

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-05-23

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Santos, T. & Serrão, C. (2016). Secure Javascript Object Notation (SecJSON): Enabling granular
confidentiality and integrity of JSON documents. In 2016 11th International Conference for Internet
Technology and Secured Transactions (ICITST). (pp. 329-334). Barcelona, Spain: IEEE.

Further information on publisher's website:
10.1109/ICITST.2016.7856724

Publisher's copyright statement:
This is the peer reviewed version of the following article: Santos, T. & Serrão, C. (2016). Secure
Javascript Object Notation (SecJSON): Enabling granular confidentiality and integrity of JSON
documents. In 2016 11th International Conference for Internet Technology and Secured Transactions
(ICITST). (pp. 329-334). Barcelona, Spain: IEEE., which has been published in final form at
https://dx.doi.org/10.1109/ICITST.2016.7856724. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICITST.2016.7856724

Secure Javascript Object Notation (SecJSON)
Enabling granular confidentiality and integrity of JSON documents

Tiago Santos, Carlos Serrão

ISCTE – Instituto Universitário de Lisboa
Ed. ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal

tfpss1@iscte.pt, carlos.serrao@iscte.pt

Abstract— Currently, web and mobile-based systems exchange
information with other services, mostly through APIs that extend
the functionality and enable multipart interoperable information
exchange. Most of this is accomplished through the usage of
RESTful APIs and data exchange that is conducted using JSON
over the HTTP or HTTPS protocol. In the case of the exchange
requires some specific security requirements, SSL/TLS protocol is
used to create a secure authenticated channel between the two
communication end-points. This is a scenario where all the content
of the channels is encrypted and is useful if the sender and the
receptor are the only communicating parties, however this may
not be the case. The authors of this paper, present a granular
mechanism for selectively offering confidentiality and integrity to
JSON documents, through the usage of public-key cryptography,
based on the mechanisms that have been used also to provide XML
security. The paper presents the proposal of the syntax for the
SecJSON mechanism and an implementation that was created to
offer developers the possibility to offer this security mechanism
into their own services and applications.

Keywords- Security; Integrity; Confidentiality; API; JSON;
HTTPS; SSL/TLS

I. INTRODUCTION
Nowadays, one of the main mechanisms that is used to

exchange information between different Web-based services
uses the Javascript Object Notation (JSON), an open standard
format that uses plaintext to facilitate the transport, processing
and interoperability during information serialization and de-
serialization [7] across multiple heterogeneous services and
applications. According to its creator, Douglas Crockford, JSON
is a natural way for representing data that can be consumed by
different programming languages. One of its first
implementations targeted the communication between
Javascript-based scripts and Java-based servers. Although JSON
was first developed having into consideration Javascript, it is
currently platform and programming language independent. In
the last few years there has been a growing usage of this format
to serialize and de-serialize information on web services,
allowing the interoperability between services running on
different platforms and written on a multiplicity of programming
languages. JSON can be seen today, together with HTTP, as the
“glue” that enables the interoperable communication between
different web-based services [5] and applications. JSON is
widely used to support the communication between multiple

APIs available on WWW REST services. This way, JSON
security issue gains momentum due to the sensitive
characteristics of the information that is JSON-encapsulated
(JSON payload) and transported between this distributed
heterogeneous ecosystem.

There are currently mechanisms that allow the protection of
the communication channels between the different applications
and services assuring the confidentiality and authentication of
the entire channel - SSL/TLS [8]. However, SSL/TLS blindly
ciphers all the information that flows on the communication
channel, in a similar way. With this it is not possible to cipher
the same JSON message conditionally, using different keys or
using different protection mechanisms (cryptographic
algorithms), which could be required by specific applications
[1]. There may exist critical information that needs to be sent or
redirected to multiple entities, even if those entities are not the
final receptor of such message, there should exist a mechanism
that would allow the same JSON message/document to have
multiple sections of that document that are protected in a specific
manner, while others have a different protection type. With this
requirement it is possible to imagine a scenario where the same
JSON document can contain critical and non-critical
information, protected in different ways, with distinguished
ways of accessing such information (Figure 1).

