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Abstract 
Being a fast-growing Internet application, Voice over 

Internet Protocol shares the network resources with the 

regular Internet traffic. However it is susceptible to the 

existing security holes of the Internet. In this paper, a 

highly effective VoIP intrusion detection approach 

based on LVQ neural network is proposed. This 

detection approach is particularly suitable for 

protecting VoIP applications, in which various 

protocols are involved to provide IP telephony services. 

Experiments of the proposed approach show promising 

detection accuracy and a low runtime impact on the 

perceived quality of voice streams. 

1. Introduction 

The IP telephony, commonly known as Voice over 

IP (VoIP), is emerging as a viable alternative to 

traditional telephone systems. The classic VoIP 

Signaling protocols H.323 and SIP, and media transport 

protocols: RTP and RTCP could become a target of 

well-connected attacks, such as Denial of Service 

(DoS), eavesdropping, fraudulent usage, etc. Although 

a variety of research on VoIP intrusion detection 

systems at the application, transport and routing level 

has been done not only in industry but also academic 

community, feasible detective approaches and 

implementation on VoIP infrastructures are still at their 

early stage. This is mainly because most of VoIP 

intrusion detective systems (vIDS) are motivated by 

existing network Firewalls that ignore some critical 

features of VoIP networks. For instance, the 

Backpropagation Neural Network (BPN) vIDS which 

is modified from SPAM mail/Internet packet filter is 

widely adopted in several nation-wide softswitch 

infrastructures. The experiment of simulative attacks 

by several well-known VoIP infrastructure providers 

has proved that such a structure easily causes false 

negative and low performance due to its internal 

pitfalls such as local minima and convergence [1].  

This paper presents a novel signaling layer‟s 

Learning Vector Quantization (LVQ) based vIDS, 

which is implemented in the SIP protocol in a nation-

wide softswitch that was manufactured by a well-

known telecom system provider in order to replace the 

following three existing approaches: BPN, Bayesian 

Inference, and Finite State Machine approach. Since 

the SIP protocol which is a popular signaling exchange 

protocol can be seen as a nucleus of a nation-wide 

softswitch, the vIDS technology which is successfully 

implemented in SIP protocol can be regarded as a 

feasible intrusion detective method for a large-scale 

softswitch. 

This proposed detection approach is particularly 

suitable to be deployed in large-scale softswitch 

systems, which involve multiple VoIP protocols. 

Through the interaction with a well-chosen training 

dataset, the approach was tested with a benchmark 

intrusion dataset on a nation-wide VoIP infrastructure. 

The result of initial experiments proved that the LVQ-

based intrusion detection system shows greater 

advantages over existing VoIP intrusion detection 

systems on aspects of effectiveness, response time and 

accuracy etc. 

2. Background 

2.1. SIP/VoIP security threats 

As a popular commercial transmitting protocol in 

the Internet, the SIP protocol has been assembled with 

several security capabilities, such as encryption of SIP 

message body, and a security mechanism in Session 

Description Protocol (SDP). However, although 

message bodies are encrypted, such as the headers 

From, To, time stamps are unable to be encrypted step-

by-step due to unbearable cost on proxy servers. In 

practice there are mainly 8 types of frequent attacks:  

Call Tracking & Messages Interception, Fraudulent 

Usage, User Enumerating and Password Cracking, Call 

Hijacking and „Man In the Middle‟ attack, DoS, 

Attacks Against Voice Mail Server (VMS), Attacks on 

Media Protocols, Firewall Traversal [2]. Among these 

attacks, User enumerating and DoS are the most 

common attacks both on VoIP infrastructures and VoIP 

networks. Therefore it is easy to detect these two 



 

 

attacks from normal activities according to their 

obvious intrusive patterns. On the other hand, since 

attacks such as Attack on Supporting Protocols 

infrequently occur, which proportion is less than 0.1% 

of attacks occurrence, they might be quite difficult to 

be detected due to their ambiguous patterns. Therefore 

manually searching attack patterns from log files seems 

only an effective detection method in despite of a great 

manpower cost [2]. 

