
A New Classification Scheme for Software Agents

Aaron Hector and V. Lakshmi Narasimhan

School of Electrical Engineering and Computer Science,

University of Newcastle, Australia

Email: {ahector, narasimhan}@cs.newcastle.edu.au

Abstract

The field of software agents is a broad and rapidly

developing area of research, which encompasses a
diverse range of topics and interests. In order to study

the various methodologies for agent design, a

comprehensive classification scheme is required. This

paper identifies the key aspects of software agents,

then provides an overview of existing ontologies, and
combines the best aspects of these schemes to propose

a new all-inclusive classification scheme. In order to

illustrate the classifications, the JACK Intelligent

Agents architecture is described in the context of the

scheme.

1. Introduction

Agent technology is a rapidly expanding area that

encompasses many disparate areas of research, and

offers several fundamentally different design

approaches. The rapid growth of this field in the past

decade has occurred in parallel with the evolution of

the World Wide Web, as multi-agent systems show

great promise for exploiting massively distributed

systems such as the Internet. Despite the popularity of

multi-agent systems, there is very little consensus

about what exactly constitutes a software agent.

Research into agent-based systems has been quite

diverse [1], which makes it difficult to form a

comprehensive definition for a software agent.

While a range of different approaches have been

taken for agent design, several key features that are

shared among all approaches to agents. The

fundamental feature of software agents is autonomy.

Like their human counterparts, software agents must be

able to act on behalf of some other party, be it a person

or another agent. To do this effectively, some degree of

autonomy is required. Hence, agents must be able to

take action when necessary without human interaction.

As a result of their autonomy, software agents must

run continuously. Unlike much conventional software,

which performs a fixed task then terminates, agents run

constantly. This allows agents to monitor the current

situation and take appropriate action when required.

Agents also possess social ability, that is, the ability to

interact with other agents. The real advantages of

software agents come not from individual agents, but

from communities of interacting agents.

A number of existing surveys and classifications of

software agents have been presented previously.

However, these are generally focused on a specific

subset of software agents. This paper builds upon these

to develop a comprehensive classification that

encompasses a broad variety software agents. In

addition, it will also serve as an introduction to the

essential concepts of software agents.

The remainder of this paper is organized as follows:

Section 2 provides a brief overview of several existing

classifications, highlighting the novel or useful

attributes of each. Section 3 describes a new

classification scheme which builds upon these

classifications to create an ontology that

accommodates the various streams of agent research.

2. Existing Classifications

Several classification schemes exist for software

agents, with many of them focusing on either a

particular domain or on a specific type of agent. These

taxonomies will be explained below, then a new

classification scheme, combining the best aspects of

these will be presented.

A comprehensive typology of agents has been

presented by Nwana in [1], where he identifies an

“agent” as a meta-term, covering a range of agent

types. The three primary attributes that agents should

exhibit are identified as autonomy, learning and

cooperation; however these are not proposed as being

necessary. Further, two categories of agents are also

defined, static versus mobile and deliberative versus

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

reactive. The first category refers to the ability of

agents to move around a network, while the second

refers to whether they engage in planning and

reasoning based upon an internal symbolic reasoning

model.

A taxonomy of agents with special focus on

industrial applications, especially manufacturing, has

been proposed by Parunak [2], individual agents are

classified according to two factors: their function, and

their architecture. The division of agents according to

their functionality is specific to manufacturing, and

hence agents are divided into two categories:

production and design. Agent architectures are

classified based on two properties: diversity of agents,

and sophistication of reasoning. The first property

identifies whether agents within a system are based

upon the same architecture, or have differing

architectures, but having a common communication

mechanism. The second property identifies the

mechanism that the agent uses for reasoning and/or

reacting to its environment. This ranges from pure

reaction to pure planning.

Another classification is presented by Franklin and

Graesser [3], all agents are identified as being reactive,

autonomous, goal-oriented and temporally continuous,

with the following attributes being optional:

communicative, learning, mobile, flexible (non-

scripted), and character (personality). From these

properties, a “natural kinds taxonomy of agents” is

presented.

Wooldridge and Jennings [4] have produced another

classification of software agents. A weak notion of

agency is proposed, defining an agent as a hardware or

software system with the following properties:

autonomy, social ability, reactivity and pro-activeness.

One notable aspect of this definition is that it requires

an agent to both react to its environment, and exhibit

goal-directed behavior, i.e. to be both reactive and pro-

active. This is in contrast to several other

classifications listed above, which consider purely

reactive and purely goal-oriented systems within their

classifications.

3. Proposed Classification

In this section, we combine the above classification

schemes to form an inclusive ontology, which takes

into account the various sub-fields of software agents.

