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Abstract—We analyze the stability of the Rate Control Protocol Integral Queue Independent RCP,][11] performs local bifur-
(RCP) using two different models that have been proposed in cation analysis for some congestion control algorithmsl an
literature. Our objective is to better understand the impad of [12] develops an experimental framework used to evaluate

the protocol parameters and the effect different forms of fedback . s .
havg on thg stability of the network. We also highlight that several ECPs. The range of these studies exhibit the difficul

different time scales, depending on the propagation delayedative Of developing a new transport protocol.

to the queuing delay, have an impact on the nonlinear and  RCP routers obtain rate estimates from two forms of feed-

the stochastic properties of the protocol fluid models. To bter  back: one is based on rate mismatch and the other is from the
understand some of the nonlinear properties, we resort to lcal queue size. Thus far the role of both forms of feedback has

bifurcation analysis where we exhibit the existence of a Hdp not been well understood 1161 brovides some understanding o
type bifurcation that then leads to stable limit cycles. Ourwork [6]p g

serves as a step towards a more comprehensive understandiofy the r0|e.0f queuing dyngmics on the local stability O.f explic
the nonlinear fluid models that have been used as representa¢ congestion control algorithms. Nevertheless, there dltenst

models for RCP. clear guidelines on choosing vital protocol parameters tha
influence stability and link utilization.
. INTRODUCTION In this paper, we study two nonlinear fluid models of

Congestion in the Internet is just as critical now as ev&tCP and analyze the role played by queue feedback in RCP
before, with the proliferation of high speed mobile and lkoa Performance. We claim, using packet level simulations from
band internet and the large increase in demand for seveyal hPne of our collaborators iri[8], that non-switched system is
bandwidth applications such as multimedia streaming aald remore appropriate and in this regime we develop necessary
time communications. Understandably, the Internet conitpunand sufficient conditions for local stability. We also cortgsu
is actively working to develop congestion control for suckonally study the inherent nonlinear aspects of the praitoc
applications, through the “RTP Media Congestion Avoidand&e then study another model for RCP, where the queue is
Techniques” (RM-CAT) working grotb not modeled as a separate fluid quantity, but is a deternginist

Real-time applications perform poorly in the presence é@presentation for the underlying stochastics. In this ehod
TCP cross-traffic, due to the inherent fairness issues ti¥g¢ further develop the understanding of RCP by considering
arise from TCP's Additive Increase Multiplicative Decreaslocal stability and a local bifurcation analysis. This isnéo
(AIMD) congestion control algorithms. Numerous studieBY varying the network parameters, which impact the stgbili
have exhibited that standard TCP AIMD protocéls [L], [2] ar@nd the link utilization.
unsuitable for next generation networks, and repeatethptte 1 ne rest of the paper is structured as follows. In Section I,
have been made to improve it. Explicit Congestion contr¥f€ outline and analyze two models for RCP. In Section Il
Protocols (ECPs) such as| [3] aim to provide better fairned4¢ summarize our contributions and conclude the paper.

The need for more explicit feedback is well recognized which Il. STABILITY ANALYSIS OF TWO RCPMODELS

in turn motivates the requirement for a comprehensive theo-|, ihis section, we outline two nonlinear dynamical systems
retical fram(?work within which to design transport prottsco 1,5 dels for the RCP [6]18]. These models have previously
Therefore, in this paper, we reconsider the Rate Contiglen motivated with the objective to help design and better
Protocol (RCP)[[4] that has been proposed earlier and studyyarstand the performance of RCP.
its stability properties. In the operation of RCP, the feedback from the routers to
RCP has received significant attention from the researgf end-systems is time-delayed which makes it important to
community: [5] develops some stability properties of a maxmgerstand the stability properties of the nonlinear madel
min RCP in small buffer regime., [6] computationally devedoppere, we develop both necessary and sufficient conditions fo
some sufficient conditions for local stability.| [7] consigea stapility of RCP that are not previously shown in literature
dynamic environment with RCP flows arriving and departingnq explore the consequences of such local stability condi-
over a single link,[[8] develops an-fair variant of RCP and {jons peing violated, both analytically and numerically)are

investigates some of the associated local stability pt@&®er pifyrcation phenomena may readily occur.
[9] develops a NetFPGA hardware implementation of RCP,