This article intends to present a secure and granular solution
for JSON documents. The major contribution of the article can
be resumed in the presentation of the syntax and semantics of a
mechanism capable of ensuring the granular security of JSON
objects and the implementation of the syntax developed in a
programming language that allow easy integration into projects
of other developers. The paper starts by providing an
introduction to the modern approach to the development of
distributed web services. After this, a more detailed presentation
of the HTTP-based RESTful services is provided, as well as
some references to the data interchange format that is currently
being used on these cases, and some problems involved in the
security of JSON. Following this part, a proposal and
specification of a secure version of JSON (SecJSON) is
provided. The following section provides a description of the
implementation that was conducted to implement a library that
would allow web-services developers to use the SecJSON
format. Finally, some conclusions from the work are presented
as well as some of its limitations.

Figure 1. An overview on how SecJSON works

II. JSON-BASED WEB SERVICES
Most business transactions currently depend on the existence

of Web Services. This is the reason why it has become one of
the most important areas of the IT industry [6]. The security
inherent in this type of transaction is essential to ensure the
success of an organization and automate most of their internal
and external business processes. The possibility for
organizations or users to interact directly with other
organization’s systems raise security concerns. How can
organizations ensure that their or the users information reaches
the final destination safely, preserving confidentiality and
integrity, whenever sensitive information is routed through the
WWW [6]. Looking at the state of the art, it is possible to
identify different protocols and technologies to ensure the
security and confidentiality on the Internet/WWW, each one of
them using their own ways to protect information. One of the
most used web protection mechanisms is SSL/TLS. The main
functionality of the SSL/TLS protocol is to establish an
encrypted and authenticated communication channel between
two communication parties - the client, usually a web browser
and a server.

However, as previously referred, this mechanism encrypts
all information passing through the communication channel,
using pre-established cryptographic primitives and keys, in the
same way. Therefore, it is impossible, in a conditional and
granular manner, to encrypt JSON messages, or parts of
messages, with different keys or encryption schemes. This
constraint can be a problem for specific use cases. The focus of
SSL/TLS protocol consists in the protection of information
serialization between two entities. Information is immediately

deciphered on arrival at the end-point, regardless of their final
destination [4]. In the case of a channel compromise, all
information transmitted can be accessible to an attacker.
Moreover, SSL/TLS is mostly used at the server level and not
the application level – meaning that information is decrypted at
the server and not at the application. In a scenario where a server
is running multiple applications, with multiple users, and each
of them have their specific security requirements, SSL/TLS
might not be the appropriate solution to offer confidentiality and
integrity to JSON messages in this case. In addition to these
problems, in a scenario where sensitive JSON information is
forwarded by multiple parties without them to be the final
recipient of the information, if one of the parties is compromised
all the information can be exposed. In this scenario the
protection of the JSON messages offered by SSL/TLS protocol
is insufficient.

III. SECURE JAVASCRIPT OBJECT NOTATION (SECJSON)
Considering the different aspects of JSON documents

confidentiality and integrity, and the mechanisms that are mostly
offered for security on the WWW, it is possible to conclude that
SSL/TLS is not suitable for all the security scenarios involving
JSON. Therefore, this work was conducted to devise a security
framework that could be used to protect JSON, in a way that it
would be easy for programmers to use to implement security on
their services. This section of the paper presents some of the
major requirements guiding the development of SecJSON as
well as a the description of the approach that was followed
throughout its development. The syntax of SecJSON is also
presented.

A. SecJSON requirements
The basic rational behind the specification and development

of SecJSON is to assure a security mechanism that would enable
the protection of JSON data. The specific requirements of the
solution can be resumed in the following:

• SecJSON should offer a protection mechanism that is
independent of any other existing channel encryption
mechanism – this means that SecJSON can act as a
security mechanism that can be used on top (at the
application level) of other underlying security
mechanism, such as SSL/TLS;

• SecJSON should consider the protection of JSON data
without any underlying channel encryption mechanism
(for instance, SSL/TLS);

• SecJSON should assume that data inside the JSON
document/message could have as destiny different
receptors with different access clearances;

• SecJSON should make possible to protect either the
entire JSON document/message or simply protect
specific parts of the JSON document/message;

• SecJSON should also make possible the usage of
multiple keys and multiple encryption algorithms to
protect different sections of the same JSON
document/message;

• SecJSON should be independent of any specific
programming language, or encryption algorithms;

• SecJSON should be easy to implement and useby third
parties.

Having into consideration the requirements that were
identified, the SecJSON specification and development is
presented in the following sections.

B. SecJSON overview
The proposed Secure JSON consists in a set of rules and

specifications for encrypting information and rep- resent their
results in JSON format. Data to be protected can be another
JSON document, a primary type (for instance, a sequence of
characters) or a structured type (for instance, an array).