The core attributes of software agents are autonomy,

temporal continuity and social ability. Agents must be

able to run independently, with little or no human

intervention, therefore autonomy is a necessary

property of agency. Temporal continuity is required, as

agents must run continuously, rather than simply

perform a task, and terminate.

Agents must also possess some form of social

ability. The real advantages of software agents come

not from individual pieces of software acting in

isolation, but from communities of interacting agents.

In addition to the core attributes, agents may be

classified according to the following features:

• Pro-activeness

• Adaptiveness

• Mobility

• Collaboration

• Veracity

• Disposition

Each of these features may be further sub-divided

into a list of properties, as explained below. The

JACK
TM

 Intelligent Agents architecture will be used to

illustrate the classification scheme.

3.1 JACK Intelligent Agents

JACK Intelligent Agents (JACK) [5], developed by

Agent Oriented Software, is an Agent Oriented

development environment that builds upon the Java

programming language, providing extensions to

implement agent behavior [6]. Agents built with the

JACK development environment are compiled to

standard Java code before being executed. JACK is

based upon the Belief Desire Intention (BDI) model of

artificial intelligence, which provides a high degree of

autonomy and pro-activeness.

An agent template showing some of the extensions

that JACK provides to Java is shown in Fig. 1.

agent AgentType extends Agent [implements
InterfaceName]
{
 // Knowledge bases used by the agent
 // are declared here.
 #private data BeliefType
 belief_name(arg_list);

 // Events handled, posted and sent
 // by the agent are declared here.
 #handles event EventType;
 #posts event EventType reference;
 #sends event EventType reference;

 // Plans used by the agent are
 // declared here. Order is important
 #uses plan PlanType;

 // Capabilities that the agent has
 // are declared here.
 #has capability CapabilityType
 reference;

 // other Data Member and Method
 // definitions
}

Figure 1: Example JACK agent template. From Jack
Agent Practicals by Agent Oriented Software [7].

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

3.2 Pro-activeness

An agent's pro-activeness refers to how it reacts to -

and reasons about - its environment, and how it

pursues towards its goals. Considering that the purpose

of an agent is to autonomously and continuously

perform a given set of tasks on behalf of a requester,

the approach that the agent takes toward achieving

goals is central to its performance. An agent's pro-

activeness may be characterized as one of the

following:

PURE REACTION: Pure Reaction is the simplest

form of behavior, and involves directly reacting to

stimuli in the agent's environment, by mapping an

input from their sensors directly to an action. This

approach has two principal advantages, namely, the

agent can react quickly to external events, and it

greatly simplifies the process of designing agents.

Despite the apparent simplicity of reactive agents,

complex behaviors can evolve from interaction with

complex environments. Brooks' devised a reactive

framework called the subsumption architecture [8] for

physical robots, which uses layers of reactive control

systems to achieve complex behavior.

PURE PLANNING: Pure planning lies at the other

end of the spectrum, and involves agents taking a

purely planning, or goal-oriented, approach to achieve

their goals. This approach relies upon utilizing

planning techniques from traditional AI to identify

tasks that need to be performed in order to satisfy the

goals of the agent. This approach allows flexibility in

the pursuit of goals, but is often slow. The dominant

technique for goal-directed agent behavior is the

“Belief, Desire, Intention” (BDI) model [9].

HYBRID: Hybrid agents combine these two

techniques, incorporating both reactive and planning

components. This approach merges the rapid response

of reactive agents with the sophisticated reasoning of

planning agents, and is therefore widely viewed as the

superior approach to agent design. In fact, the notion of

agency presented by Wooldridge and Jennings [4]

identifies both reactivity and pro-activeness as

necessary attributes of all agents. Parunak [2] divides

hybrid agents into two classes: “reaction overridden by

plan”, where the planner may overrule the reactive

component if it disagrees with it, and “reaction

modified by plan”, where the planner can reconfigure

the reactive component to behave differently in the

future. The latter technique requires a degree of

adaptiveness within the agent.

JACK offers a hybrid approach, with two categories

of events that may be performed [7]. Normal Events

correspond to a reactive approach, triggering an

immediate response. In contrast, BDI Events use a pro-

active (goal-directed) approach, including reasoning

about plan selection.

Proactiveness is one of the main features of the

JACK agent system, with the architecture heavily

based upon the BDI model. In order to facilitate this,

JACK provides robust tools for plan specification and

selection.

3.3 Adaptiveness

Adaptiveness describes an agent's ability to modify

its behavior over time. This is a key attribute that is

often associated with agents. In fact, the term “agent”

is often taken to implicitly mean “intelligent agents”,

which combine traditional AI techniques to assist in

the process of autonomously performing tasks.