[10] develops a new congestion controller called Propogio A. Model A
The protocol strives to estimate the fair rate through alsing

1URL: https://tools.ietf.org/wg/rmcat/ bottleneck link from the rate mismatch and the queue size.
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In order to understand the performance of the protocol, thiee other hand, without queue feedback, the queue size term
following nonlinear dynamical system for the rate and this stable and has a non zero equilibrium value.

gueue has been proposéd [6],1[13]: This motivates our subsequent stability analysis for nec-
essary and sufficient conditions. Clearly, the two forms of

a R(t) = @ <a(C —y(t)) — ﬂ@> (1) feedback are playing a non-trivial role which would not be
dt cT ' T apparent from a linear system. Due to this, we also need to

understand the protocol behavior when conditions for btabi

where '
y(t) =Y R(t-T) (2 eviolated:
- 1) Sability analysis. We shall now understand the local sta-
bility of Model A. Since we wish to focus on the nonlinearity
and d of the model, we consider the following modified equation for
prid (t)=ly(t) - C] q(t)>0 3) the queue dynamics, instead bf (3)
=yt -C]" q(t) =0,
¢t)=1ly@)-Cl  Vq(). (5)

using the notationr™ = max(0,x). Here R(t) is the rate

being updated by the routef] is the link capacityy(¢) i agsume that all flows through the bottleneck link have a

aggregate load at the link(¢) is the queue sizeT is the  common RTT,7. Our system is now represented BY (I, (2),
round trip time (RTT) of flows, andT is the average round (). The fixed points for these equations are:

trip time, over the flows present. In the formulation of the

RCP equation[{1)¢ and 8 are non-negative dimensionless R* = C/n, g =0, (6)

parameters. It is important to understand the impact tresteth

parameters would have on the performance of the protocolwheren is the number of flows. Upon linearizingl (1) (2) (5)
The nonlinear rate equatiohl (1) utilizes two forms of feedxbout the fixed point and on further simplification, we get

back: one for the rate mismatch which is characterized by

C —y (t), and another for the instantaneous queue size). F(t) = —=(r(t—T)) — iq (t)
The rate mismatch term causes the rate to increase if the . nT? (7)
utilization is lower than the link capacit¢’ and the queue qt)=nr(t-T1),

feedback term serves to decrease the feedback rate as the )
queue size in the router starts to build up. with r (t) = R (¢t) — C'/n. Using a Laplace transform, we get
Some sufficient conditions for the local stability of the
system [(11),[(R),[([3), about its equilibrium point, were ded
in [B], using tech_niques_ developed for a “swit_ched" "m_aa\fvheres is the complex argument in the frequency domain.
control SyStef" W'th a tlme delay. The anal_yS|s tgkes mY?/e consider two cases: whe¢h= 0 and > 0 corresponding
account the dlscont|nu_|ty in the system dynamics which wou 0. queue feedback being absent and present, respectively.
occur as the queue size approaches zero. However, we note )
that this analysis applies to the fluid model rather than &gtac a) Without queue feedback: Here, [8) becomes
level description of the protocol. TS .
The sufficient conditions, on the non-negative and dimen- STe’™ +a=0. ©)

sionless parametersand 3, take the functional form

S272eTS 4 aTS+ 3 =0, (8)

We letT'S = )\, and introduce a new parametsr,in (9):

™
“<3 “) AM 4 a = 0. (10)
and g < f(a) where f(-) is a positive function that depends

Substituting\ = jw, and comparing real and imaginary
parts above, we getn = (2m+1)7/2 andw = a. Hence,

= 7/ (2n) whenm = 1. We also note that when = 0,
the only root of [ID) is\ = —a that is stable. Now, using
%8uch'e’s theorenl [14], we find that the system represented
by (I0) is stable ifp < 7/ (2a). With n = 1, we get back
our original characteristic equation, and the stabilitpaition

onT.

