni
], where

xi,0 = infx∈X (xi), xi,Ni = supx∈X (xi) and xi,n =

xi,0 +
m(xi,Ni

−xi,0)

Ni
, m ∈ {0, 1, . . . , Ni}. The cells then

can be constructed as Xq = I1,m1 × · · · × Inx,mnx
, q ∈

{1, 2, . . . ,
∏nx

s=1Ns}, {m1, . . . ,mnx
} ∈ {1, . . . , N1} × · · · ×

{1, . . . , Nnx}. To remove redundant cells, we have to check
if the cell has an empty intersection with X . Cell X (q) should
be removed if Xq ∩ X = ∅, and the remaining cells X (q)

constitute X = {X (1),X (2), . . . ,X (N)}.
Based on a collect of sets X = {X (1),X (2), . . . ,X (N)},

we will be able to segment sampled data set W into a
collection of sets W = {W1,W2, . . . ,WN} where

Wq , {x(k) | x(k) ∈ Xq, x(k + 1) ∈ X (q)} (4)

in which x(k), x(k + 1) are any sampled states in traces wi,
i = 1, . . . , L defined by Definition 1. Therefore, Wq contains
all the sampled state traces evolving within cell X (q).

To train neural network Φq to model local system behaviors
of dynamical system (1) evolving in X (q), the training input-
output pairs need to be abstracted from trace set Wq .

Definition 5: Given sampled trace wi in set Wq , an input-
output pair is defined as

p`,i,q = {d`,i, xi(k`+1, i)} (5)

where d`,i = [x>i (k`,i), u
>
i (k`,i)]

> is given in Definition 1,
and d`,i ∈ Wq × U , xi(k`+1, i) ∈ Xq . The training data set
out of Wq includes all the input-output pairs and is given as
below:

Pq = {p0,1,q, . . . , p`,i,q, . . . , pML,L,q} (6)

where ` = 0, 1, . . . ,Mi, i = 1, . . . , L.
Under Assumption 1, we assume that there exist a sufficient

number of training input-output pairs in each Pq out of seg-
mented data set Wq to train neural network Φq for modeling
local system behaviors in cell X (q).

With training set Pq for each cell X (q), the neural networks
can be trained respectively for location q. The set of dynamical
description F which is a collection of neural networks Φq ,
q = 1, . . . , N can be trained, which can be summarized as the
following problem:

minWq,bq

∥∥∥Φq(Dq)− X̂q

∥∥∥ , q = 1, 2, · · · , N (7)

where Wq and bq are weight matrices and bias vectors to
determine neural network Φq , Dq are input data matrix and X̂q

is output data matrix from input-output pair Pq , respectively.
Remark 3: In general, the learning processes can be viewed

as an optimization procedure to find optimized weights and
biases that minimize the error between the output of the trained
neural network and output training data, as described in (7).
Instead of using one single neural network for modeling, a
collection of neural networks Φq , q = 1, . . . , N are used to
model local system behaviors in each cell X (q), q = 1, . . . , N .
We have the following advantages if we use multiple neural
networks:
• Compared with modeling the complex global system

behavior using a single large-size neural network Φ, a
number of neural networks Φq , q = 1, . . . , N with much
smaller sizes are able to abstract the local system behav-
iors with the same or even higher modeling precision.



• Since Wq , q = 1, . . . , N are independent of each other,
the training processes for small-size neural networks Φq ,
q = 1, . . . , N can be conducted in a parallel manner
which would be more computationally efficient than
training a large scale neural network.

• Even though there are multiple neural networks in the
model, only one small-size neural network is activated
at each time step k. Therefore, the computation effort
at each step is only determined by the active small-
size neural network. This feature is extremely helpful for
executing computationally expensive tasks based on the
model such as reachability-based safety verification in
which we only need to compute the reachable set of a
small-size neural network at each step.

The above benefits of using multiple small-size neural
networks enable efficiently verifiable neural-network-based
models of dynamical system (1). A detailed evaluation will
be presented in the evaluation section.

After obtaining the collection of neural networks as the set
of dynamical descriptions in the hybrid automaton, the tran-
sition between two neural networks of dynamical descriptions
is defined as follows.

