
A consensus based network intrusion detection
system

Michel Toulouse
Faculty of Engineering

Vietnamese-German University
Ho Chi Minh City, Vietnam

Email: michel.toulouse@vgu.edu.vn

Bùi Quang Minh
Faculty of Engineering

Vietnamese-German University
Ho Chi Minh City, Vietnam

Philip Curtis
Department of Computer Science

Oklahoma State University
Stillwater, Oklahoma, US

Abstract—Network intrusion detection is the process of identi-
fying malicious behaviors that target a network and its resources.
Current systems implementing intrusion detection processes ob-
serve traffic at several data collecting points in the network but
analysis is often centralized or partly centralized. These systems
are not scalable and suffer from the single point of failure, i.e.
attackers only need to target the central node to compromise
the whole system. This paper proposes an anomaly-based fully
distributed network intrusion detection system where analysis is
run at each data collecting point using a naı̈ve Bayes classifier.
Probability values computed by each classifier are shared among
nodes using an iterative average consensus protocol. The final
analysis is performed redundantly and in parallel at the level
of each data collecting point, thus avoiding the single point of
failure issue. We run simulations focusing on DDoS attacks with
several network configurations, comparing the accuracy of our
fully distributed system with a hierarchical one. We also analyze
communication costs and convergence speed during consensus
phases.

Keywords—Anomalie-based network intrusion detection; aver-
age consensus protocol; naı̈ve Bayes classifier; DDoS attacks

September 16, 2015

I. INTRODUCTION

Security experts and researchers have proposed and im-
plemented different strategies to defend computer installa-
tions against attacks. Among them intrusion detection systems
(IDSs) seek specifically to identify attacks that could target
a computer or a network and its resources. IDSs have two
main components: a data audit component, sensors or log files,
that monitor/collect data on the system behavior; a detection
method component which analyzes the observed/collected data
to detect malicious activities. In terms of the audit compo-
nent, IDSs are classified as host-based (HIDS) or network-
based (NIDS) [1]. Host-based IDSs detect attacks to a com-
puter system by monitoring mainly operating system events.
Network-based IDSs detect attacks to nodes connected by a
network by monitoring network TCP/IP events. In terms of
detection methods, IDSs are further classified as signature-
based or anomaly-based detection systems. Signature-based
systems monitor traffic for known attack patterns (signatures),
similar to virus scanners that protect personal computers.
Signature-based IDSs efficiently detect existing threats but
always lag behind new threads. Anomaly-based systems [2]
detect intrusions by classifying observed traffic as either nor-
mal or anomalous based on a profile that characterizes normal

behavior. Anomaly-based systems are better at detecting new
types of attacks but they usually experience a high level of
false positives (report an attack when there is none).

Increasingly, networks are themselves interconnected and
more heterogeneous, which make them the target of sophis-
ticated attacks that could spread over different administrative
domains. Various new NIDS architectures have been proposed
to protect these networks. In centralized NIDS, the audit
component of the system is distributed, collected audits are
forwarded to one or a small number of nodes where the
analysis takes place. Hierarchical NIDS are often a network
of several local NIDSs, each of them protecting a different
sub-network. The local NIDSs decide about the status of their
sub-network, decisions that are sent to a centralized node
which makes a final decision about the status of the whole
network, often using a simple majority rule. This approach
is more scalable and it allows to detect attacks that will not
be detected using a single NIDS [3]. Hierarchical NIDSs can
be degraded substantially by taking down the root node of
the system. A truly distributed NIDS is one where the data
collection component and the analysis component of the IDS
are combined in a single component residing at every data
collection point. Cooperating security managers (CSM) [4] is
one implementation of this type of NIDS. A similar approach
for cloud computing is proposed in [5]. Such distributed
systems incur communication overheads since, to complete its
analysis phase, each node must receive information such as
audit data from all the other nodes. Mobile agent-based NIDSs
[6] address this communication issue through code migration.
In this design, mobile NIDS agents migrate between nodes
to carry the analysis.The issue with the mobile agent-based
approach is the time needed to compute the final analysis may
exceed the real time requirements of a NIDS.