We refer to some packet level simulations performed f
RCP using a discrete event simulator, reported in [8, Fig.
These simulations demonstrate that the queue, in equitibri
may not sit at zero but rather the mean queue size would
close to it. The authors consider a network consisting of
single bottleneck link with a capacit¢' of one packet per
unit time and 100 Poisson sources and RTT 100 time uni&e.COmeS W
The parameters with queue feedback are: 0.5, 5 = 1 for a<g. (11)
a utilization of 90%; the parameters without queue feedback
are:a = 1, g = 0, with capacityyC, wherey = 0.9 to target ~ This is a necessary and sufficient condition for local siigbil
a utilization of 90% as before. It was observed that with guetior the system[{1),[{2)[{5) whef = 0, which implies that
feedback the queue size is unstable and has oscillations. tBere is no queue feedback.



in the non-switched case, and= 1, in the switched case, are

7 so small that they had to be represented using a square box.

. Note that the dynamics of Model A undergo a bifurcation at

the boundary of the stability region. The analysis in Sectio

- Stable region 1AL is done for the systeni{1)[2)J(5). We have neglected

- the switching in the dynamics of the queue size, usidg (5),

: ‘ to highlight the nonlinearity in the dynamics of the ratenter

0 /4 2 Nevertheless, the actual behavior of RCP is better repteden

a by the system[{1),[{2)[15)[][8, Fig. 5] shows that the mean

gueue size is not zero. Hence, the switch in the queue size

dynamics does not play a vital role, since the equilibrium

gueue size is non-zero. Furthermore, we observe from Fig. 2

that the dynamics of the rate term undergoes a bifurcatitim wi

respect to the parameter both with and without switching

A2 L ar+ § = 0. (12) in the queue dynamics. The phase portraits ShOW that both
cases are topologically equivalent as we can obtain one from

Once again, we introduce a new parameters follows:  the other by distorting the phase portrait appropriatelys,|
therefore, reasonable to analyze Model A without the switch

e +aX+ B =0. (13) in the queue size dynamics.
We now present another model used to represent RCP.

0.0 01 0.2 0.3 04 05 O.
|

Fig. 1. Stability chart for Model A

b) With queue feedback: Here, [8) becomesI(S = \):

By substitutingA = jw in the above equation we get:

—w?cos (nw) + B =0, and — w?sin (nw) +aw = 0. B. Model B
(14) Model A accounts for the queue term explicitly via the
Upon simplifying the above equations, we get: differential equationd{3)[{5). We now outline a small leuff
model of RCP. In this regime, the queue size fluctuates so
a? + \/a* + 432 rapidly that it becomes impossible to respond to and control
w= jE\/f’ (15) its actual size. Instead, RCP behaves as if it is responding t

5 ) ) ) a digtribution of the queue size. Therefore, at the time scale
asw* Is non-negativewsin (nw) = a asw # 0 if a >0, 80 pertinent for the convergence of the system, mian queue

1. ,/a size is more important. It is also assumed that the queuing

= _sm (;) : (16) delay is negligible compared to the propagation delay, Wwhic

Now, if a and 3 are fixed and) = 0, the roots of [T3) have conforms with the small buffer assumption.

negative real parts, asis positive, and are stable. Once againd A s_rir;a(ljl Sui"#ef\”ﬁ”am of RC]P thaz!?r pror;_orlnonallg fg'r IS
using Rouché’s theorem, and with= 1, we get escribed by the following nonlinear differential equasd8]