Definition 6: Transitions between two topologies are auto-
matically generated by the dynamical description of hybrid
automaton, such that ∀p, q = 1, 2, . . . , N, p 6= q, (p, q) : x ∈
X (p), Φp(x, u) ∈ X (q).

An illustration of neural-network-based hybrid automaton
model H is given in Fig. 1. After modeling the dynamical
system (1) in the framework of hybrid automaton model H,
we can evaluate H using the following Mean Square Error
(MSE) performance out of L test traces which is defined as

MSE =
1

L∑̀
=1

Mi

L∑
`=1

∥∥∥∥∥
Mi−1∑
k=1

(Φq(xi(k), u(k))− xi(k + 1))

∥∥∥∥∥
in which Mi denotes the length of ith trace. In the evaluation
example, this MSE performance will be used for evaluating
model precision.

C. Reachable Set Analysis
In this subsection, Problem 2, i.e., safety verification, will

be addressed in the framework of reachability. The reachable
set of hybrid automaton model H is defined as follows.

Definition 7: Given a neural-network-based hybrid au-
tomaton model H with initial set X0 and input set U ,
the reachable set at a time instant k is Xk , {x(k) |
x(k) satisfies H and x(0) ∈ X0} and the reachable set over
time interval [0, kf ] is defined by X[0,kf ] =

⋃kf

s=0 Xs.
Reachable set analysis for a neural-network-based hybrid

automaton can be referred for safety verification in [13]. Based
on Definition 7, Xk may intersect multiple elements from X ,
which means there will be a split computation of reachable
set for each intersection. This process is called Split and is
defined by

Definition 8: For a reachable set Xk of H intersects with l
elements of X , given a subspace Vi,k from Xk in which Vi,k :

Fig. 1. A neural-network-based hybrid automaton model
H is constructed with 6 topologies valid partitions X =
{X (1),X (2),X (3),X (4),X (5),X (6)} and one state trajectory (in
Brown) evolves in X .

Vi,k = (Xk ∩ X (m)); ∪li=1 Vi,k = Xk, ∀i = 1, · · · , l, ∃m =
1, · · · , N , the process of splitting analysis of the output space
Vi,k+1 is given by

Vi,k+1 , {ηi,k+1 | ηi,k+1 = Φm(ηi,k), ηi,k ∈ Vi,k} (8)

where the process of obtaining Vi,k+1, ∀i = 1, 2, · · · , N is
called Split.

After Split, the Combine process is needed to obtain a
complete reachable set for the next step.

Definition 9: For Vi,k+1, i = 1, · · · , l the output reachable
set Xk+1 for a neural-network-based hybrid automaton model
H at time step k+ 1 is given by Xk+1 ,

⋃l
i=1 Vi,k by which

the Combine derives the reachable set at k + 1 time instance.
With the Split and Combine defined above, the reachable

set of H can be paralleling analyzed at time instance k if
Xk intersects with multiple elements from X . The Split and
Combine is given in Algorithm 1.

Remark 4: Note that if the output reachable set Xk intersects
with multiple valid partitions, the process of Split & Combine
may compute the output reachable sets for more times than
modeling with a single neural network and the conservatism
may increase because of Combine. However, according to [8],
[9], [13], the computational cost for the set-valued analysis
of the neural network is mainly affected by the scale of the
neural network model, e.g., the layers and neurons of the
neural network model. In our case, due to parallel training
of shallow neural network models, the neural-network-based
hybrid automaton model may have less computational cost
compared with traditional methods.



Fig. 2. Sketch map for Split while Xk intersects with l = 4 valid partitions

Algorithm 1: Pseudo Code for Split and Combine
Input : Reachable set Xk; Neural-network-based

hybrid automaton model H.
Output: Output Reachable Set Xk+1.
/* Initialization */

1 i← 1
/* Split */

2 while i ≤ N do
3 if X (i) ∩ Xk 6= ∅ then
4 Vi,k ← X (i) ∩ Xk

5 Computing Vi,k+1 ; // Under
Definition 8

6 else
7 Vi,k ← ∅
8 end
9 i← i+ 1

10 end
/* Combine */

11 Computing Xk+1 ; // Under Definition 9
12 return Xk+1

IV. EVALUATION

In this section, a numerical example of the limit cycle
borrowed from [16] is used for evaluation in the form of

r(k + 1) = (1 + τ)r(k)− τr3(k) + τu(k)