2.2. An Architecture of Nation-wide Softswitch 

systems 

The architecture of VoIP nation-wide systems is an 

infrastructure which consists of a virtual network based 

on Converged IP/MPLS Backbone networks which 

combine with a Multi-Service Access network that can 

fully support mainstream access network protocols 

including Frame Relay and Ethernet, TDM, ATM, 3G 

etc. Moreover, this VoIP architecture offers capabilities 

to support multiple VoIP access protocols such as SIP, 

TDM/SS7, MEGACO, H.323, MGCP, MEGACO as 

well as some emerging VoIP protocols which might be 

released in the future. This is achieved by employing 

Border Elements (BEs) on the VoIP Connective Layer. 

The BEs define the access points/ boundaries in the 

VoIP Infrastructure and translate the specifications of 

all other VoIP protocols into Session Initiation Protocol 

(SIP) – the nucleus protocol used by all VoIP 

foundation components.  

In general, in nation-wide Softswitch Border 

Elements act as not only a role of the protocol 

translator, but also resident points of various security 

and administrational policies such as Bayesian and BP-

based vIDS.  

The Call Control Element (CCE) manages the VoIP 

infrastructure and provides a synchronized access point 

to external application servers from service providers. 

Involving with multiple BEs, the Call Control Element 

can control all call legs to create and supervise the 

connection between end-points. Since a state machine 

based vIDS works or not depending on a detection of 

the deviation of a normal SIP state, it is generally 

deployed at the CCE layer. 

Application servers locating at the application layer 

provide both a knowledge-based repository and a log 

system that traces ongoing call sessions.  

Since all the functionalities deployed in the hot-

pluggable blade can be rapidly replaced or updated, 

this model offers a capability of flexibly upgrading a 

system without significant concerns of the VoIP 

infrastructure. Figure1 shows the architecture of the 

VoIP infrastructure. 
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Figure1. VoIP infrastructure 

2.3. Existing VoIP IDSs 

Since the vIDS process usually detects data packets 

at application layer, it is deployed at the second line of 

a defense system behind Firewalls and Encryption. 

Firewalls are used to detect abnormal activities at the 

transport layer, while Encryption encodes IP packets 

[3]. In existing vIDSs, in order to effectively and 

accurately detect attacks, a detection engine is 

equipped with a knowledge-based repository. There are 

four general approaches to vIDSs, which are 

implemented in large-scale VoIP systems: Bayesian, 

BPN, Finite State Machine and Decision Tree. Among 

the four approaches, the BPN based achieves the 

highest balance capability under the condition of 

having the same accuracy by using a relatively low 

executing performance comparing with the other three 

[1]. Furthermore the BPN expresses a strong self-

adaptive self-learning and self-repaired ability when 

facing new types of intrusions [1]. 

However, some inevitable problems restrict BPN-

based approaches to be widely implemented in VoIP 

systems [4, 5, 6]:  

a. The BP network is unpredictable to slip into bottom 

of local minima instead of the expected global 

minimum during training, or gradient descent might 

be on plateau during Dos or SIPT training. 

b. Unavoidable Overfitting problem while system 

taught with million training set. 

c. The momentum has to be carefully chosen during 

training, otherwise system might be misled. 

d. Low training performance when system is taught 

with large number of training set. 

Since a variety of research about neural networks 

indicates that a LVQ neural network is a promising 

algorithm which can overcome above inherent 

problems of BPN algorithm, a LVQ-based vIDS is an 



 

 

apparently reasonable alternative to BP-based vIDS 

[5,7]. 

2.4. The LVQ Algorithm 

A LVQ is a prototype-based supervised classification 

neural network algorithm, which is widely used in 

biological identification and firewall systems.  

A detection of network attacks can be supposed as a 

classification process in which malicious activities are 

classified differently from normal activities according to 

their patterns [5, 7, 8].  