1 . _4,/a
tegen () Wm0 = S - h Oy () (9)
as the stability condition for the linearized system cqroesl- 7
ing to equation[(112). This can be simplified as where
yi (t) =Y @ (t—=Tpy) (20)
\a2+\/at +4pB2 g/ a?+ \Jat +4p2 (18) rijer
tan V2 < 8 V2 ’ is the aggregate load at resougceummed over all the routes,

which is the necessary and sufficient condition for the lockl containing resourcg; z (t) is the flow rate leaving the

stability for the system{1)[12)[X5) wheh > 0: see Fig. 1. Source of router; p; (y;) is the mean queue size at link
2) Numerical results. We performed numerical computa-Vhen the load there ig;; capacity of resourcg is C';; and

tions for Model A and presented the results in Fig. 2. We chose . Sricr T O T

B = 0.3, RTT T = 0.1 time units, capacityC' = 100, 000 Tj(t) = ==—Fr (21)

F H Zr: jET Lr (t)

packets per unit time, number of flowss= 100, and varied J

the parametes. We plotted the bifurcation diagrams and thés the average RTT of packets passing through resogirce

phase portraits, both with and without the switch in the queltere, T, is the sum of the propagation delay from the source

dynamics. The results confirm our analytically derived itgb  of the flow on route- to resourcej (7;;) and the propagation

region, with the system becoming unstable wheleaves the delay from the resourcg to the source of the flow on route

stability region. Additionally, the results show the nowar r (7},). In (I9), « and b; are non-negative dimensionless

nature of the instability in the form of limit cycles, whiclhea parameters. Let the flow rate (¢) leaving the source of route

visually apparent in the phase portraits. The cyclesfer 1.1, r at timet be given by
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Fig. 2. Numerical computations for Model A: (a) Bifurcatiaiagram (left) and phase portrait (right) for the “non-shi¢d” case usind15), witl¥ = 0.3
and a is varied, (b) Bifurcation diagram (left) and phase pottaight) for the “switched” case usinf](3), with = 0.3 anda is varied. Other parameter
values are: RTTI" = 0.1 time units; CapacityC' = 100,000 packets per unit time; Number of flows,= 100.

equilibrium of the system in(19)[(20), we can evaluate the

—1 . . . ioe .
utilization of resourcej, p;, after simplification, as

YR -T)N| . (22)
JET b
. o . pj=1-o0, (—7) +0 (a30)) . (25)
wherew, is the weight given to route. We can obtain an ' 2 '

expression for the mean queue size in the following way:
consider the arriving workload at resourgés Gaussian over 1) Stability analysis: In [8], a sufficient condition for the
a time periodr, with meany;r and vanance;;ﬂa? Then the local stability of Model B for heterogeneous propagation
workload present at the queue is a reflected Brownian motiglglays was derived. It was shown that with queue feedback,
with mean under its Sta“onary distribution of a SUfflClent condition for Stablllty % < 7T/2 while without
queue feedback, it is < 7/4.
Here, we present the necessary and sufficient conditions
for the local stability of this model, for a homogeneous
ropagation delay, both with and without queue feedback. We
dte that we get similar sufficient conditions as mentioned
in [8]. We also prove, analytically, the existence of a Hopf
bifurcation at the edge of the stability region in both cases
a) With queue feedback: Let the network consist of a
single link with capacityC, a single route and a common
RTT, 7, for all the flows. We drop the subscriptsandr, for
clarity. All the flows send Poisson traffic, henee= 1. We
B takew = 1 as this only affects the equilibrium point. For this
bj = WO T (24) scenario, the general rate equation[in] (19) becomes

() = 2%
pj (y;) = 2(C; — ;)

In essence, the queue size term is being modeled
p; (y;) as described i (23). The parameterdetermines how
variable the traffic at resourcgis. For instance, iv; = 1,
then the traffic is Poisson.