Adaptiveness is closely related to pro-activeness, with

many pure planning or hybrid systems relying on the

ability to adapt. Despite this, not all agents are

adaptive, and some only adapt in a limited manner.

Adaptiveness may fall into several different categories

as noted below:

LEARNING: Learning agents have the capacity to

modify their behavior over time in order to adapt their

functionality to their environment, and to improve their

effectiveness. A wide range of techniques have been

applied to learning agents, including memory-based

learning, reinforcement learning [10], and Bayesian

belief networks [11].

SUBSUMPTION: The Subsumption Architecture

allows the designer to add additional “layers of

competence” to an agent over time. It was first defined

by Brooks [8] as an architecture for autonomous

robots, but has since been adapted for software agents

[12]. The agent designer can hence expand and adapt

the agent's functionality over successive iterations of

development. This differs from agent learning, as the

adaptation is performed by designers explicitly adding

functionality to the agent.

NON-ADAPTIVE: Non-adaptive agents are those

that do not modify their behavior over time. As noted

by Wooldridge [13], although the discipline of

“intelligent agents” largely grew out of the field of AI,

not all agents need to be capable of learning. The only

intelligence that is required by agents is the capability

to make independent decisions, i.e. to act

autonomously. While learning is often an appropriate

technique for agents to employ, its usefulness will

depend on the circumstances in which the agent is

being used. In mission critical applications, for

example, adaptiveness may be a liability, as it could

lead to unpredictable behavior by the system.

CONSTRAINT BASED: Constraint-based agents

place restrictions on the agent's capacity to adapt, in

order to mitigate the problems associated with learning

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

agents in critical systems. This allows many of the

benefits of learning agents, while providing safeguards

to ensure that the agent still fulfills critical functions.

The JACK development environment provides

some support for adaptiveness in refinement of plan

selection, however, learning in the traditional AI sense

is not a key foundation of the architecture. Developers

may employ advanced learning techniques in

developing individual agents, but support for such

techniques is not provided in the JACK architecture.

3.4 Mobility

Software agents are well-suited to tasks involving

large-distributed networks such as the Internet.

Consequently, much of the research into agents has

revolved around the concept of mobility. An agent may

be:

PHYSICALLY MOBILE: Physically mobile

agents are capable of transporting their execution

between machines on a network. This provides an

attractive mechanism for developing software for

distributed systems. Mobility is often implemented in a

transparent manner, allowing the agent to continue

normal execution as it travels around the network. An

example of this approach is the Concordia agent [14],

developed by Mitsubishi Electric ITA.

LOGICALLY MOBILE: Logically mobile agents

are those which physically execute on a single

machine, but access other logical locations, via a

network connection. These agents may be thought of as

visiting these locations in a conceptual sense, although

their actual execution is fixed to a single physical

machine. Logically mobile agents provide a suitable

mechanism for gathering data from the Internet. A

typical example of such an agent is a web spider [15],

which visits and processes a series of web pages by

following hypertext links.

STATIC: Static agents are those do not provide a

mechanism for mobility at all.

Unlike other agent systems such as IBM’s Aglets

[16], JACK Intelligent Agents do not provide support

for mobility. However, JACK is Java-based, and

consequently, agents developed using it can take

advantage of Java’s cross-platform capabilities and

support for serialization to assist in implementing

physical mobility. Virtual mobility may also be

implemented at the agent level, although no

architectural support is provided for it within the JACK

system.

3.5 Collaboration

Collaboration among agents underpins the success

of an operation or action in a timely manner. For this

reason, agents should possess some form of social

ability, and this may be divided into two types:

COMMUNICATIVE: Communicative agents are

those that are able to coordinate with other agents by

sending and receiving messages using some form of

agent communication language. This allows a high

degree of collaboration, with social activities such as

distributed problem solving and negotiation being

possible. Several agent communication languages are

available, the most prominent being KQML [17].

NON-COMMUNICATIVE: Non-communicative

agents are those that do not engage in formal

communication. Although direct agent communication

is desirable in many situations, it is possible for agents

to collaborate without actual communication taking

place. Interaction of agents with resources and their

environment may lead to collaborative or competitive

behavior emerging. For example, the SWARM [18]

agent system provides a framework within which

communities of agents can interact. The SWARM

system is generally used for simulating social systems,

and many such simulations demonstrate collaborative

behavior without direct communication. A simple

example of this is the HeatBugs [19] model.

JACK Intelligent Agents provides a message-based

communication framework [6], allowing messages to

be passed to another named agent within the system.