The design of NIDSs can be represented as a three phases
process [2]: parameterization, training and detection. The main
purpose of parameterization is features extraction: identifying
those features that separate normal from attack traffic. The
outcome of this phase is a features vector f1, f2, . . . , fm,
m is the number of features. The training and detection
phases depend on the method used to process feature vectors.
In [2], anomaly-based detection methods are classified as
either statistical based, knowledge based or machine learning
based (see [7] for a more recent and different taxonomy).
Our proposed NIDS relies on the Naı̈ve Bayes classifier as
processing method, which can be considered as a machine

ar
X

iv
:1

50
5.

05
28

8v
2

 [
cs

.C
R

]
 1

5
Se

p
20

15

learning approach to anomaly-based detection.

Naı̈ve Bayes classifiers apply the Bayes rule

P(H|O) = αP(H)P(O|H) (1)

to infer a probability distribution on a set of explanatory
hypotheses about the behavior of a system. In (1), P(H)
denotes the probability distribution for the specific set of
hypotheses H = {ha, hn}, traffic is normal hn or traffic
is anomalous ha. An observation is denoted by O, it is a
vector o1, o2, . . . , om of m values, one value for each feature.
The distribution P(H) is based on prior observations or a
training phase, it is identified as “prior” knowledge. Similarly,
conditional probabilities P(O|H) express the “likelihood” the
combination of values oi ∈ O, i = 1..m can occur conditioned
by each hypothesis, it is learned during the training phase of
the Bayesian system. The Bayes rule computes the posterior
probability distribution P(H|O) which, after consideration of
the observation O and the priors, gives the probability that
the observed traffic is normal and anomalous. For example,
the probability of anomalous traffic P(ha|O) is computed as
αP (ha)

∏m
k=1 P (ok|ha), where α is a normalization constant.

The present paper proposes a fully distributed NIDS. The
proposed system uses n NIDS modules each running a Naı̈ve
Bayes classifier to compute distributively posterior probably
distributions about the state of the network. The detection com-
ponent of this distributed system has two phases. In the first
phase, local likelihood probabilities P(Oi|h) =

∏m
k=1 P (ok|h)

are computed by each module i based on the traffic observation
oi1, o

i
2, . . . , o

i
m of module i. The second phase computes the

joint distribution of the local likelihoods obtained in the first
phase. Assuming conditional independence of the n local
observations, the joint distribution P(O|h), O = ∪i{Oi}, is
the product of the local likelihoods: P(O|h) =

∏n
i=1 P (Oi|h).

In this second phase, NIDS modules execute cooperatively an
average consensus algorithm [8], [9] which computes the joint
distribution P(O|h) asymptotically and in parallel without the
help of any centralized storage or computation.

Our work is based on recent proposals about average con-
sensus algorithms in sensor networks for distributed hypothesis
testing, distributed detection, multi-target tracking and others
[10]. To the best of our knowledge it is the first time these ap-
proaches are adapted to distributed intrusion detection systems.
Therefore, this is the main contribution of this research. The
paper is organized as follow. Next section introduces average
consensus. Section III provides a formulation of the average
consensus problem for a fully distributed intrusion detection
system. Section IV describes our distributed algorithm and
analyzes its behavior with different simulated NIDS networks.
Finally, Section V concludes.

II. AVERAGE CONSENSUS

Consensus is the problem of finding an agreement among
autonomous entities such as peoples, autonomous software
agents or computers in a network. Each agent i has a state
variable xi initialized to some value vi. Agents must agree
on a single output value while communicating directly with
only a subset of the other agents, this subset is denoted by
Ni, the neighborhood of agent i. Consensus problems arise
for example when multiple sensors observe a same object

or control devices compute the same response to a system
behavior. Though they may be provided with different inputs,
the computing devices have to agree on a same output.
Consensus problems have been studied in computer science
[11], physics [12], operations research [13] and control theory
[14].