We should note that the parametein both the models is
the same. The parametir of Model B can be related to the
parameters and 5 of Model A by the equation

(23)

The parameteb; affects the utilization of resourcg at d aR (1)
equilibrium. From [[ZB) and considering the condition for SR = o (C—y(t) —bCp(y ()  (26)




where

Yy
y(t)=R(t—7), andp(y) = ———. 27
y(O=R(E-7), andp(y) = 7 @)
We now linearize [(26) using the Taylor expansion about
the equilibrium. LetR (t) = r(t) + R*, where R* is the
equilibrium value ofR (¢), andr (¢) is a small perturbation
about the equilibrium. Hencd, (26) becomes ©

80

- Hopf bifurcation boundary—

40
|

Stable region

d

SR (D) =7 (1) = —a <R*th> r(t—7).  (28)

20
|

Unstable region

whereR* = C (b + 4 — Vb? + 8b) /4. More simply, 13 y T
/4 3n/8 /2
7(t)=—rr({t—r1), (29) u
wherex = a §2 +b/4—/b%/16 + b/2) /7. By taking the
Laplace transform of(29), we get the ‘characteristic equati Fig. 3.  Stability chart for Model B

A+ ke AT =0, (30) ) . .
Following the same approach as in Section-1IBla, we get

where \ is the complex argument in the frequency domain. -
Once again, we introduce a new parameters, a<g (37)

A+ ke AT = 0. (31) as the necessary and sufficient condition for the local liabi
o ) ) ) ) of the Model B wherb = 0, that is without queue feedback.
By substituting) = jw and comparing real and imaginary e piot the stability chart for this model in Fig. 3. Note that
parts, we getv7y) = m/2. We note that whem = 0, the e region above the curve represents the stability region f
only solution of [31) isA = —x, which is stable. Hence, , . ( \yhereas when = 0, the system is stable iff < /2

using Rouché's theorem, and substituting= 1 to get the ponce there is a discontinuity at= 0, as confirmed by((32)
characteristic equatiori_(B0), we note that < 7/2 is the 44 [37).

necessary and sufficient condition for the local stabilify o

c) Hopf bifurcation. We show the system i 0), i.e.
Model B, which is expanded as ) Hopf bifurca W y M{BO), |

with queue feedback, undergoes a Hopf bifurcationzas

b 2 b - varied. Consider(30) by rewriting asx = £a/7 with £ =
a 2+1_ E—i_? <3 (32) 2+0b/4—/b2/16 + b/2. Then, we get
a,
If we substituteh — 0 in (32), we get A+ ée*“ =0. (38)
a<m/4. (33) Differentiating the above equation with respecutove get
This is the sufficient condition for local stability of Model ax 1 (39)
B, with queue feedback ds> 0. This can be seen from Fig. da  ar — %e”'

3, wherevb > 0, the regioru < /4 falls in the stable region. _ .
In 32), we note that a8 — oo, a — /2. This can be  Define Re(z) as the real part of, and sgri-) as the sign
shown by the fact that function. Then,

li <1 + b i + b) 0 (34)

1m - — A a — U.

v\ "1 V16T 2 Sgn(Re<@>) _ sgn<Re <%>>
da ar — ge T

b) Without queue feedback: Consider the same scenario a
as in the previous case and chobse 0 in (Z6). We linearize = sgn(Re(¢a — ) = sgn(Re(a + ;)) = sgn(a) > 0,

(29), withb = 0, as (40)
) = — (aR*) r(t—7). (35) where the second to last equality i§ optained by substgutin
Cr for e*™ from (38), and the last equality is because(Rg= 0

whereR* = C, in this case. Substituting = a/ in (35), we at the boundary. This shows that at the boundary of the

get the characteristic equation as stability region Rg%) # 0, while Re(\) < 0 inside the
region. Hence,\ changes signs across the region and the

A Ce M =0. (36) fixed point becomes unstable, i.e. we say that it undergoes



a Hopf bifurcation. The condition R(éjl—i) # 0 is called the is attained as the magnitude of the rate mismatch feedback
transversality condition for a Hopf bifurcation. changes withu. We now show this using theoretical analysis.
Similarly, the above analysis also applies for the case of noNote that if Re(%) < 0 and Rg\) < 0, then we observe
queue feedback with (86), along the same lined_as (30). that the solution of the linearized system [in](29) decaytefas
asa increases. This motivates our analysis. Using the second
C. Impact of queue feedback to last expression i (40), the condition for E%fgg) <0is
In context to the parameters chosen for packet level sim-
ulation results in[[B, Fig. 5], the stability chart in Fig. 1 1
shows thata = 0.5 and 85 = 1 is outside the provably Re(d) > T (41)
stable region, corroborating the results fin [8, Fig. 5]. e t i
absence of queue feedback, to target a utilization of 90%,We solve [[3b) forA = —1/7 and obtaina = 1/e.d¥Ve also
a=1, g=0andy = 0.9 whereC is replaced withyC. note_ that wher = ,0' A=0 > —1/7, hence Ré%,) < 0.
In this case, the RCP model only reacts to rate mismatdfPViously, there exists a particular valuewéfter whichA <

