
Type-based Static and Dynamic Website Verification
Jorge Coelho

Instituto Superior de
Engenharia do Porto & LIACC

jcoelho@ncc.up.pt

Mário Florido
University of Porto,
DCC-FC & LIACC

amf@ncc.up.pt

Abstract— Maintaining large websites and verifying their se-
mantic content is a difficult task. In this paper we propose a
framework for syntactic validation, semantic verification and
automatic correction of websites based on the logic programming
language XCentric. Here we purpose a new approach conciliating
the highly declarative model of XCentric with compile and run
time verification techniques, mainly based on type checking to
automatically repair and audit websites. The result is an easy to
follow model to improve and audit website content.

I. INTRODUCTION

Maintainance of a large website can be a tedious and
difficult task. If the website is built by many different people
the problem increases considerably. Now, suppose we want to
impose certain type of restrictions on the content provided in
this website. For example, imagine you administer a faculty
website and you want to guarantee that all the teachers provide
information on their personal home pages about the courses
they teach and about their scientific research. There is a also lot
of information that can be used to infer more information. For
example, in our department we have all the publications added
to a central page and we would like to infer some statistical
data from it. Executing these tasks manually is tedious. In this
paper we present a framework for syntactic validation and
semantic verification of content which extends our previous
work (VeriFlog [1]) with the ability to automatically repair the
web pages that don’t obey to a given rule and to verify if the
changes introduced do not violate any of the rules provided
for the website. We accomplish these tasks by introducing
type declarations and compile time type checking along with
consistency verification and type-checking during run-time.

Our base language is XCentric [2]. This language achieves
a high level of expressivity through a new unification model
based on flexible arity function symbols and sequence vari-
ables. We recently purposed in [3] the extension of the
language with types, providing a mean of checking, querying
and processing in a simpler way. XCentric provides a very
pleasant way to query data in html/xml documents and to
write verification rules. The framework works by translating
documents to terms (an internal representation for documents),
and then optionally applying syntactic validation, verifying
semantics and inferring new data. All the different modules
are implemented in XCentric which is built on top of SWI-
Prolog [4], thus the programmer can use all the potential of
SWI-Prolog in addition to XCentric.

Let’s now present a simple example of use of the framework.

Let’s suppose we have a XML file describing a list of
publications which is valid against the following DTD:
<!ELEMENT b i b (pub∗)>
<!ELEMENT pub (a u t h o r + , t i t l e , b o o k t i t l e , volume ? ,

y e a r ? , p u b l i s h e r ?)>
<!ELEMENT a u t h o r (#PCDATA)>
<!ELEMENT t i t l e (#PCDATA)>
<!ELEMENT b o o k t i t l e (#PCDATA)>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT y e a r (#PCDATA)>
<!ELEMENT p u b l i s h e r (#PCDATA)>

and we want to impose one simple constraint:
• If the year of publication is greater than 2006, the string

“to appear” must occur in the “booktitle” content. If it
doesn’t then simply add it.

This can be done by the following program:
swc (URLPub , NewPub) :−

xml2pro (URLPub ,XML) ,
b i n d t y p e (XML, t y p e p u b) ,
r1 (XML1,XML2) ,
pro2xml (XML2, NewPub) .

r1 (X1 , X2) :−
r e p l a c e (pub (X, b o o k t i t l e (BT1) ,Y) ,

pub (X, b o o k t i t l e (BT2) ,Y) , X1 , X2 ,
[Y =∗= < , y e a r (Y1) , > ,

atom2number (Y1 , Yn) ,
Yn > 2006 , n o t (s u b s t r i n g (” t o a p p e a r ” ,BT1)) ,
c o n c a t (BT1 , ” (t o a p p e a r) ” ,BT2]) .

In this program we retrieve an XML document from a url
given in URLPub, then it is converted to the internal represen-
tation by builtin xml2pro and binded to type type pub which
represents the DTD presented before. The rule is described
in predicate r1, where pub is used as a flexible arity functor
(thus X and Y may have zero or more elements) and for
all publications where the year is greater than 2006 and the
string ”to appear” does not occur in the booktitle, the string
”to appear” is automatically added to the content of booktitle.
This is done for all publications on X1 which violate the set of
constraints resulting in a new document X2. During compile
time a static analysis is carried on in order to see if the rule
violates the declared type. During run-time the types are again
used in order to verify that the values introduced don’t change
the document in wrong way. In case there is more than one
rule, a consistency check is also made in order to insure that
actions made by one rule does not violate other rule.

In the rest of the paper we assume that the reader is familiar
with logic programming ([5]) and XML ([6]). We start in
section 2 by presenting related work, then in section 3 we
present the concepts behind XCentric language, we proceed in

section 4 by introducing types and in section 5 the incomplete
terms in depth. In section 6 we present our new verification
framework along with some examples, finally we present
future work and conclude.

II. RELATED WORK

Website verification was addressed in several previous
works. In [7] the authors present a rewriting-based framework
that uses simulation [8] in order to query terms, this was a new
rewriting-based language quite different from ours. In [9], the
authors present a semi-automatic methodology for repairing
faulty websites by applying a set of concepts from Integrity
Constraint [10] thus, very different from our type-based ap-
proach wich uses static checking and run time validation. In
[11] the author proposed the use of a simple pattern-matching-
based language and its translation to Prolog as a framework
for website verification. Our work also uses Prolog but our
syntax smoothly integrates with it, thus our framework inherits
all the power of Prolog. We also provide a richer interface to
semistructured data. In [12] logic was proposed as the rule
language for semantic verification, there the authors provide a
mean for introducing rules in a graphical format. In contrast,
our work provides a powerful programming language and thus
a richer and more flexible way to write rules. In [13] the
author proposed an algorithm for website verification similar
to [14] in expressiveness but based in a different theoretical
approach. The idea was to extend sequence and non-sequence
variable pattern matching with context variables, allowing a
more flexible way to process semistructured data but the author
doesn’t provide an implementation.