Average consensus is a consensus problem where agents
must agree on the average sum of the input values:
(1n)

∑n
i=1 xi(0), for n the number of agents. The distributed

averaging problem is solved cooperatively by a network
of agents where each agent i iteratively computes a linear
weighted sum of xi(t) and xj(t), j ∈ Ni:

xi(t+ 1) = xi(t) +
∑

j∈N (i)

Wij(xj(t)− xi(t)), t = 0, 1, . . . (2)

where xi(0) = vi and Wij is the weight of the edge connecting
agents i and j in the network.

Important issues are whether the iterates converge to the
consensus value and how fast they converge (how many
iterations are required for convergence). Convergence and the
speed of convergence are analyzed through the weight matrix
W (also called the consensus matrix) which is formed from
the row vectors in Wij of each agent i. Proofs of convergence
rely on the network connectivity assumption and on properties
of the graph Laplacian. A network is connected if there is path
in the network between each pair of agents. If a network is
connected then it has a graph Laplacian. The graph Laplacian
L of a network is a n× n matrix where L[i, j] is given as:

L[ij] =


−1 if j ∈ Ni

|Ni| if i = j (|Ni| is the number of neighbors
to process i)

0 otherwise

The conditions for convergence are the following [15]:

1) W has the same sparsity as the graph Laplacian
2) Wt = W
3) W1 = 1
4) The norm ||W − J|| < 1

in which Wt denotes the transpose matrix of W, 1 denotes the
vector of all ones and J = 1

n11
t. It is relatively easy to find a

weight matrix that satisfies these condition. For example, W =
I − αL, with 0 < α < 1

max |Ni| is such weight matrix where
max |Ni| is the neighborhood with the largest cardinality and
I is the identity matrix. A second example is the Metropolis-
Hasting matrix:

Wij =


1

1+max(di,dj)
if i 6= j and j ∈ Ni

1−
∑

k∈Ni
Wik if i = j

0 if i 6= j and j 6∈ Ni

(3)

where di = |Ni|, i.e. the number of processes adjacent to
process i.

However, selecting the coefficients of weight matrix W
such to optimize the speed of convergence is still very much
a research issue. Interested readers can consult [9], [16].

III. A CONSENSUS BASED NETWORK INTRUSION
DETECTION SYSTEM

We formulate the average consensus problem for a fully
distributed network-based intrusion detection system. It is
composed of n NIDS modules connected by an independent
and secure network. Without lost of generality, we assume that
the links connecting pairs of NIDS modules are direct physical
links. It is assumed that this network is connected, though it
does not fully connected pairwise all the n NIDS modules.

Each NIDS module i has two state variables xai and xni .
The initialization of the state variables is performed in the first
phase of the system as follows: Once a module i has completed
a traffic observation, it computes its local likelihood

P (Oi|ha) = P (oi1, o
i
2, . . . , o

i
m|ha) =

m∏
k=1

(oik|ha) (4)

(respectively P (Oi|hn)). The state variables are initialized us-
ing the logarithm of the local likelihoods: xai = log(P (Oi|ha))
and xni = log(P (Oi|hn)).

The second phase computes the joint distribution of the
local likelihoods (O|ha) =

∏n
i=1 P (Oi|ha). The computation

of this product of probabilities is transformed into the compu-
tation of an average sum using the laws of logarithms: the log
of a product is equal to the sum of the log of the terms in the
product. Therefore, log(P (O|h)) = log(

∏n
i=1 P (Oi|ha)) =∑n

i=1 log(P (Oi|ha). Taking the average of the last sum we
obtain

Qa =
1

n
log(P (O|ha)) =

1

n

n∑
i=1

log(P (Oi|ha)) (5)

(respectively Qn). Formulated as an average sum, the terms
Qa and Qn can be computed distributively and asymptotically
using the average consensus iterate in (2). Upon convergence
of its iterate, i.e. when |x(t+1)−x(t)| < ε (for ε sufficiently
small), a NIDS module makes use of the intermediate results
Qa and Qn to compute locally the joint distribution of the
local likelihoods: P (O|ha) = exp(nQa) ≈

∏n
i=1 P (Oi|ha)

(respectively P (O|hn) = exp(nQn)). At this point, a module
has all the information needed to execute naı̈ve Bayesian
inferences on the state of the overall network, i.e. to compute
the posterior probability P(h|O) = αP(h)P(O|h) that the
network traffic is normal or anomalous.