A LVQ neural network consists of three layers: input 

competitive and output. A weight associates with each 

input neuron. During the training process, the weights of 

neural network are changed by training data in order to 

classify input data correctly. For each input data, the 

neuron at input layer that is closest to it is determined 

(called the winning neuron). The weights on the 

connections to this neuron are then adapted, i.e. made 

closer if it correctly classifies the input data or made less 

similar if it incorrectly classifies it.  [9] 

The LVQ based algorithm proposed by Zhan et al  [5] 

is described below: 

 

a. Initialize prototypes weight vectors W= { W1, W2，… 

Wn}, learning rate α∈[0, 1] 

b. Repeat following steps until stopping condition is 

satisfactory; 

c. Select an example from training data of malicious 

activities collections, and compute vector cosine 

distance between weights and it respectively 

according to followed formula: 

 

Sim U, V =
 WuK ∗ WvK

n
k=1

  WuK
2n

k=1 ∗   WuK
2n

k=1

 

Sim (U, V) is the geometric distance between vector 

Wu  and Wv .  

 

d. The similarities between the example and each 

weight vector are compared, in the result, the neuron 

with maximum similarity, wins a competition and 

output 1, other neurons output 0. 

 

a' =max(Sim(x, x')) 

 

e. If an example is classified to class r, the neuron c 

which wins competition in learning process belongs 

to class s, the weight will be adjusted to move 

neuron c toward the center of class r, otherwise move 

it away from class r. Change weight in accordance 

with formulas: 

 

 

   Wc t + 1 = Wc t + u t  x t − Wc t                belongs to calss

Wc t + 1 = Wc t − u t  x t − Wc t       not belong to class
                                                                                                    

  

 

f. Increase or descend learning rate u (t), while 

iterating. 

3. Main achievement 

3.1.  System design of LVQ-based vIDS 

In the design, concerning the complexity of LVQ 

architecture and the high cost of the multiplayer LVQ, a 

single-hidden layer LVQ network which is taught by a 

purposely selected attack training pattern is used. One 

engine equipped with a single-layer LVQ-based vIDS 

can detect only one type of attacks. For example a LVQ 

network taught by a DoS training set can only recognize 

DoS intrusions in the network traffic without particular 

interest in other attacks. This method can effectively 

avoid problems such as how to prepare a complicated 

and accurate training dataset for teaching multilayer 

LVQ vIDSs and overweight LVQ architectures. 

However this vIDS is available only when the system 

hardware cost is not a significant concern in large-scale 

systems, and the vIDS will not cause serious 

performance bottlenecks, which can be achieved by 

adding a new hot-plug blade with a particular vIDS 

detective method installed into the VoIP Softswitch 

infrastructure. At the input layer, 24 types of input data 

are used (including network message intensity, system 

resource consumption, and message distribution,) as 

observed variables. These variables are selected from 

enterprise attack recorder log files according to their 

value of information gain [3]. 40 neurons are arranged at 

the competitive layer with a winning function that 

calculates the geometric distance and then takes out a 

competitive neuron. The selection of these numbers is 

based on the experiment that shows that matrix 24 inputs 

x 40 neurons can achieve the optimal performance and 

accuracy while taught with 800-1000 training sets. At 

the output layer, 2 output neurons is set as 2 types of 

classes (legitimate or malicious) which is linked with 20 

neurons respectively, which determine which output 

class is activated. The 800 -1000 concise training sets 

for each intrusion engine are extracted from an 

enterprise attack record log by a Sample-Based training 

data approach which produces a typical training set. 

Figure 2 illustrates the internal structure of a LVQ-based 

vIDS. 

http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Algorithm
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Figure 2.  LVQ-vIDS Model  

3.2 Design of training data 

Since an effective intrusion detection usually 

depends on the high quality training data, a novel 

method that can be used to create training data more 

efficiently is also proposed by using BPNs with Sample-

Query and Attribute-Query. The proposed method has a 

relatively low cost of selecting training data from mass 

log files.   

 

3.2.1. Query-based training. Since a learning network 

is taught by accumulation of input information, a 

deduction algorithm can be used to extract training data 

from log files. For a learning protocol, the input 

information can be seen as examples that exemplify the 

concept to be learned, so-called oracle which can present 

whether or not the data exemplifies the concept. 

Consequently, after samples are obtained from log files 

captured from network traffic, they have to be examined 

by the oracle. The oracle often works in model of query-

answer. When the point of query is set as y, the oracle 

would respond with a(y). The pair (y, a(y)) which is 

called queried sample can be used to extract useful 

training data from log files.  