III. XCENTRIC

Here we present briefly the concept behind XCentric along
the lines presented in [15].

A. Constraint Logic Programming

Constraint Logic Programming (CLP) [16] is the program-
ming paradigm used in a class of languages based on rule-
based constraint programming. Each different language is
obtained by specifying the domain of discourse and the func-
tions and relations on the particular domain. This framework
extends the logic programming framework because it extends
the Herbrand universe, the notion of unification and the notion
of equation, accordingly to the new computational domains. A
complete description of the major trends of the fundamental
concepts about CLP can be found in [16].

B. XCentric

XCentric extends Prolog with terms with flexible arity
symbols and sequence variables. We now describe the syntax
of XCentric programs and their intuitive semantics.

In XCentric we extend the domain of discourse of Prolog
(trees over uninterpreted functors) with finite sequences of
trees.

Definition 1: A sequence t̃, is defined as follows:
• ε is the empty sequence.

• t1, t̃ is a sequence if t1 is a term and t̃ is a sequence
Example 1: Given the terms f(a), b and X , then t̃ =

f(a), b,X is a sequence.
Equality is the only relation between trees. Equality between
trees is defined in the standard way: two trees are equal if and
only if their root functor are the same and their corresponding
subtrees, if any, are equal.

We now proceed with the syntactic formalization of XCen-
tric, by extending the standard notion of Prolog term with
flexible arity function symbols and sequence variables.

We consider an alphabet consisting of the following sets:
the set of standard variables, the set of sequence variables
(variables are denoted by upper case letters), the set of
constants (denoted by lower case letters), the set of fixed arity
function symbols and the set of flexible arity function symbols.

Definition 2: The set of terms over the previous alphabet is
the smallest set that satisfies the following conditions:

1) Constants, standard variables and sequence variables are
terms.

2) If f is a flexible arity function symbol and t1, . . . , tn
(n ≥ 0) are terms, then f(t1, . . . , tn) is a term.

3) If f is a fixed arity function symbol with arity n, n ≥ 0
and t1, . . . , tn are terms such that for all 1 ≤ i ≤ n, ti
does not contain sequence variables as subterms, then
f(t1, . . . , tn) is a term.

Terms of the form f(t1, . . . , tn) where f is a function symbol
and t1, . . . , tn are terms are called compound terms.

Definition 3: If t1 and t2 are terms then t1 = t2 (standard
Prolog unification) and t1 = ∗ = t2 (unification of terms with
flexible arity symbols) are constraints.
A constraint t1 = ∗ = t2 or t1 = t2 is solvable if
and only if there is an assignment of sequences or ground
terms, respectively, to variables therein such that the constraint
evaluates to true, i.e. such that after that assignment the terms
become equal.

Remark 1: In what follows, to avoid further formality, we
shall assume that the domain of interpretation of variables
is predetermined by the context where they occur. Variables
occurring in a constraint of the form t1 = ∗ = t2 are
interpreted in the domain of sequences of trees, otherwise
they are standard Prolog variables. In XCentric programs,
therefore, each predicate symbol, functor and variable is used
in a consistent way with respect to its domain of interpretation.
XCentric programs have a syntax similar to Prolog extended
with the new constraint = ∗ =. The operational model of
XCentric is the same of Prolog.

C. Constraint Solving

Constraints of the form t1 = ∗ = t2 are solved by a non-
standard unification that calculates the corresponding minimal
complete set of unifiers. Details about the implementation
of this non-standard unification can be found in [2]. As
motivation we present some examples of unification:

Example 2: Given the terms f(X, b, Y) and f(a, b, b, b)
where X and Y are sequence variables, f(X, b, Y) = ∗ =
f(a, b, b, b) gives three results:

1) X = a and Y = b, b
2) X = a, b and Y = b
3) X = a, b, b and Y = ε
Example 3: Given the terms f(b, X) and f(Y, d) where X

and Y are sequence variables, f(b, X) = ∗ = f(Y, d) gives
two possible solutions:

1) X = d and Y = b
2) X = N, d and Y = b, N where N is a new sequence

variable.
Note that this non-standard unification is conservative with
respect to standard unification: in the last example the first
solution corresponds to the use of standard unification. Sound-
ness and completeness of this non-standard unification were
proved in [17] and [15].

D. XML Processing

In XCentric an XML document is translated to a term with
flexible arity function symbol. This term has a main functor
(the root tag) and zero or more arguments. Although our actual
implementation translates attributes to a list of pairs, since
attributes do not play a relevant role in this work we will omit
them in the examples, for the sake of simplicity. Consider the
simple XML file presented bellow:
<a d d r e s s b o o k>

<r e c o r d>
<name>John</ name>
<a d d r e s s>New York</ a d d r e s s>
<e m a i l>j ohn . ny@mai l se rve r . com</ e m a i l>

</ r e c o r d>
. . .

</ a d d r e s s b o o k>

The equivalent term is:
a d d r e s s b o o k (r e c o r d (name (’ John ’) , a d d r e s s (’New York ’) ,

e m a i l (’ j ohn . ny@mai l se rve r . com ’)) , . . .)

Example 4: Suppose that the term Doc is the XCentric
representation of the document “addressbook.xml”. If we want
to gather the names of the people living in New York we can
simply solve the following constraint:

Doc = ∗ =

addressbook(, record(name(N), address(’New York’),),).