IV. EXPERIMENTAL ANALYSIS

This section compares our intrusion detection system based
on average consensus with one based on a hierarchical ap-
proach. In contrast to average consensus, the network wide
detection phase of the hierarchical approach is implemented by
sending the local likelihoods to a central node which computes
directly the joint distribution.

All comparisons between the two approaches are based on
simulations of NIDS networks of different sizes and topolo-
gies. Each simulation takes in input a test set and a graph
representing an NIDS network topology. Network connections
for the test set come from the NLS-KDD data set [17], an
improved version of KDD’99 data set. The KDD’99 data set
has been generated by the MIT Lincoln Laboratory for the
evaluation of computer network intrusion detection systems

under the sponsorships of the Defense Advanced Research
projects Agency (DARPA) and the Air force Research Lab-
oratory (AFRL) [18], [19]. As for the KDD’99 data set,
connections in the NLS-KDD data set are described in terms
of 41 features.

We have run tests with four categories of NIDS network
topologies represented by four types of non-oriented input
graphs: rings, 2-dimensional torus, the Petersen graph (10
nodes 15 edges) and several random graphs having the same
number of vertices and edges as in the Petersen graph. Ring,
torus and the Petersen graph are regular graphs, each vertex
in a given graph has the same degree: two for rings, three for
the Petersen graph and four the 2-dimensional torus. While
the number of vertices and edges is constant among random
graphs, in a same graph the vertex degree may vary from one
vertex to another. Each vertex in a graph represents a NIDS
module. The degree of a vertex stands for the size of the
neighborhood N of the associated NIDS module. Each graph
type represents a different NIDS network topology. Finally,
the different numbers of vertices in the ring and torus graphs
represent networks of different sizes, respectively networks
with 9, 25, 49, 81 and 121 NIDS modules.

Algorithm 1
Step 0 Training phase; SimulationLoop = 0;
Step 1 First phase Read values o1, o2, . . . om corre-

sponding to m features;
P (O|ha) =

∏m
k=1 P (ok|ha); Compute local like-

lihood
xa(0) = log(P (O|ha));

Step 2 Second phase (consensus loop)
xa(1) = xa(0) +

∑
j∈N wj(x

a
j (0)− xa(0));

t = 1;
while (|x(t)− x(t− 1)| < ε)

xa(t+1) = xa(t)+
∑

j∈N wj(x
a
j (t)−

xa(t));
t = t+ 1;

P (O|ha) = exp(nxa(t);
Step 3 Compute network-wide posterior probabilities

p(ha|O) = αp(ha)P (O|ha);
Step 4 Compute decision If p(ha|O)

p(hn|O) > τ raises alert;
Step 5 Simulation termination test SimulationLoop++;

If SimulationLoop < 1000, goto to Step 1;

Fig. 1. Average consensus based algorithm for network intrusion detection

As our solution to intrusion detection is fully distributed, a
simulation consists to execute independently the code of each
NIDS module in a given network topology. The code is the
same for each module, it is summarized in Algorithm 1, which
has been implemented in Java.

Algorithm 1 takes in input a training set, a weight matrix
and some control parameters. The control parameters are the
convergence parameter (ε) and the decision parameter (τ). The
convergence parameter is the stopping criterion of the consen-
sus loop. When |x(t) − x(t − 1)| < ε, i.e. when the change
in the consensus value is smaller than ε, the NIDS module
stops receiving/sending updates from/to its neighboring NIDS
modules. This parameter is set 0.001 in our tests. The decision
parameter τ set the threshold needed to raise an attack alert

based on network-wide posterior probabilities. This parameter
is used for both the hierarchical and the consensus approaches,
with the same value in both cases.