All training samples are stochastically separated into 

a training set and a query set. The arbitrary oracles are 

designed to follow the self-regulation rule to select 

samples (environment-focus) [8] which are close to a 

conjugate data pair (self-focus). The process of 

designing an oracle provides the system with an ability 

to interact with the real training environment to produce 

a precise training data by querying samples. Based on 

the query-based training approach, the LVQ vIDS is 

taught with partial specific samples from the log files to 

achieve the target of being completely taught with full 

training data. In this approach, since an oracle is 

designed to gain appropriate samples (boundary samples) 

for further training, the learning performance of an LVQ 

neural network is remarkably improved by well-chosen 

training data that is expected to be taught.  

The process of the designed Query-based training 

consists of following steps, suggested in [11]. 

a. The ‟rough‟ training samples extracted from log files 

are examined by oracles in order to detect whether 

they are classified in a wrong class, meanwhile the 

distance from the classification boundary to the 

sample is calculated to determine to what extend the 

training will be affected by the sample.  

b. The misclassified samples can be stored in a priority 

queue, which can be considered as an extra training 

data set that is the most close to the class boundary.  

c. The samples correctly classified will be ignored; 

because they reside deeply inside in class region 

which does not effects classification.  

d. The training data in the priority queue is output as 

concise subsets of training data for the LVQ neural 

network training  

 

3.2.2. Attribute-Query. According to [8], the learning 

accuracy and efficiency of a neural network will be 

degraded by having useless attributes (redundant 

observed variables). Generally, 48-50 network attributes 

are recorded in a log system from the VoIP network 

traffic. These attributes will be reevaluated by the 

Attribute-Query approach, in which the algorithm of 

information gain analyzes each attribute. Attributes with 

a relatively low information gain are not likely to be 

useful. 

Entropy is a measure of degree of doubt. The 

information gain is simply the expected reduction in 

entropy caused by partitioning the examples according 

to this attribute. The entropy for each attribute is 

calculated based on the following formula: 

Entropy(S) =− Pi ∗ log⁡(Pi)
n
i=1   

where S denotes the training data, Entropy(S) is the 

entropy of S relative to n-wise classification if the target 

attribute can take on n-different values; Pi . is the 

proportion of S belonging to class i. In the proposed 

method, Pi is the proportion of legitimate and attack in 

training samples S.  

Information gain G[S, A] of attribute A is calculated 

by formula 

G[S，A] = Entropy(S)-   
| Sv | 

| S| 
Entropy(Sv )vϵValue s A   

where Values(A ) is the set of all possible values for 

attribute A (e.g. network package intensity (I, 1<I<4) has 

4 possible integer values: Iϵ[1,2,3,4]). Sv  is the subset of 

S for which attribute A has value v, Entropy (Sv) is the 

entropy of which the attribute A has value v. The second 

term of Equation.2 is sum of the entropies of each subset 

Sv . 

Since the objective of Attribute-Query is to reduce 



 

 

redundant attributes in training set, the information gain 

of each attribute is computed in order to determine 

whether this attribute has a strong influence on 

information of the whole system. The attribute which 

has relatively small information gain is regarded as 

having a relatively weak impact on the LVQ-vIDS. 

Results of the experiment show that the attribute 

with information gain value less than 0.05 would be 

regarded as a weak attribute in the LVQ-vIDS. Finally 

24 network attributes with relatively high information 

gain are chosen as parameters for computing observed 

variables in the LVQ-vIDS. 

 

3.2.3. Method of producing training data. Since 

Attribute-Query and Sample-Query approaches can 

eliminate redundant information existing in training data, 

it is reasonable to integrate features from these two 

approaches into a method which can produce high-

effective training data. This paper proposes such a 

method for extracting the concise training set for neural 

networks. 