All the solutions can then be found by backtracking.
Note that ’ ’ is an unnamed sequence variable which unifies
with any sequence. Further details and examples can be found
in [2], [15].

IV. TYPES

In this section we present the type language starting with a
brief description of Regular Types and then their extension to
type sequences of terms along the lines presented in [3] and
[18].

A. Regular Types

The next definitions and examples introduce briefly the
notion of Regular Types along the lines presented in [19].

Definition 4: Assuming an infinite set of type symbols, a
type term is defined as follows:

1) A constant symbol (we use a, b, c, etc.) is a type term.

2) A type symbol (we use α, β, etc.) is a type term.
3) If f is a flexible arity function symbol and each τi is a

type term, f(τ1, ..., τn) is a type term.
Definition 5: A type rule is an expression of the form α→

Υ where α is a type symbol and Υ is a finite set of type terms.
Example 5: Let α and β be type symbols, α→ {a, b} and

β → {nil, tree(β, α, β)} are type rules.
Definition 6: A type symbol α is defined by a set of type

rules T if there exists a type rule α→ Υ ∈ T .
We make some assumptions:

1) The set of constant symbols are partitioned in non-empty
subsets, called base types. Some examples are, string,
int, and float.

2) The existence of µ, the universal type, and φ represent-
ing the empty type.

3) Each type symbol occurring in a set of type rules T is
either µ, φ, a base type symbol, or a type symbol defined
in T , and each type symbol defined in T has exactly one
defining rule in T .

Regular types are the class of types that can be defined by
finite sets of type rules. In XCentric a type rule α → {τ1,
. . . , τn} is represented by the declaration:

:-type α - - -> τ1; . . . ; τn.

B. Regular Expression Types

We now define regular expression types, which describe
sequences of values: a* (sequence of zero or more a’s), a+
(sequence of one or more a’s), a? (zero or one a), a|b (a or b)
and a,b (a followed by b).

We use a special kind of terms, here called sequence terms,
for implementing sequences.

Definition 7: A sequence term, t̄ is defined as follows:
• ε is a sequence term that represents the empty sequence.
• seq(t, s̄) is a sequence term if t is a term and s̄ is a

sequence term.
Definition 8: A sequence term in normal form is defined

as:
• ε is in normal form
• seq(t1, t2) is in normal form if t1 is not of the form

seq(t3, t4) and t2 is in normal form.
Example 6: Given the function symbol f , the variable X

and the constants a and b: seq(f(seq(a, ε)), seq(b, seq(X,
ε))) is a sequence term in normal form.
Sequence terms in normal form are the internal representa-
tion of sequences. For example, seq(a, seq(b, ε)) represents
sequence a,b. Note that for simplification purposes we drop
the seq operators for sequences of just one element.

We translate regular expression types to our internal se-
quence notation:

a∗ ⇒ α∗ → {ε, seq(a, α∗)}
a+ ⇒ α+ → {a, seq(a, α+)}
a? ⇒ α? → {ε, seq(a, ε)}
a|b ⇒ α| → {a, b}
a, b ⇒ αseq → {seq(a, seq(b, ε))}

Note that DTDs (Document Type Definition) [6] can be
trivially translated to regular expression types.

Example 7: The DTD,

<!ELEMENT a (#PCDATA)>
<!ELEMENT b (c +)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>
<!ELEMENT e (#PCDATA)>
<!ELEMENT l (a∗ , b , e ? , d)>

corresponds to the regular expression type:
α→ l(a(string)∗, b(c(string)+), e(string)?, d(string))

XCentric also has some XML Schema [20] support:

• Basic types: string, integer, float and boolean.
• Occurrences of sequences: τ{min,max}, meaning a se-

quence of elements of type τ where the length of the
sequence is between min and max. The example pre-
sented on the introduction, for the type of a sequence of
two or more authors, can be written as:

t y p e t y p e a −−−> a u t h o r (s t r i n g){2 , unbounded } .

Type type a represents every sequence of two or more
authors.

• Orderless sequences: {τ1&τ2& . . .&τn} meaning a se-
quence of elements of types τ1, τ2, . . . , τn that can occur
in any order. Consider the following type:

t y p e mix −−−> r e c ({name (s t r i n g) &
a d d r e s s (s t r i n g) &

e m a i l (s t r i n g) }) .

Type mix represents a record with three elements where
their order doesn’t matter.

Example 8: The following declaration introduces regular
expression types describing terms in a simple bibliographic
database:

:−t y p e b i b −−−> b i b (book +) .
:−t y p e book −−−> book (a u t h o r + , name) .
:−t y p e a u t h o r −−−> a u t h o r (s t r i n g) .
:−t y p e name −−−> name (s t r i n g) .

Example 9: The next type describes arbitrary sequences of
authors with at least two authors:

:−t y p e t y p e a −−−> (a u t h o r (s t r i n g) , a u t h o r (s t r i n g) ,
a u t h o r (s t r i n g) ∗) .

C. Types as programs

It is well known that regular types can be associated with
unary logic programs (see [21]–[24]). For every type symbol
α, there is a predicate definition α, such that α(t) is true if
and only if t is a term with type α (note that we are using
the type symbol as the predicate symbol). The universal type
µ is defined by the predicate µ(X) ←. For every other type
symbol, α, where α → Υ and τ ∈ Υ, the program has a
clause,

α(t)← β(X1) ∧ . . . ∧ β(Xn)

where t is τ with each type symbol βi replaced by a new
variable xi.