We have run tests with the following three input weight
matrices [9]:

• The Best-constant edge weight scheme

Wij =
2

λ1(L) + λn−1(L)

where L is the Laplacian matrix of the NIDS network,
λ1, λn−1 are the first and n− 1 eigenvalues of L.

• The Local-degree weights scheme where the weight
of an edge is the largest degree of its two adjacent
vertices

Wij =
1

max{di, dj}
.

• The Max-degree weight where dmax is the largest
degree of the vertices in the network is a constant
weight scheme

Wij =
1

dmax
.

All three matrices satisfy the convergence conditions described
in Section II.

Step 0 of Algorithm 1 represents the training phase of an
NIDS module. This phase uses the training data from NLS-
KDD. Steps 1 to 5 drive the simulation loop. In Step 1, a
connection from the NLS-KDD data set is read. Next, the
state variable xa(0) is initialized with the logarithm of the
local likelihood (to shorten Algorithm 1, we only shows the
computation of the anomalous hypothesis). Step 1 returns the
likelihood that the corresponding connection is normal and
the likelihood that it is anomalous. Note that step 1 has been
implemented using the naı̈ve Bayes Classifier from the weka
library http://www.cs.waikato.ac.nz/∼remco/weka bn, develop
by the Machine Learning Group project at the University of
Waikato. Step 2 drives the consensus loop. After computing the
value of xa(1) and initializing the loop iterate variable t, each
iteration of the consensus loop sends the value of each NIDS
module state variable to its neighbors in the network topology,
wait to receive the corresponding values from its neighbors and
then computes a weighted sum of the differences between the
value of the neighboring state variables and the value of its own
state variables. This communication/computation sequence is
repeated until convergence. The variable wj in step 2 is the
weight of the edge from a NIDS module to neighbor j in
the network, this value is provided by the weight matrix.
Once the consensus loop stops, the inverse of the log and
average functions are applied to xa(t) to get an approximation
P (O|ha) of the joint distribution of the local likelihoods. Step
3 takes this approximation and computes an approximation
of the network-wide posterior probability of each hypothesis.
In Step 4, a decision is made whether the observed network
behavior is normal or anomalous.

Algorithm 1 describes the behavior of each NIDS module.
We now describe the behavior of simulations, where one
simulation consists to iterate several times the execution of all
the NIDS modules in a given network topology. Simulations
have a few control parameters. For example, NIDS modules

in a given simulation can be trained with a same training
set or with different training sets and can be given the same
or different weight matrices. Considering the objectives of
this research, we have selected to train the NIDS modules
with the same data set, and in a given simulation, the NIDS
modules all take in input the same weight matrix. In a given
simulation, there is a predefined ratio of normal and anomalous
connections in the NIDS network. For the tests reported in this
paper, this ratio is 60%, i.e. 60% of the NIDS modules at a
given iteration receive anomalous connections. This ratio is
kept constant during a simulation. The number of iterations
of the simulation loop is fixed to 1000 (termination criterion
in Step 5). In one simulation each module executes 1000
connection readings, therefore a simulated NIDS network with
9 NIDS modules analyzes 9000 connections, a simulated NIDS
network with 81 NIDS modules analyzes 81000 connections.
We simulate synchronous NIDS networks, i.e. a new iteration
of the simulation loop can only start once the consensus phase
of all the modules is completed. All the simulations detect only
Distributed Denial of Service (DDoS) attacks.

A. Test samples and results

Tests first analyze the impact of the weight matrices and
NIDS network topologies on the convergence speed during
the consensus phases. Both network topologies and weight
matrices are known to impact the convergence speed of average
consensus algorithms, and therefore their communication cost.
Next, we compare the communication cost and the accuracy
of the consensus versus hierarchical approaches.