This provides a simple, but extensible,

communications mechanism. Several extensions to

JACK are available that provide more advanced

support for communication and collaboration. For

instance, JACK Teams [20] extends JACK to allow

agents to be grouped into teams and sub-teams, which

act as separate reasoning entities, supporting the full

BDI model, with their own beliefs, desires, intentions,

and team-level plans. Another extension, called FIPA

JACK [21] builds upon JACK’s basic communications

framework to provide a FIPA compliant

communications infrastructure.

3.6 Veracity

Collaborating agents, whether communicative or

non-communicative, may attempt to deceive other

agents via their messages or behavior. Agents may

hence be classified by their veracity:

TRUTHFUL: Truthful agents are those that do not

attempt to intentionally deceive other agents. In a

closed environment, where the veracity all agents is

guaranteed, negotiation and interaction is greatly

simplified. If an agent indicates that it can provide a

service, other agents can assume that it will make an

attempt to provide it. If an agent provides information

to assist in satisfying a goal, all other agents can be

reasonably certain that this information is correct.

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

UNTRUTHFUL: Untruthful agents are those that

may attempt to deceive other agents either through the

provision of false information, or by acting in a

deceptive manner. In an open environment, where

various agents from different vendors compete to

achieve their own goals, the issue of deception

becomes a factor. In such a system, collaboration

becomes much more difficult.

JACK is intended primarily for use in closed

environments, where all agents are designed to work

towards some overall goal, and hence agents designed

with it are usually truthful. However, FIPA JACK

allows it to be used in open environments such as the

Internet, interacting with agents designed using other

architectures and methodologies. In such a situation,

the designer may need to take into account the

possibility of untruthful agents.

3.7 Disposition

The final factor in this classification of agents

indicates the “attitude” of the agent toward other

agents, and its willingness to cooperate with them.

Agents may be classified as:

BENEVOLENT: Benevolent agents are those that

always attempt to perform a task when it is requested

of them. Wooldridge [13] identifies benevolence as

“the assumption that agents share common goals, and

that every agent will therefore do what is asked of it”.

Much like with truthful agents, collaboration is greatly

simplified in a system that consists entirely of

benevolent agents.

SELF-INTERESTED: Self-interested agents are

those that act in their own interest, collaborating with

other agents only when it is beneficial to do so. Unlike

benevolent agents, they cannot be expected to do what

is asked of them, so coordinating with such agents

becomes a difficult task. In many cases, self-interested

agents may be competitive, vying with other agents to

achieve a given goal, or acting to secure a better deal

than other agents. A typical example of this would be

an electronic auction system, such as that mentioned in

the example above.

MALEVOLENT: Malevolent agents are those that

attempt to inconvenience other agents, or undermine

them in some way. Unlike self-interested agents, they

do not simply act to achieve their own goals, rather

they act in some predefined malicious manner. While

the difference between self-interested agents and

malevolent ones may simply be a distinction in the

goals of the agent, self-interested agents may have a

positive impact on the system, while the presence of

malevolent agents within a system is unlikely to be of

any benefit. Some worms may be seen as a type of

malevolent agent.

As mentioned in Section 3.6, JACK agents are

intended for use in closed environments, and will

therefore generally be benevolent. However, when

extensions such as FIPA JACK are used to allow

interaction in an open environment, the possibility of

interaction with self-interested or malevolent agents

arises.

4. Conclusion and Future Research

This paper describes a new classification scheme for

Agent Technology (summarized in Figure 2). It draws

upon several existing ontologies, but provides an all-

inclusive classification that takes into account the

various aspects of agent research. Due to the wide

variety of approaches toward software agents, a simple

classification method that assigns each agent to a

single grouping is insufficient. A single grouping for

mobile agents is inadequate, since almost any

combination of the above properties is feasible. In

addition, agent architectures may be neutral about

certain classifications, for example it may leave the

decision of whether an agent based upon the

architecture is mobile or not to individual

implementations.

The classification presented in this paper allows all

manner of agents to be included within the scheme. For

instance, unlike some other definitions of agency, e.g.

Wooldridge and Jennings [4], our classification does

not prescribe that an agent must be both reactive and

goal-directed. While the advantages of a hybrid

approach is widely noted, this classification allows

agents that are purely reactive or purely goal-directed

to fit within its definition of agency.