Example 10: Let αlist be a type symbol with type rule,
αlist → {nil, .(a, αlist)}. αlist can be associated with the
program:

αlist(nil) ←
αlist(.(a,X)) ← αlist(X)

Let α1, . . . , αn be type symbols defined by the rules in T .
ΦT denotes the program that defines µ (universal type) and
α1, . . . , αn.

Example 11: Let T = {α→ {ε, a}, β → {seq(α, γ)}, γ →
{ε, seq(d, γ)}} then, ΦT is:

α(ε) ←
α(a) ←
β(seq(X1, X2)) ← α(X1), γ(X2)
γ(ε) ←
γ(seq(d, X2)) ← γ(X2)

The type associated with a type symbol α in a set of type
rules T is the set of terms occurring as arguments to the unary
predicate α in the minimal model MΦT

(details about standard
semantics of logic programs can be found in [5]).

Definition 9: Let T be a set of type rules. The type associ-
ated with the pure type term τ with respect to T is given by
the following recursive definition (the first line applies when
τ is constant symbol c, the second one applies when τ is type
symbol α and the third one when τ is the pure type term
f(τ1, . . . , τn)):

[τ]T =

 {c}
{t|α(t) ∈MΦT

}
{f(t1, . . . , tn)|ti ∈ [τi]T , 1 ≤ i ≤ n}

Types that can be described by [τ]T , where T is a set of type
rules are called regular types. Informally, [τ]T is the set of
terms that can be derived from τ by repeated application of
rules in T .

Example 12: Let T be the set of type rules {α → {ε,
seq(a, α)}}, then [α]T = {ε, seq(a, ε), seq(a, seq(a, ε)), . . .}

V. INCOMPLETE TERMS IN DEPTH

We provide predicates that allow the programmer to find
a sequence of elements at arbitrary depth, to search for the
nth occurrence of a sequence of elements and to count the
number of occurrences of a sequence. The predicates are
deep/2, deepp/3 and deepc/3, respectively.

For example, consider we have an XML document bound
to the variable XML. Suppose we want to find a sequence of
elements between two elements named incision and store it in
variable Critical. We can do the query:

? - deep(<incision(),Critical,incision()>,XML).

If we want to find the text of the third occurrence of element
author in document Bib we can simply write:

? - deepp(author(T),Bib,3).

Here, variable T will be instantiated with the name of the
author. If we want to count the number of occurrences of
author elements in document Book we can simply do:

<r e p o r t>
<s e c t i o n>

< s e c t i o n t i t l e>P r o c e d u r e</ s e c t i o n t i t l e>
<s e c t i o n c o n t e n t>

The p a t i e n t was t a k e n t o t h e o p e r a t i n g room where
she was p l a c e d . . .

<a n e s t h e s i a>i n d u c e d under g e n e r a l a n e s t h e s i a .
</ a n e s t h e s i a>

<p rep>
<a c t i o n>A Foley c a t h e t e r was p l a c e d t o decompress
</ a c t i o n>
and t h e abdomen was t h e n prepped and d ra pe d i n
s t e r i l e f a s h i o n .

</ p r ep>
< i n c i s i o n>

A c u r v i l i n e a r i n c i s i o n was made
<geography>i n t h e m i d l i n e i m m e d i a t e l y

i n f r a u m b i l i c a l</ geography>
and t h e s u b c u t a n e o u s t i s s u e was d i v i d e d
<i n s t r u m e n t>u s i n g e l e c t r o c a u t e r y .</ i n s t r u m e n t>

</ i n c i s i o n>
The f a s c i a was i d e n t i f i e d and
<a c t i o n>#2 0 Maxon s t a y s u t u r e s were p l a c e d on

each s i d e o f t h e . . .
</ a c t i o n>
< i n c i s i o n>

The f a s c i a was d i v i d e d u s i n g
<i n s t r u m e n t>e l e c t r o c a u t e r y</ i n s t r u m e n t>
and t h e p e r i t o n e u m was e n t e r e d .

</ i n c i s i o n>
<o b s e r v a t i o n>

The s m a l l bowel was i d e n t i f i e d .
</ o b s e r v a t i o n>
and <a c t i o n> t h e <i n s t r u m e n t>

Hasson t r o c a r</ i n s t r u m e n t>
was p l a c e d under d i r e c t v i s u a l i z a t i o n .

</ a c t i o n>
<a c t i o n>

The <i n s t r u m e n t>t r o c a r</ i n s t r u m e n t>
was s e c u r e d t o t h e f a s c i a u s i n g t h e s t a y s u t u r e s .

</ a c t i o n>
</ s e c t i o n c o n t e n t>

</ s e c t i o n>
</ r e p o r t>

Fig. 1. report1.xml

? - deepc(author(),Book,C).

Note that all these predicates use sequences of elements.
Example 13: This example is based on a medical report

using the HL7 Patient Record Architecture and inspired by the
XQuery use cases available at [25]. Given report1.xml (Fig. 1),
find what happened between the first incision and the second
incision and write the result in a file named critical.xml:
t r a n s l a t e : −

xml2pro (’ r e p o r t 1 . xml ’ , Rep) ,
deep (< i n c i s i o n () , C r i t i c a l , i n c i s i o n ()> , Rep) ,
newdoc (c r i t i c a l s e q u e n c e , C r i t i c a l , FL) ,
pro2xml (FL , ’ c r i t i c a l . xml ’) .