We note that the simulations ir[8] did not produce any l/T ]:';md this value of: is 1/e. Therelfore,c;/veh notde that the
deterministic instabilities, and our analysis suggestt tt &€ Of convergence increases upte- -, and then decreases

these parameters the protocol is locally stable. Therefare again beyond th‘fﬂ' Simulations confirming this analysisehav

this regime, the presence of queue feedback causes the qlﬁf‘@ presented in[4]. )

to be less accurately controlled, suggesting a fundamental Furthermore, we note again that parametatso affects the

difference between these two forms of feedback and al@Pility of the system, as shown by our analysis in thisisact

showing evidence in favor of no queue feedback. and in Fig. 2 and 4, and causes limit cycles for sufficiently
For model B, we have analytically shown that a Hopl,argea. From the above analysis, we conclude that the optimal

bifurcation arises at the boundary of the stability regioy@lué ofa for the fastest rate of convergence is

which signifies the emergence of limit cycles. Of course, 1

it is important to determine the stability of the bifurcatin a=- (42)
periodic orbit. An analytical characterisation of the diaib €

or instability of the bifurcating limit cycle is beyond the [1l. CONCLUSIONS

scope of this paper. However, the computations performed fo

Model B, shown in Fig. 4, suggest that the limit cycles could Our focus, in this paper was on the equilibrium properties
indeed be stable. In Fig. 4, with queue and without que@é two specific models of RCP. These two nonlinear models
feedback, we observed stable limit cycles that were plotté@ve only been studied for sufficient conditions to ensucallo

in the corresponding bifurcation diagrams. We observe tHgbility. To that end, for both these models, we developed
the corresponding phase portraits are topologically edeint. necessary and sufficient conditions for local stabilitydemn
We would like to highlight that the computations done fogertain conditions. As conditions for stability get viadt
Model A, represented in Fig. 2, also provide evidence féifurcations may occur. For both the models, we explored the
the emergence of stable limit cycles as protocol parametégiisequences of parameters violating the stability ctomdit

are varied. To that end, the packet level simulations shawnand we plotted the respective bifurcation plots for the eyimer

[8], which exhibit nonlinear oscillations appear to be indd stable limit cycles. For the small buffer variant of RCP,
via a Hopf type bifurcation. Our computational and anabjtic we also analytically showed that the bifurcation would be a
results for the Hopf bifurcation together provide ratheosy Hopf bifurcation, which does signify the emergence of limit
evidence for a thorough investigation on the nonlinear dynacycles. We used this insight, to help explain the potential
ical characteristics for the various RCP models outlinethis  destabilizing effect of having two forms of feedback in the

paper. protocol definition of RCP.
S This, we believe, sheds light on a key architectural quastio
D. Impact of utilization concerning the design of RCP, i.e. whether the protocol sieed

We shall now look at how varying utilization impactsto estimate the fair rate from both rate mismatch and from the
stability. From Fig. 4(b) and 4(d), we see that as utilizatioqueue size. Hopf type bifurcations, occurring due to thepre
is decreased, the system enters a limit cycle at a later vakrece of queue size in the feedback, open additional quastion
of parameter. The amplitude of the limit cycle also growsregarding the nonlinear properties of the fluid models aeit th
slower. This effect is more pronounced with queue feedbacklationship with protocol design.

This suggests to us that as utilization is decreased, thditta

of the system increases. ACKNOWLEDGMENT
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