A step-by-step description of the proposed method is 

shown below. The process is terminated either the 

number of iterations or the root-of-mean-squared-error 

(RMSE) is over the given thresholds.  

a. Initialize all weights in the BPN network. The 

iteration threshold N is a value between 1000 and 

1200, which is decided by convergence of BPN 

training. RMSE is set as 0.003. 

b. Given training dataset S with attributes which is 

selected by Attribute-Query. Pick out the partial 

training samples SS (subset) from S by stratified 

random sampling, in which a stratum is formed, 

based on their samples sharing an equal value of a 

specific attribute.  

c. Train the neural network by SS. 

d.  IF (the error E < RMSE) or (the iteration number > 

N) then go to g. 

e. Examine non-trained samples (S - SS) and heap, 

input the remaining training samples into BPN, 

extract misclassified samples and add them into a 

heap, use the heap to train BPN again.  

f. Using predefine oracles to verify the heap to pick out 

samples which are close to the classification 

boundary in the heap and then go to d. 

g. Export the heap as a concise training set to the LVQ 

neural network. The heap contains concise training 

for each attack pattern which consists of 550-600 

attack training samples and 400-450 legal training 

samples. 

Experiments show the training data chosen by above 

method can dramatically reduce the training time up to 

30% and improve detection accuracy (4%-10% 

dependent on type of attack). 

3.3. Results of Experiments 

The evaluation compares experiment results from 

traditional VoIP intrusion detection methods mentioned 

above and the proposed LVQ-based intrusion detection 

approach on a set of vIDS standard measures: accuracy, 

sensitivity, system overhead on SIP and RTP, which are 

suggested as measure factors in [12], together with 

another popular measure factor: synthetic performance 

suggested in [5]. The experiment was conducted in a 

nation-wide softswitch infrastructure, which is 

constructed from a multi-service VoIP network based 

on the IP/MPLS Backbone Network. 

The proposed LVQ-based vIDS achieves more than 

99.5% average accuracy when detecting 8 mainstream 

types of attacks, comparing that with 94% of the BPN 

based approach, and 90% of the Bayesian inference 

based approaches. Figure 3 illustrates the attacks and 

the amount of detections being successfully detected 

by the proposed LVQ-based vIDS during the 

experiment: 

Figure 3. Accuracy of detecting 8 types of VoIP attacks 

The delay caused by the LVQ-based vIDS is 

between 10ms and 12ms depending on the type of 

attacks, comparing with the average of 12ms of BPN-

based and 9ms of Bayesian Inference based, which is 

not significant. Along with an increase of the number 

of incoming calls, performance of the LVQ-based vIDS 

doesn‟t obviously get worse: delay for each call will be 

added by 7-14 ms (vs. 10ms-23ms of BPN, 10-18ms of 

Bayesian) at peak of incoming calls (25 CAPS). See 

Figure 4 for details. 

 
Figure 4. Call delays of 4 intrusions detect approaches 

 



 

 

Although the system overhead (memory 

consumption and CPU usage) increases nonlinearly 

along with a growth of incoming calls, the system can 

still work properly at 7x24 hour peak calling under call 

simulation test.  

The synthetic performance is a synthetic evaluation 

factor that represents detection accuracy and 

proportions of negative false while two systems are 

taught by the same amount of training data. Comparing 

with Bayesian-based and BP based approaches; The 

LVQ-based vIDS has the best synthetic capability. For 

example, with 1000 training sets, the average negative 

false of around 500,000 simulative attack samples is 

0.004% vs. 0.05% (BPN based) and 0.11% (Bayesian 

based), while the average positive false is 0.06% vs. 

0.15% (BPN) and 0.19% (Bayesian based). 

4. Conclusion 

This paper presents a formal approach to 

implementing the LVQ-based intrusion detection on the 

VoIP infrastructure of a nation-wide softswitch. 

Experiment confirms that the proposed approach makes 

the following achievements: 

a. Improve the detection accuracy and response 

efficiency of attacks with ambiguous patterns. 

b. Reduce positive and negative false in the VoIP 

detection. 

c. Improve the vIDS capability to detect compound 

attacks 

d. Reduce the training time and size of the training set. 

The work also evaluates the proposed approach 

against traditional approaches, showing that the 

proposed approach significantly outperforms over 

traditional ones. The results of experiments also 

confirmed that the proposed LVQ-based vIDS is a 

feasible intrusion detective approach which can be easily 

to be expanded to a commercial VoIP anti-intrusion 

system.  

The work introduces a number of future 

investigations, including: 

a. Exploring new observed variables; 

b. Using multilayer neural networks or other types of 

neural networks such as recurrent neural network 

with genetic algorithm to detect new types of 

compound attacks. 

c. Improving the proposed method for producing 

training data. 
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