The result is:
<c r i t i c a l s e q u e n c e>

The f a s c i a was i d e n t i f i e d and<a c t i o n> #2 0
Maxon s t a y s u t u r e s were p l a c e d on each s i d e
o f t h e m i d l i n e .</ a c t i o n>

</ c r i t i c a l s e q u e n c e>

VI. VERIFICATION FRAMEWORK

In this section we describe how the framework works. We
start by defining a set of rules as the constraints for a given
website. We introduce special builtins for dealing with errors

and finally show how the static-time verification and the run-
time consistency checking work. In this paper we focus on
syntactic validation, semantic verification and error correction.
The framework keeps the same tools for querying and inferring
data as presented in [1] and thus we address the interested
reader to [1] for further details on this specific topic. The
framework can be used as a tool for the webmaster which
feeds it with a set of pages to verify and correct them.

Another approach can be the use of the framework as an
auditing tool for everyone which publishes in the website. The
webmaster describes the rules and the system is used to verify
the content of any page prior to its publication online. The
page can only be published if the system confirms it is correct
accordingly to the imposed constraints.

A. Website Constraints

Definition 10: We define a set of website constraints (SWC)
as follows:

• A main rule whose input is a web page (WpageI)
and output is a new web page (WpageO) resulting
from the input page with the necessary changes in
order to obey to the set of constraints imposed:
swc(WpageI,WpageO) : −

r1(WpageI,Wpage1),
...,
rn(Wpagen−1,WpageO).

• Each rule ri imposes some action to be taken in case
some set of constraints is violated. We call these kind
of rule an action rule. The rule may change the original
document in order to make it obey to the constraint set.

Note that WpageI and WpageO is our internal representation
for XML data and thus WpageI resulted from translating a
web page from a URL or file by using one of the internal
builtins available in the framework.

We now define three new builtins associated with action
rules:

• delete(S, WpageI, WpageO,L) - deletes sequence S
which respect the constraints in L from WpageI resulting
in WpageO.

• replace(S1, S2,WpageI,WpageO,L) - replace se-
quence S1 which respect the constraints in L by sequence
S2 in WpageI by WpageO.

• failure(WebpageI, L, Mesg) - used when the error is
to serious to be automatically solved. Message Mesg is
shown when the constraints in L are violated.

Elements in L are, for example, tests in the values present in
the sequences in order to verify they follow a certain criteria.

Example 14: Given the following web page:
<t e a c h e r>

<name>Mario</ name>
<phone>+351 123456789</ phone>
<e m a i l>amf@ncc . up . p t</ e m a i l>
<t e a c h i n g>

<c o u r s e>Compi l e r s</ c o u r s e>
<c o u r s e>Theory o f Computa t ion</ c o u r s e>

</ t e a c h i n g>
</ t e a c h e r>

which is translated to the internal representation (stored in
variable W1):
t e a c h e r (

name (‘ ‘ Mario ’ ’) ,
phone (‘ ‘+351 123456789 ’ ’) ,
e m a i l (‘ ‘ amf@ncc . up . p t ’ ’) ,
t e a c h i n g (c o u r s e (‘ ‘ Compi l e r s ’ ’))

c o u r s e (‘ ‘ Theory o f Computa t ion ’ ’))) .

If we apply:
delete(< phone(), email() >,W1,W2, []).

W1 will be translated to:
t e a c h e r (

name (‘ ‘ Mario ’ ’) ,
t e a c h i n g (c o u r s e (‘ ‘ Compi l e r s ’ ’) ,

c o u r s e (‘ ‘ Theory o f Computa t ion ’ ’))) .

where the phone and email tags have been deleted. If for
example we want to delete all the names of course which
do not occur in our database in variable DB, one can do:
delete(course(N),W1,W2, [not(deep(course(N), DB))]).

If for example “Theory of Computation” does not occur in
DB the result is:
t e a c h e r (

name (‘ ‘ Mario ’ ’) ,
t e a c h i n g (c o u r s e (‘ ‘ Compi l e r s ’ ’))) .

Example 15: Given the following XML file for a catalog
of books translated to a term in W1:
<c a t a l o g>

. . .
<book number=” 500 ”>

<name>
H a s k e l l : The C r a f t o f F u n c t i o n a l Programming
(2 nd E d i t i o n)
</ name>
<a u t h o r>Simon Thompson</ a u t h o r>
<p r i c e>41</ p r i c e>
<y e a r>1999</ y e a r>

</ book>
<book number=” 501 ”>

<name>
Data on t h e Web

</ name>
<a u t h o r>Serge A b i t e b o u l</ a u t h o r>
<a u t h o r>P e t e r Buneman</ a u t h o r>
<a u t h o r>Dan Suc iu</ a u t h o r>

<p r i c e>n u l l</ p r i c e>
<y e a r>2000</ y e a r>

</ book>
. . .

</ c a t a l o g>

to replace all the prices with non-numeric values by 0 one can
do:
replace(price(X), price(0),W1,W2, [not(number(X))]).

To reduce 10% to all the prices higher than 45 one can do:
replace(price(X), price(Y),W1,W2, [X > 45, Y =

X − (X ∗ 0.1)]).
We now proceed with an example of running sets of website
constraints.