Fig. 2 reports the average number of iterations of the
consensus loop for the 3 different weight matrices and torus
networks of respectively 9, 25, 49, 81 and 121 NIDS mod-
ules. Clearly, consensus with the best-constant weight matrix
converges faster that the two others, which have very similar
convergence speeds.

0

20

40

60

80

100

120

0 50 100 150

I

t

e

r

a

t

i

o

n

s

 Number of NIDS modules

Iterations to convergence

LocalDegree

MaxDegree

BestConstant

Fig. 2. Average number of consensus iterations to convergence

Using the best-constant weight matrix, Fig. 3 and Fig.
4 report the average number of iterations of the consensus
loop for all the network topologies. Fig. 3 compares ring and
torus topologies, showing that consensus convergence is much
slower for ring networks. Fig. 4 compares the Petersen network
(column 1) with 10 other random networks of same size (same
number of NIDS modules and same number of connections in
the networks). The Petersen graph is an instance of Ramanujan
graphs, they are graphs known to have very good convergence
speed for the average consensus algorithm [20]. In Fig. 4, the
Petersen network has a faster convergence compared to the 10
other random networks.

http://www.cs.waikato.ac.nz/~remco/weka_bn

0

500

1000

1500

2000

0 50 100 150

I

t

e

r

a

t

i

o

n

s

 Number of NIDS modules

Convergence and network topologies

RringNetwork

TorusNetwork

Fig. 3. Convergence speed for ring and torus network topologies

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11

I

t

e

r

a

t

i

o

n

s

Petersen and random graphs

Fig. 4. Convergence speed for Petersen and random graphs

The posterior values computed in Step 3 of Algorithm
1 depend on joint likelihood distributions that are computed
approximately in Step 2. The next tests determine whether
these approximations are detrimental to the capacity of a
consensus based system to detect anomalous activities by
comparing the accuracy of the consensus and hierarchical
approaches. Accuracy measures how often decisions made like
in Step 4 of Algorithm 1 are the correct one. It is is defined
as follows:

accuracy =
TP + TN

TP + TN + FP + FN

where TP (True positive) is the number of attacks detected
when it is actually an attack; TN (True negative) is the
number of normals detected when it is actually normal; FP
(False positive) is the number of attacks detected when it is
actually normal; FN (False negative) is the number of normals
detected when it is actually an attack.

Fig. 5 reports the results of 63 tests. Tests 0 to 29 concern
ring (even numbers) and torus (odd numbers) NIDS networks.
Tests from 0 to 9, 10 to 19 and 20 to 29 report respectively
the results for local-degree, max-degree and best-constant
weight matrices. Tests 0-1, 2-3, 4-5, 6-7, 8-9 report results
for networks having respectively 9, 25, 49, 81 and 121 NIDS
modules and using the local-degree weight matrix (similarly
for max-degree and best-constant weight matrices). Tests 30,
41 and 52 report results for Petersen graphs respectively for the
local-degree, max-degree and best-constant weight matrices.
Tests 31 to 40, 42 to 51 and 53 to 62 report results for random
graphs respectively for the local-degree, max-degree and best-
constant weight matrices. Fig. 5 shows that the accuracy of
the hierarchical approach is slightly better than the consensus
approach, but it is clear that approximating the posterior values
with consensus is not detrimental to the accuracy of the system.

The consensus approach to network intrusion detection is
more scalable because computation is fully distributed. On

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4 5 6

Hierarchical

Consensus

AllToAll

0

20000

40000

60000

80000

100000

0 50 100 150

C

o

m

m

c

o

s

t

Number of NIDS modules

Average communication cost per
simulation iteration

Hierarchical

Consensus

Distributed

Fig. 6. Comparing the average communication cost of simulation iterations

the other hand, sharing information to support distributed
computation incurs communication costs during the consensus
phases. We now compare the communication cost of the
fastest consensus approach with the hierarchical approach and
with a second fully distributed approach to network intrusion
detection. Communication costs are measured in the number
of hops used in a message. A message is a communication
between a pair of NIDS modules, a hop is a direct link between
two adjacent NIDS modules. For consensus, a message cost a
single hop as all messages take place between adjacent NIDS
modules. For hierarchical, the cost of a message is equal to
the length of the shortest path between a given NIDS module
and the central module computing the posterior probabilities.