SecJSON is a mechanism that was based on the XML
Encryption standard, which specifies the method for encrypting
data and how it can be represented in XML format (Imamura et
al., 2002).

The result of the encryption process consists of a SecJSON
element EncryptedData, which contains encrypted information.
{
 "Case":"Case info",
 "Witness protection":[
 {
 "Name":"Igor",
 "id":123
 }]
}

Considering the above JSON object, where it is required to
offer witnesses information protection. In an initial stage it

should be identified where is the in- formation that will need to
be encrypted (in this case the “Witness protection” element):
{
 [
 "Name":"Igor",
 "id":123
]
}

After SecJSON cipher process is applied to the previously
located element, it is replaced by the appropriate EncryptedData
element. This element contains all necessary components to
allow the SecJSON decipher process. The result is similar to the
following object:
{
 "Case":"Case info",
 "Witness protection":{
 "EncryptedData":{
 (... SecJSON elements ...)
 }
 }
}

Whenever the encryption process is applied to a JSON
document/message the result is a new JSON-encrypted
document with a single EncryptedData element.
{
 "EncryptedData":{
 (... SecJSON elements ...)
 }
}

C. SecJSON proposed syntax
This section offers a detailed description of the syntax and

features for SecJSON. The syntax is defined using JSON-
Schema. The JSON implementation should generate a JSON
object accepted and validated by the JSON Schema defined and
available in http://tiagomistral.github.io/SecJSON/
secjson-schema.json.

EncryptedType element

EncryptedType is the abstract type from which
EncryptedData and EncryptedKey are derived. While these two
latter element types are very similar with respect to their content
models, a syntactical distinction is useful for processing.

Although JSON Schema does not support abstract elements,
a representation of this element is useful to facilitate the
interpretation of the syntax.

EncryptionMethod element

EncryptionMethod is an optional element that describes the
encryption algorithm applied to the original data to obtain the
ciphered counterpart. If the element is absent, the encryption
algorithm must be known by the recipient or the decryption will
fail.

CipherData element

CipherData is a mandatory element that provides the
encrypted data. It must either contain the encrypted octet
sequence as Base64 encoded text of the CipherValue element,

or provide a reference to an external location containing the
encrypted octet sequence via the CipherReference element.

CipherReference element

If CipherValue is not supplied directly, the
CipherReference identifies a source which, when processed,
yields the encrypted octet sequence.

The actual value is obtained as follows. The
CipherReference URI contains an identifier that is
dereferenced. Should the CipherReference element contain an
optional sequence of Transforms, the data resulting from
dereferencing the URI is transformed so as to yield the intended
cipher value.

EncryptedData element

The EncryptedData element is the core element in the
syntax. Not only does its CipherData child contain the
encrypted data, but it's also the element that replaces the
encrypted element, or serves as the new document root.

KeyInfo element

There are two ways that the keying material needed to
decrypt CipherData can be provided:

• The EncryptedData or EncryptedKey element specify
the associated keying material via a child of KeyInfo
element.

• The keying material can be determined by the recipient
by application context and thus need not be explicitly
mentioned in the transmitted JSON document.

EncryptedKey element

The EncryptedKey element is used to transport encryption
keys from the originator to a known recipient(s). It may be used
as a stand-alone JSON document, be placed within an
application document, or appear inside an EncryptedData
element as a child of a KeyInfo element. The key value is always
encrypted to the recipient(s). When EncryptedKey is decrypted
the resulting octets are made available to the EncryptionMethod
algorithm without any additional processing.

D. SecJSON Processing Rules
This section describes the operations that need to be

performed as part of the encryption and decryption processing
by any implementation of the SecJSON specification. Again, as
the definition of SecJSON elements, the rules are based on the
same rules used by XML Encryption standard [3].

Figure 2. SecJSON encryption process

The conformance requirements are specified over the
following roles:

Application: the application which makes a request of an
SecJSON implementation via the provision of data and
parameters necessary for its processing;

Encryptor: a SecJSON implementation with the role of
encrypting data;

Decryptor: a SecJSON encryption implementation with the
role of decrypting data.