Example 16: Let’s use again a teacher’s webpage which is
valid with respect to the following DTD:
<!ELEMENT t e a c h e r (name , phone , e m a i l ∗ , r e s e a r c h ,

t e a c h i n g , c u r r i c u l u m)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT e m a i l (#PCDATA)>
<!ELEMENT r e s e a r c h (pub∗)>
<!ELEMENT pub (a u t h o r + , t i t l e , b o o k t i t l e , volume ? ,

y e a r ? , p u b l i s h e r ?)>
<!ELEMENT a u t h o r (#PCDATA)>
<!ELEMENT t i t l e (#PCDATA)>
<!ELEMENT b o o k t i t l e (#PCDATA)>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT y e a r (#PCDATA)>
<!ELEMENT p u b l i s h e r (#PCDATA)>
<!ELEMENT t e a c h i n g (c o u r s e +)>
<!ELEMENT c o u r s e (#PCDATA)>
<!ELEMENT c u r r i c u l u m (#PCDATA)>

This DTD can be trivially translated to the following regular
expression type (and included in the program file):

:−t y p e t e a c h e r −−−> t e a c h e r (name (s t r i n g) , phone (s t r i n g) ,
e m a i l (s t r i n g)∗ , r e s e a r c h ,

t e a c h i n g , c u r r i c u l u m) .
:−t y p e name −−−> name (s t r i n g) .
:−t y p e phone −−−> phone (s t r i n g) .
:−t y p e e m a i l −−−> e m a i l (s t r i n g) .
:−t y p e r e s e a r c h −−−> r e s e a r c h (pub ∗) .
:−t y p e pub −−−> pub (a u t h o r + , t i t l e , b o o k t i t l e ,

volume ? , y e a r ? , p u b l i s h e r ?) .
:−t y p e a u t h o r −−−> a u t h o r (s t r i n g) .
:−t y p e t i t l e −−−> t i t l e (s t r i n g) .
:−t y p e b o o k t i t l e −−−> b o o k t i t l e (s t r i n g) .
:−t y p e volume −−−> volume (s t r i n g) .
:−t y p e y e a r −−−> y e a r (s t r i n g) .
:−t y p e p u b l i s h e r −−−> p u b l i s h e r (s t r i n g) .
:−t y p e t e a c h i n g −−−> t e a c h i n g (c o u r s e +) .
:−t y p e c o u r s e −−−> c o u r s e (s t r i n g) .
:−t y p e c u r r i c u l u m −−−> c u r r i c u l u m (s t r i n g) .

We want to verify the following constraints:

• The teacher must have a non empty curriculum tag in his
homepage and this tag should include a small text were
the teacher resumes his curriculum: he should include a
reference to the degree and the year he obtained it. In
case this rule is not obeyed, a small warning text should
appear in the curriculum tag.

• A well-formed email address should be available, oth-
erwise the verification should be canceled and the error
reported.

• All the publications the teacher has that don’t appear in
the central repository should be deleted.

We can build the program presented in Fig. 2 to verify the
above constraints over the teacher’s webpage. It works as
follows: the url is retrieved and stored in variable WpageI
using builtin xml2pro. Then, bind type(Page,Type) binds the
webpage Page to the previous declared type Type. Without
bind type the compiler ignores the type information and thus
would not be possible to find errors at compile time. The rules
are described in the remaining lines of the program.

This example and many others are available at:

http://www.ncc.up.pt/∼jcoelho/veriflog/

B. Static verification of action rules

Static verification is made by static analysis of action rules.
These rules possibly change the document by means of a
delete or replace, thus having type information describing the
document structure, it is possible to verify the validity of these
transformations.

Definition 11: We define the type of a term representing an
XML document as:

s t a r t : −
xml2pro (’ . / examples / amf . xml ’ , Tea) ,
xml2pro (’ . / examples / pubs . xml ’ , Pub) ,
a s s e r t (pubs (Pub)) ,
b i n d t y p e (Tea , t e a c h e r) ,
swc (Tea , Tea2) ,
pro2xml (Tea2 , ’ t e a c h e r c h e c k e d . xml ’) ,
r e t r a c t (pubs ()) .

swc (In , Out) :−
r1 (In , Out1) ,
r2 (Out1 , Out2) ,
r3 (Out2 , Out) .

r1 (A, B) :−
r e p l a c e (c u r r i c u l u m (X) ,

c u r r i c u l u m (’ Degree and y e a r m i s s i n g ! ’) ,A, B ,
[deep (c u r r i c u l u m (X) ,A) ,

n o t (s u b s t r i n g (X, ’ d e g r e e ’)) ,
n o t (s u b s t r i n g (X, ’ y e a r ’))]) .

r 2 (A,A) :−
f a i l u r e (A , [deep (e m a i l (X) ,A) ,

n o t (s u b s t r i n g (X, ’@ncc . up . p t ’))] ,
’ V a l i d e m a i l n o t found ! ’) .

r3 (A, B) :−
d e l e t e (pub (X) ,A, B , [deep (pub (X) ,A) ,

X =∗= < , t i t l e (T) , > ,
pubs (Pub) ,
n o t (deep (t i t l e (T) , Pub))]) .

Fig. 2. Teacher’s home page constraints

type(X) = pcdata, if X is not of de form
f(s1, . . . , sn) where n ≥ 1

type(f(s1, . . . , sn)) = f(type(s1), . . . , type(sn))
Example 17: Given the following term:

teacher(name(”Jorge”), phone(”123456789”)),
then,
type(teacher(name(”Jorge”), phone(”123456789”))) =

teacher(name(pcdata), email(pcdata)),
During compile time the type verification procedure follows
these steps:

• A type α is associated with document XML by a
bind type instruction.

• For any instruction of the form delete(s1, XML,
XML2, L):

– Verify if s1∗, s1? or s1{0,Max} is found in the DTD,
in case it isn’t, report an error.

– If L 6= [] and s1+ or s1N,Max
where N > 0

was found then report a warning saying that if
the constraints in L covers all the elements in the
document, then XML2 will be an invalid document.