θ(k + 1) = θ(k) + τω (9)
u(k) = µ+ δζ(k)

where ω = 2π/3 and τ = 0.1 are the angular velocity and
time step width, respectively and the uniform random number
ζ(k) ∼ U(−1, 1). Namely, the input u(k) ∼ U(µ− δ, µ+ δ)
(µ = 0.2 and δ = 1.5) in which U denotes uniform
distribution.

Given dynamical system (9), 50 training traces w =
{w1, w2, · · · , w50} with hi = 50, ∀i = 1, 2, · · · , 50 are gen-
erated with random initial output where θ(0) ∈ [−π, π], r ∈

-4 -2 0 2 4
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1

3

x
2

Fig. 3. 50 trajectories of the limit cycle with random initial condition r(0) ∈
[−4, 4], θ(0) ∈ [−π, π] each of which contains 150 samples and the input
u ∼ U(−1.3, 1.7).
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(b) Hybrid automaton H with 12
neural networks (20 Neurons)

Fig. 4. 50 test trajectories of single neural network model (a) and neural-
network-based hybrid automaton model (b) with 12 neural networks.

[−4, 4]. To derive the neural-network-based hybrid automaton
H which aims to model the dynamics of system (9). Firstly,
the state region X defines x1 ∈ [−4, 4] and x2 ∈ [−3, 3].
Based on X , valid partitions representing the Topologies of
H are obtained by desired segments with M1 = 4, M2 = 3
for each dimension, totaling 12 topologies. The Transitions
between topologies are obtained by the relationship between
samples and regions.

Then, by training a set of neural networks with each
Φi containing 20 hidden neurons for each qi, the hybrid
automaton model H is obtained. Moreover, for the sake of
comparison, a neural network model Φ with 200 hidden
neurons with similar MSE is trained as well. Fig. 4 shows
that both single neural network and hybrid automaton models
can capture the system’s behaviors well. However, in Table I, it

TABLE I
TRAINING TIME AND MSE

Method MSE Training Time
Single Neural Network Model Φ 0.0817 4.35 s

Hybrid Automaton Model H 0.0346 0.32 s
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Fig. 5. 200-time-step reachable set computation of H (red) and a single
neural network Φ (blue) with initial output x1,0 ∈ [−3.02,−3], x2,0 ∈
[−2.603,−2.5] and input u(k) ∈ [−1.3, 1.7]
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Fig. 6. Time for reachable set computation, with a single neural network with
200 hidden neurons (blue), and hybrid automaton H with 12 neural networks
(red).

can be observed that hybrid automaton model H is with lower
MSE which implies higher modeling precision. In addition, the
training time can be significantly reduced by training for 12
neural networks parallelly.

Set-valued analysis using NVV in [9] and Split and Com-
bine compared with a single neural-network-based dynamical
model is given in Fig. 5, and hybrid automaton model can
produce tighter reachable set other than single neural network
does. Moreover, the reachable set computation time has been
significantly reduced compared with a single neural network
model as shown in Fig. 6.

In summary, the evaluation results show that the developed
neural-network-based hybrid automaton model can enable
computationally efficient training and reachability analysis
processes with better modeling accuracy and reachability
analysis results for complex dynamical systems.

V. CONCLUSIONS

A data-driven neural-network-based hybrid automaton is de-
veloped to model complex dynamical systems. First, sampled
data is generated by the dynamical system given random initial
conditions and input series. Then, the region of output is
divided into valid partitions, based on which the topologies and

guards of the proposed model are obtained. Neural networks
are trained as the dynamical description for their correspond-
ing topologies. The set-valued reachability of the proposed
model is analyzed by the reachable set estimation method and
Split and Combine. Modeling a numerical example of the limit
cycle with a neural-network-based hybrid automaton is given.
Compared with the traditional model method with one single
neural network, the computational cost can be significantly
reduced for computationally expensive tasks such as reachable
set computation.
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