Apart from simply providing a mechanism to analyse

and catalogue agents, this classification provides an

attractive method for determining how well various

agents will interact within a system. Agents that share

a large number of features will be better able to

collaborate; communicative agents will perform much

better in an environment with other agents that share

this trait, while static agents will do poorly in an

environment designed for mobile agents. An agent that

is benevolent and assumes that other agents share the

same trait will not do well in an environment with self-

interested agents. Determining which types of agents

work well with others will be of increasing importance

as large-scale multi- agent systems become more

widespread across the Internet. This will also become

an issue when designing standardized agent

architectures. As a consequence, analyzing issues

relating to security and certification of agents are very

important.

While this paper attempts to define an inclusive

classification method for agent-based systems, it is by

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

no means definitive. Further work needs to be done on

refining the categories, and reaching consensus on an

ontology for agent-based systems. To assist with this,

the authors are currently preparing a survey paper

which catalogues state-of-the-art agent-based systems

into the categories as listed above.

Pro-activeness

Pure reaction

Pure planning

Hybrid

Agent

Adaptiveness

Learning

Subsumption

Non-adaptive

Constraint based

Mobility

Physically mobile

Logically mobile

Static

Collaboration

Communicative

Non-communicative

Veracity

Truthful

Untruthful

Disposition

Benevolent

Self-interested

Malevolent

Figure 2: Overview of classification scheme

Bibliography

[1] H. S. Nwana, "Software Agents: An Overview,"

Knowledge Engineering Review, vol. 11, pp. 205-224,

October/November 1996.

[2] H. V. D. Paranuk, "Applications of Distributed

Artificial Intelligence in Industry," in Foundations of

Distributed Artificial Intelligence, 1996, pp. 139-164.

[3] S. Franklin and A. Graesser, "Is it an Agent, or just a

Program?: A Taxonomy for Autonomous Agents," in

Proceedings of the Third International Workshop on

Agent Theories, Architectures, and Languages.

Springer-Verlag, 1996.

[4] M. J. Wooldridge and N. R. Jennings, "Intelligent

Agents: Theory and Practice," Knowledge Engineering

Review, vol. 10, pp. 115-152, Jun 1995.

[5] Agent Oriented Software Pty. Ltd., "JACK Intelligent

Agents."

[6] Agent Oriented Software Pty. Ltd., JACK Intelligent

Agents - Agent Manual, 4.1 ed, 2004.

[7] Agent Oriented Software Pty. Ltd., JACK Intelligent

Agents - Agent Practicals, 4.1 ed, 2004.

[8] R. A. Brooks, "A Robust Layered Control System For

A Mobile Robot," IEEE Journal of Robotics and

Automation, vol. RA-2, pp. 14--23, March 1986.

[9] A. S. Rao and M. P. Georgeff, "BDI agents: from

theory to practice," in Proceedings of the First Intl.

Conference on Multiagent Systems. San Francisco,

1995.

[10] R. Kozierok and P. Maes, "A Learning Interface Agent

for Scheduling Meetings," in Proceedings of the 1st

International Conference on Intelligent User

Interfaces, 1993, pp. 81-88.

[11] Yi~Shang, H. Shi, and S.S. Chen, "An Intelligent

Distributed Environment for Active Learning,"

presented at ACM Journal of Educational Resources in

Computing, 2001.

[12] H. Song, S. Franklin, and A. Negatu, "SUMPY: A

Fuzzy Software Agent," presented at ISCA Conference

on Intelligent Systems, 1996.

[13] M. Wooldridge, "Agent-Based Software Engineering,"

IEE Proceedings Software Engineering, vol. 144, pp.

26-37, 1997.

[14] Mitsubishi Electric ITA, "Concordia: An Infrastructure

for Collaborating Mobile Agents."

[15] C. Cesarano, A. d'Acierno, and A. Picariello", ""An

intelligent search agent system for semantic

information retrieval on the internet"," in

"Proceedings of the fifth ACM international workshop

on Web information and data management", 2003, pp.

111-117.

[16] IBM Corp., " The IBM aglets workbench,

http://www.trl.ibm.co.jp/aglets/," 1996.

[17] T. Finin, R. Fritzson, D. McKay, and R. McEntire,

"KQML as an Agent Communication Language,"

presented at The Proceedings of the Third International

Conference on Information and Knowledge

Management, 1994.

[18] M. Daniels, "An open framework for agent-based

modeling," 2000.

[19] Swarm Development Group, "SWARM Heatbugs,

http://www.swarm.org/examples-heatbugs.html."

[20] Agent Oriented Software Pty. Ltd., JACK Intelligent

Agents - Teams Manual, 4.1 ed, 2004.

[21] K. Yoshimura, "FIPA JACK: A plugin for JACK

Intelligent Agents. Technical report," 2003.

Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05)

0-7695-2316-1/05 $20.00 © 2005 IEEE