• For any instruction of the form replace(s1, s2, XML,
XML2, L), if type(s1) 6= type(s2):

– If s1 and s2 appear as a sequence in the type:
∗ Report an error in cases were s1 and s2 appear

as:
· s1, s2 (because s1 and s2 must occur exactly

once).
· s1, s2∗; s1, s2+; s1, s2?; s1, s2{N′,M′} , and L =

[] (because s1 must occur once).

· s1+, s2; s1∗, s2; s1?, s2; s1{N,M} , s2;
s1{N,M} , s2?, if N 6= 0 and M 6= 1 (because
only one s2 is allowed).
· s1+, s2+; s1+, s2∗; s1+, s2{N,M} ; s1+, s2?,

and L = [], (because at least one s1 must occur).
· s1{N,M} , s2+; s1{N,M} , s2{N′,M′} ;s1{N,M} , s2∗:

if N 6= 0 and L = [] (because s1 must occur N
times at least).

∗ Report a warning in cases were s1 and s2 occur
as:
· s1, s2?; s1{0,1} , s2?: s2 must not occur in the

document.
· s1+, s2+; s1+, s2∗ and L 6= [] the constraints

in L cannot replace all s′1s.
· s1+, s2?; s1∗, s2? and L 6= [] at most one s1

can be translated and s2 must not occur.
· s1∗, s2{N′,M′} ; s1?, s2{N′,M′} , the number of s′1s

plus the number of s′2s may not exceed M ′.
· s1?, s2?: s2 must not occur.
· s1{N,M} , s2+; s1{N,M} , s2∗, and L 6= [] the

number of s′1s which remain not replaced must
be higher than N .

– If s1 and s2 occur as a disjunction (|) in the type:
∗ Report an error in cases were s1 and s2 occur as:
· s1?|s2{N′,M′} and N ′ ≥ 2 (because only one s1

will be translated).
· s1{N,M} |s2; s1{N,M} |s2?, and N ′ ≥ 1 (because

only one s2 is allowed).
· s1{N,M} , s2{N′,M′} , if [N,M] ∩ [N ′,M ′] = ∅

(because they will never have a compatible
number of occurences).

∗ Report a warning in cases were s1 and s2 occur
as:
· s1 + |s2; s1 + |s2?; s1 ∗ |s2; s1 ∗ |s2?: because

only one s2 is allowed.
· s1 + |s2{N,M} ; s1 ∗ |s2{N,M} , because N ≤

number of s′1s ≤M .
· s1{0,M} |s2+, at least one s1 must be translated.
· s1{N,M} |s2{N′,M′} , [N,M] ∩ [N ′,M ′] 6= ∅ be-

cause N ′ ≤ number of s′1s ≤M ′.
Example 18: Using the same scenario as the one presented

in example 16. Errors are reported if for example we try to
apply some of the following actions:

• delete(name(X), XML1, XML2, []) since name is a
tag that cannot be deleted from the document.

• replace(phone(P), email(”test@testmail.com”),
XML1, XML2, []) since althought we can have several
emails, the phone element is mandatory.

Warnings are reported if we try the following action:
• delete(author(A), XML1, XML2, [internal database

(DB), not(DB = ∗ = db(,name(A),))]) here the goal
is to delete all the authors whose name does not appear
in another XML file in variable DB. A warning is
produced warning that, if all the authors for a given

record are covered, then the XML produced will be
invalid.

Note that this verification were all made at compile time.

C. Run time consistency checking
Types declared for the documents are transformed in pro-

grams as explained in section IV-C and used for checking
the content of the document given as input and the document
generated as output.

Create a new program from the original SWC which, after
applying the verification, is executed in order to find any
possible inconsistency in the set of constraints.

Given the following SWC:
swc (WpageI , WpageO) :−

r 1 (WpageI , Wpage1) ,
. . .
r n (Wpage {n−1},WpageO) .

r 1 (W1,W2) : − . . .
. . .
r n (W1,W2) : − . . .

a new program is generated where the body of each rule is
replaced by the constraints found inside each action and an
error message. Then, after applying the original SWC, check
the output XML file using this new program. This way it is
possible to detect inconsistency errors between the rules.

Example 19: Using the scenario presented in example 16,
the generated program for consistency errors detection is:
v e r i f y (WpageO) :−

r1 (WpageO) ,
r2 (WpageO) ,
r3 (WpageO) .

r1 (W) :−
deep (c u r r i c u l u m (X) ,W) ,
n o t (s u b s t r i n g (X, ’ d e g r e e ’)) ,
n o t (s u b s t r i n g (X, ’ y e a r ’)) ,
w r i t e (” Rule 1 f a i l s ! ”) , ! .

r 1 () .

r2 (W) :−
deep (e m a i l (X) ,W) ,
n o t (s u b s t r i n g (X, ’@ncc . up . p t ’)) ,
w r i t e (” Rule 2 f a i l s ! ”) , ! .

r 2 () .

r3 (W) :−
deep (pub (X) ,W) ,
X =∗= < , t i t l e (T) , > ,
pubs (Pub) ,
n o t (deep (t i t l e (T) , Pub)) ,
w r i t e (” Rule 3 f a i l s ! ”) , ! .

r 3 () .

Example 20: Suppose we add to the teacher’s SWC pre-
sented in example 16 the following constraint:
r4 (W1,W2) :−

d e l e t e (e m a i l (E) ,W1,W2 , []) .

Although not detected at compile time, since not having an
email is valid accordingly to the DTD, this error would be
detected when checking the rules at run-time by:
r2 (W) :−

deep (e m a i l (X) ,W) ,
n o t (s u b s t r i n g (X, ’@ncc . up . p t ’)) ,
w r i t e (” Rule 2 f a i l s ! ”) , ! , f a i l .