Fig. 6 reports the average communication cost per iteration
of the simulations with the best-constant weight matrix and
the torus network with respectively 9, 25, 49, 81 and 121
NIDS modules. For consensus, the communication cost of one
simulation iteration is measured directly from the tests. For
hierarchical, the communication cost hce of one simulation
iteration is hce =

∑n−1
i=1 li where li is the length of the shortest

path between module i and the central module and n is the
number of NIDS modules in the NIDS network. The “dis-
tributed” item in Fig. 6 is the communication cost of typical
fully distributed approaches where information produced by
one NIDS module, such as local likelihoods, is sent to all the
other modules in the NIDS network. Communication cost for
one simulation iteration is computed as hco = hce × n − 1
where hce is communication cost of one simulation iteration
for the hierarchical approach. As expected, Fig. 6 shows that
the communication cost of the consensus approach grows
faster than for hierarchical. This figure also shows that the
communication cost of fully distributed approaches grow very
rapidly, and that consensus is quite successful at addressing
this communication cost issue for distributed systems.

V. CONCLUSION

This paper has described a fully distributed network in-
trusion detection system based on an average consensus al-
gorithm. Our work is more a proof of concepts than an
actual system. Nonetheless, in our opinion and based on our
preliminary results, consensus seems a viable alternative to
implement distributed network intrusion detection systems.
In future works, we will seek to improve the convergence
speed of consensus phases by studying a broader range of
network topologies and weight matrices. We also consider

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

A

c

c

u

r

a

c

y

Tests

Comparing accuracy between hierarchical and consensus

Hierarchical

Consensus

Fig. 5. Comparing accuracy between consensus and hierarchical approaches

to use this approach for intrusion detection in wireless ad
hoc networks such as MANETS, which have no centralized
control. Distributed consensus protocols are quite prevalent in
these networks for addressing diverse coordination problems.
A group of consensus protocols, called Byzantine consensus,
address security issues such intrusion in ad hoc networks
through fault-tolerance mechanisms, they are designed to
achieve consensus in the presence of nodes with unspecified,
potentially malicious behaviors. Intrusion detection systems
are also very much part of the defense mechanisms for ad
hoc networks, and as expected, several of them are distributed
IDSs. However, to the best of our knowledge, none of them
make use of consensus protocols similar to the one proposed
in this paper, therefore we intend to explore this avenue as
future work.

REFERENCES

[1] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of
intrusion-detection systems,” Comput. Netw., vol. 31, no. 9, pp.
805–822, Apr. 1999. [Online]. Available: http://dl.acm.org/citation.
cfm?id=324119.324126

[2] P. Garca-Teodoro, J. Daz-Verdejo, G. Maci-Fernndez, and E. Vzquez,
“Anomaly-based network intrusion detection: Techniques, systems
and challenges,” Computers & Security, vol. 28, no. 12, pp. 18 –
28, 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167404808000692

[3] R. Gopalakrishna and E. H. Spafford, “A framework for distributed
intrusion detection using interest driven cooperating agents,” in The
4th International Symposium on recent Advances in Intrusion Detection
(RAID 2001), 2001.

[4] G. White, E. Fisch, and U. Pooch, “Cooperating security managers: a
peer-based intrusion detection system,” Network, IEEE, vol. 10, no. 1,
pp. 20–23, Jan 1996.