For each data item to be encrypted (Figure 2) as an element
derived from EncryptedType, the encryptor must:

1. Select the algorithm (and parameters) to be used in
encrypting this data.

2. Obtain and (optionally) represent the key.

a. If the key is to be identified (via naming, URI,
or included in a child element), construct the
KeyInfo as appropriate.

b. If the key itself is to be encrypted, construct an
EncryptedKey element by recursively
applying this encryption process. The result
may then be a child of KeyInfo, or it may exist
elsewhere and may be identified in the
preceding step.

3. Encrypt the data:

a. obtain the octets by serializing the data in
UTF-8 (or other encoding choose by
application). Serialization may be done by the
encryptor. If the encryptor does not serialize,
then the application must perform the
serialization.

b. Encrypt the octets using the algorithm and key
from steps 1 and 2.

c. Unless the decryptor will implicitly know the
type of the encrypted data, the encryptor
should provide the type for representation.

4. Build the EncryptedType structure. An EncryptedType
structure represents all of the information previously
discussed including the type of the encrypted data,
encryption algorithm, parameters, key, type of the
encrypted data, etc.

a. If the encrypted octet sequence obtained in step
3 is to be stored in the CipherData element
within the EncryptedType, then the encrypted
octet sequence is base64 encoded and inserted
as the content of a CipherValue element.

b. If the encrypted octet sequence is to be stored
externally to the EncryptedType structure,
then store or return the encrypted octet
sequence, and represent the URI and
transforms (if any) required for the decryptor
to retrieve the encrypted octet sequence within
a CipherReference element.

5. Process EncryptedData

a. If the type of the encrypted data is a JSON
element, then the encryptor must be able to
return the EncryptedData element to the
application. The application may use this as a
new JSON document or insert it into an
another. The encryptor should be able to
replace the unencrypted 'element' or 'content'
with the EncryptedData element. When an
application requires an JSON element or
content to be replaced, it supplies the JSON
document context in addition to identifying the
element or content to be replaced. The
encryptor removes the identified element or
content and inserts the EncryptedData element
in its place.

b. If the type of the encrypted data is not 'element'
or element 'content', then the encryptor must
always return the EncryptedData element to
the application. The application may use this
as a new JSON document or insert it into an
another.

Figure 3. SecJSON decryption process

EncryptedType derived element to be decrypted (Figure 3),
the decryptor must:

1. Process the element to determine the algorithm,
parameters and KeyInfo element to be used. If some
information is omitted, the application is responsible for
supply it.

2. Locate the data encryption key according to the KeyInfo
element. If the data encryption key is encrypted, locate
the corresponding key to decrypt it. Or, one might
retrieve the data encryption key from a local store using
the provided attributes or implicit binding.

3. Decrypt the data contained in the CipherData element.

a. If a CipherValue child element is present, then
the associated text value is retrieved and
base64 decoded so as to obtain the encrypted
octet sequence.

b. If a CipherReference child element is present,
the URI and transforms (if any) are used to
retrieve the encrypted octet sequence.

c. The encrypted octet sequence is decrypted
using the algorithm/parameters and key value
already determined from steps 1 and 2.

4. Process decrypted data.

a. The cleartext octet sequence obtained in step 3
is interpreted as UTF-8 encoded character
data.

b. The decryptor must permit the return of
resulting data in a JSON structure with defined
encoding. The decryptor is not required to
perform validation on the serialized JSON.

c. The decryptor should support the ability to
replace the EncryptedData element with the
decrypted JSON element or simple content.
The decryptor is not required to perform
validation on the result of this replacement
operation. The application supplies the JSON
document context and identifies the
EncryptedData element being replaced. If the
document into which the replacement is
occurring is not UTF-8, the decryptor must
transcode the UTF-8 encoded characters into
the target encoding.

IV. SECJSON IMPLEMENTATION
In order to validate the SecJSON specification and usage and

in order to make it available for third party developers, an
implementation of SecJSON was performed using Node.js.
Node.js (or simply Node) is an open-source platform for server-
side and web applications [2] development entirely based on
JavaScript and JSON format, which is an advantage for its
adoption throughout this article. Besides the already mentioned
advantages, Node.js also has a Node Package Manager (NPM),
which is the default package manager for Node.js [2]. This allow
that new libraries stay available to developers, making code
reutilization easy and efficient on development [9].

A. secjson.js
Throughout this section the main Node.js functions

developed according to the syntax defined in the previous
sections, are presented. The implementation of XML Encryption
for Node.js was considered as the starting point for this
implementation, and it may be accessed from
https://github.com/auth0/node-xml-encryption.