And thus rule number 4 made an inconsistent change in
relation to rule number 2.
Note that the output XML document is again checked against
the declared types. This way we can find errors from actions
which depend on values.

VII. CONCLUSION

In this paper we present a framework for website verification
at compile-time and run-time using type verification of rules
applicable to documents. Errors can be automatically solved
by introducing actions that are executed whenever an error is
found. Errors within the set of web constraints imposed by the
system administrator are detected by type checking at compile
time complemented with further type checking at run time and
consistency analysis to detect constraints whose action may
violate other constraints. XML-based websites although not
yet widespread, will probably become more and more popular
in the next years thus increasing the utility of a tools such as
the one presented in this paper.

ACKNOWLEDGMENT

Research presented in this paper has been partially sup-
ported by funds granted to LIACC through the Programa
de Financiamento Plurianual, Fundação para a Ciência e
Tecnologia and Programa POSI.

REFERENCES

[1] J. Coelho and M. Florido, “VeriFLog: Constraint Logic Programming
Applied to Verification of Website Content,” in Int. Workshop XML
Research and Applications (XRA’06), ser. LNCS, vol. 3842. Springer-
Verlag, 2006.

[2] ——, “Clp(flex): Constraint logic programming applied to xml pro-
cessing,” in Ontologies, Databases and Applications of SEmantics
(ODBASE), ser. LNCS, vol. 3291. Springer Verlag, 2004.

[3] ——, “Unification with flexible arity symbols: a typed approach,” in
Informal proceedings of the 20th International Workshop on Unification
(UNIF’06), Seattle, USA, 2006.

[4] S. Prolog, http://www.swi-prolog.org/.
[5] J. W. Lloyd, Foundations of Logic Programming, 2nd ed. Springer-

Verlag, 1987.
[6] E. M. L. (XML), http://www.w3.org/XML/, 2003.
[7] M. Alpuente, D. Ballis, and M. Falaschi, “A Rewriting-based Framework

for Web Sites Verification,” in Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2005, pp. 41–61.

[8] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs.” in FOCS, 1995, pp. 453–462.

[9] M. Alpuente, D. Ballis, M. Falaschi, and D. Romero, “A semi-automatic
methodology for repairing faulty web sites,” in WWV, M. Alpuente,
S. Escobar, and M. Falaschi, Eds. Departamento de Sistemas Infor-
maticos y Computacion, Universidad Politecnica de Valencia, 2005.

[10] E. Mayol and E. Teniente, “A survey of current methods for integrity
constraint maintenance and view updating,” in ER ’99: Proceedings of
the Workshops on Evolution and Change in Data Management, Reverse
Engineering in Information Systems, and the World Wide Web and
Conceptual Modeling. London, UK: Springer-Verlag, 1999, pp. 62–
73.

[11] T. Despeyroux, “Practical semantic analysis of web sites and docu-
ments.” in WWW, S. I. Feldman, M. Uretsky, M. Najork, and C. E.
Wills, Eds. ACM, 2004, pp. 685–693.

[12] F. van Harmelen and J. van der Meer, “Webmaster: Knowledge-based
verification of web-pages.” in IEA/AIE, ser. Lecture Notes in Computer
Science, I. F. Imam, Y. Kodratoff, A. El-Dessouki, and M. Ali, Eds.,
vol. 1611. Springer, 1999, pp. 256–265.

[13] T. Kutsia, “Context sequence matching for xml,” in Proceedings of the
1th Int. Workshop on Automated Specification and Verification of Web
Sites, 2005.

[14] F. Bry and S. Schaffert, “Towards a Declarative Query and Transforma-
tion Language for XML and Semistructured Data: Simulation Unifica-
tion,” in International Conference on Logic Programming (ICLP), ser.
LNCS, vol. 2401, 2002.

[15] J. Coelho and M. Florido, “CLP(Flex): Constraint logic programming
applied to XML processing,” DCC-FC, LIACC. University of Porto,
(available from www.ncc.up.pt/˜jcoelho/clpflex.pdf), Tech. Rep. 06, July
2004.

[16] J. Jaffar and M. J. Maher, “Constraint logic programming: A survey,”
Journal of Logic Programming, vol. 19/20, pp. 503–581, 1994.

[17] T. Kutsia, “Unification with sequence variables and flexible arity
symbols and its extension with pattern-terms.” in Joint AISC’2002 -
Calculemus’2002 conference, ser. LNAI, 2002.

[18] J. Coelho and M. Florido, “Xcentric: A logic programming language
for xml,” DCC-FC, LIACC. University of Porto, (available from
http://www.ncc.up.pt/xcentric/xcentric.pdf), Technical Report, 2006.

[19] P. Dart and J. Zobel, “A regular type language for logic programs,” in
Types in Logic Programming, F. Pfenning, Ed. The MIT Press, 1992.

[20] X. Schema, http://www.w3.org/XML/Schema/, 2000.
[21] J. Zobel, “Derivation of polymorphic types for prolog programs,” in

Proc. of the 1987 International Conference on Logic Programming.
MIT Press, 1987.

[22] E. Yardeni and E. Shapiro, “A type system for logic programs,” in The
Journal of Logic Programming, 1990.

[23] M. Florido and L. Damas, “Types as theories,” in Proc. of post-
conference workshop on Proofs and Types, Joint International Confer-
ence and Symposium on Logic Programming, 1992.

[24] T. W. Fruhwirth, E. Y. Shapiro, M. Y. Vardi, and E. Yardeni, “Logic
programs as types for logic programs,” in LICS, 1991, pp. 300–309.

[25] XQuery Use Cases, http://www.w3.org/TR/xquery-use-cases/, 2005.