[5] C.-C. Lo, C.-C. Huang, and J. Ku, “A cooperative intrusion
detection system framework for cloud computing networks,” in
Proceedings of the 2010 39th International Conference on Parallel
Processing Workshops, ser. ICPPW ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 280–284. [Online]. Available:
http://dx.doi.org/10.1109/ICPPW.2010.46

[6] W. A. Jansen, “Intrusion detection with mobile agents,” Comput.
Commun., vol. 25, no. 15, pp. 1392–1401, Sep. 2002. [Online].
Available: http://dx.doi.org/10.1016/S0140-3664(02)00040-3

[7] Y. Yu, “A survey of anomaly intrusion detection techniques,” J.
Comput. Sci. Coll., vol. 28, no. 1, pp. 9–17, Oct. 2012. [Online].
Available: http://dl.acm.org/citation.cfm?id=2379703.2379707

[8] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed
sensor fusion based on average consensus,” in Proceedings of the 4th
international symposium on Information processing in sensor networks,
ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press, 2005. [Online].
Available: http://dl.acm.org/citation.cfm?id=1147685.1147698

[9] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, pp. 65–78, 2003.

[10] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. Shamma, “Belief
consensus and distributed hypothesis testing in sensor networks,” in
Networked Embedded Sensing and Control, ser. Lecture Notes in
Control and Information Science, P. Antsaklis and P. Tabuada, Eds.
Springer Berlin Heidelberg, 2006, vol. 331, pp. 169–182. [Online].
Available: http://dx.doi.org/10.1007/11533382 11

[11] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996.

[12] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,” Phys.
Rev. Lett., vol. 75, pp. 1226–1229, Aug 1995. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.75.1226

[13] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” Auto-
matic Control, IEEE Transactions on, vol. 31, no. 9, pp. 803–812, Sep.
1986.

[14] R. Saber and R. Murray, “Consensus protocols for networks of dynamic
agents,” in American Control Conference, 2003. Proceedings of the
2003, vol. 2, June 2003, pp. 951–956.

[15] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” J. Parallel Distrib. Comput.,
vol. 67, no. 1, pp. 33–46, Jan. 2007. [Online]. Available: http:
//dx.doi.org/10.1016/j.jpdc.2006.08.010

[16] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” SIAM J. Control Optim., vol. 48, no. 1,
pp. 33–55, Feb. 2009. [Online]. Available: http://dx.doi.org/10.1137/
060678324

[17] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A detailed analysis
of the kdd cup 99 data set,” in Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on,
July, pp. 1–6.

[18] R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das, “Analysis
and results of the 1999 darpa off-line intrusion detection evaluation,”
in Recent Advances in Intrusion Detection, ser. Lecture Notes in
Computer Science, H. Debar, L. M, and S. Wu, Eds. Springer
Berlin Heidelberg, 2000, vol. 1907, pp. 162–182. [Online]. Available:
http://dx.doi.org/10.1007/3-540-39945-3 11

[19] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung,
D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Ziss-
man, “Evaluating intrusion detection systems: the 1998 darpa off-line
intrusion detection evaluation,” in DARPA Information Survivability
Conference and Exposition, 2000. DISCEX ’00. Proceedings, vol. 2,
2000, pp. 12–26 vol.2.

[20] S. Kar and M. F. Moura, “Topology for global average consensus,” in
Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar
Conference on, Oct 2006, pp. 176–181.

http://dl.acm.org/citation.cfm?id=324119.324126
http://dl.acm.org/citation.cfm?id=324119.324126
http://www.sciencedirect.com/science/article/pii/S0167404808000692
http://www.sciencedirect.com/science/article/pii/S0167404808000692
http://dx.doi.org/10.1109/ICPPW.2010.46
http://dx.doi.org/10.1016/S0140-3664(02)00040-3
http://dl.acm.org/citation.cfm?id=2379703.2379707
http://dl.acm.org/citation.cfm?id=1147685.1147698
http://dx.doi.org/10.1007/11533382_11
http://link.aps.org/doi/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1016/j.jpdc.2006.08.010
http://dx.doi.org/10.1016/j.jpdc.2006.08.010
http://dx.doi.org/10.1137/060678324
http://dx.doi.org/10.1137/060678324
http://dx.doi.org/10.1007/3-540-39945-3_11

	I Introduction
	II Average consensus
	III A consensus based network intrusion detection system
	IV Experimental analysis
	IV-A Test samples and results

	V Conclusion
	References