B. Encryption process
The encryption process is responsible for receiving content

and other parameters to encrypt and return a JSON object
according to the defined syntax. As required parameters this
function requires content to encrypt, public key, PEM x509
certificate, and optionally set the element to encrypt using a
JSON path. When invoked, this operation, sequentially applies
the methods needed to encrypt the content provided:

• findKeyEncryptValue: if a JSON path is defined, the
element will be located in the JSON structure.

• generate_symmetric_key: generate a symmetric key to
encrypt the user-defined content.

• encrypt_content: encrypt the user-defined content
with the key generated in the previous point.

• encrypt_key: encrypt the symmetric key used for
encryption with public key provided by the user.

C. Decryption process
The decryption process is responsible for obtaining the

decrypted content. As parameters this function requires a JSON
object according to SecJSON syntax and a private key.

The methods needed to decrypt the content provided, will
then be called, in sequence:

• findKeyDecryptValue: if a JSON path is defined, the
element will be located in the JSON structure.

• JSON.parse: validate JSON object provided.

• decryptKeyInfo: Decipher the element content
EncryptedData.KeyInfo.CipherData with the private
key provided, getting the symmetric key used in the
encryption process.

• switch(encryptionAlgorithm): Decipher the payload
with the symmetric key obtained in the previous point.
This process is dependent on the element
EncryptedData.EncryptionMethod, whose
information corresponds to that used cryptographic
algorithm (AES 128, AES 256 or TripleDES).

V. CONCLUSIONS
The distribution of services over the Internet has grown in

the past years as one of the most interesting trends in software
development. A proliferation of web-based APIs has popped up
allowing developers to extend their services with the ones
developed by third parties. HTTP-based RESTful services have
become one of the most relevant ways to implement distributed
web-services and JSON has emerged has the data
interoperability standard that enables transparent data transfer
between different implementation technologies.

Data transfer between all of these services, includes critical
private information that requires specific protection. Most of the
times, the SSL/TLS protocol can be used to provide end-to-end
channel encryption however, some specific cases may require
more than simply channel encryption. For instance, there are
some situations in which the data contained in a JSON document

can contain sensitive information that cannot be disclosed to all
the possible entities at the same time. This information can have
different protection layers, ciphered with multiple keys and
using different encryption methods. These are some of the
questions that SSL/TLS cannot answer.

Having this into consideration, the authors propose and
describe a secure JSON approach, based on previous XML
security work, that offers the required requirements that extend
the protection used by tradicional end-to-end channel encryption
approaches. The implementation of this project consists of three
main points: the definition of a syntax that allows encryption and
decryption of a JSON document, implementation and delivery
of a prototype of the defined syntax and validation of
implementation. The validation of the implementation
concluded that the SecJSON solution is a valid alternative to
SSL/TLS, displaying superior performance in several specific
scenarios. The ultimate goal of this work was achieved with the
release of the prototype in the NPM, which may be accessed
from https://www.npmjs.com/package/secjson.

The definition and development of SecJSON were a real
challenge but limited the time to software optimization. It would
be interesting to extend this project in order to achieve superior
performance fostering greater adoption market.

REFERENCES
[1] Abd El-Aziz, A. and Kannan, A. (2014). Json encryption. In Computer

Communication and Informatics (ICCCI), 2014 International Conference
on, pages 1–6. IEEE.

[2] Cantelon, M., Harter, M., Holowaychuk, T., and Rajlich, N. (2014). Node.
js in Action. Manning.

[3] Imamura, T., Dillaway, B., and Simon, E. (2002). Xml encryption syntax
and processing. W3C recommendation, 12:2002.

[4] Maeda, K. (2012). Performance evaluation of object serialization libraries
in xml, json and binary formats. In Digital Information and
Communication Technology and it’s Applications (DICTAP), 2012
Second Inter- national Conference on, pages 177–182. IEEE.

[5] McCune, R. R. (2011). Node. js paradigms and bench- marks.
STRIEGEL, GRAD OS F, 11.

[6] Ratnasingam, P. (2002). The importance of technology trust in web
services security. Information Management & Computer Security,
10(5):255–260.

[7] Severance, C. (2012). Discovering javascript object nota- tion. Computer,
(4):6–8.

[8] Stephen, T. (2000). Ssl and tls essentials–securing the web.
[9] Tilkov, S. and Vinoski, S. (2010). Node. js: Using javascript to build high-

performance network programs. IEEE Internet Computing, 14(6):80.

