
HAL Id: hal-01125688
https://hal.science/hal-01125688

Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes

Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake

To cite this version:
Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake. Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes. ICIW’09, 4th IEEE International Conference on Internet and
Web Applications and Services, Jan 2009, Venise, Italy. pp.474-480, �10.1109/ICIW.2009.76�. �hal-
01125688�

https://hal.science/hal-01125688
https://hal.archives-ouvertes.fr

Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes

Nasreddine Aoumeur Kamel Barkaoui1 Gunter Saake
ITI, FIN, Otto-von-Guericke-Universität Magdeburg

Business Information group, D–39016 Magdeburg, Germany
E-mail: {aoumeur | saake}@iti.cs.uni-magdeburg.de

1CEDRIC-CNAM, 292 Saint Martin, Paris - FRANCE barkaoui@cnam.fr

ABSTRACT
Today’s cross-organizations are increasingly coordinating their ca-
pabilities in the quest of dynamically adaptable and thus highly com-
petitive realistic services. Unfortunately, challengingproblems are
still to circumvent towards such objective, including the inherent
rigidity, knowledge-scarce and lack of dependability of most Web-
Services standards (e.g. WSDL, BPEL and WS-CDL). We are con-
tributing by putting forwards an integrated model-driven approach,
with as main conceptual / deployment milestones and phases the fol-
lowings. Firstly, at the domain-level, we are bringing profiled UML
use-cases and class-diagrams to intuitively capture the structuring
of service-driven applications. Secondly, to cope with anyrequired
knowledge and its agility, we are governing any business activity
with event-driven business rules. Thirdly, towards verified concep-
tualization, we are shifting theseUML-BRules-centric service re-
quirements towards a tailored rule-centric service-oriented Petri nets
formalism, we endow with a truly-distributed operational semantics
based on rewriting logic. Fourthly, capitalizing on aspect-oriented
mechanisms, we progressively upgrade that service formalism with
an adaptability aspectual-level, where governing business rules can
be dynamically adapted and (un)woven. Finally, towards a compli-
ant deployment, we are developing an aspectual .Net framework for
efficiently adapting Web-Services. A typical travel-agency is taken
for proof of concepts

Categories and Subject Descriptors
H.4.m [Information Systems]: Web-Services; D.2 [Software]: Soft-
ware Engineering, Adaptability

Keywords
Dynamic Adaptability, UML, Business rules, Service-oriented Petri
nets, Rewriting logic, Aspectual .Net WS

1. MOTIVATION
The emerging of the service computing paradigm (SOC) is currently
establishing a new organizational and business realities.Indeed,
SOC is shifting them from traditional centralized computation-centric
standing-alone companies to loosely-coupled truly-distributed interaction-
centric massive cross-organizations. At the technological level, Web-
Services are offering best networking platform-independent infras-
tructure for externally cooperating cross-organizational business pro-
cesses [1]. Web-services are the explicit computational units, which
Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

can through their interfaces be universally described, published and
more importantly (dynamically) composed using XML-based stan-
dards (e.g. WSDL, UDDI, BPEL4WS, WS-CDL [13]).

As these standards are maturing, more and more world-wide cross-
organizations are opting for service-oriented solutions,and thereby
putting at proof all capabilities and limitations while building truly
realistic service-driven applications. Adaptability andcorrectness,
besides knowledge-intensivity seem to be the most challenging is-
sues to be addressed towards leveraging these standards towards re-
alistic services [14]. Firstly, whereas WSDL and BPEL are inher-
ently static and manual, in face of the harsh competition andmar-
ket globalization and volatility, realistic services are deemed to be
highly adaptive and evolving. Secondly, whereas most of potential
service-driven applications such as E-commerce and E-health and
E-banking are becoming mission-critical, BPEL and the others stan-
dards are only ad-hocly built without any means to formally validate
them. Last but least, whereas most of potential service-driven appli-
cations are knowledge-intensive (i.e. geared by business rules [23]
and policies), in BPEL only basic variables and primitive conditions
can be manipulating in static manner.

We aim thus join the tremendous efforts being invested towards
leveraging the service paradigm towards coping with highlyagile
and knowledge-intensive service-driven applications in stepwise and
rigorous model-driven manner. Broadly speaking, the approach we
are proposing enjoys the following capabilities, steps andcharacter-
istics:

• First, we are proposing to capture initial requirements through
UML diagrams [22, 7] and event-driven business rules [27].
More specifically, we propose profiled Use-cases and class-
diagrams to informally and diagrammatically express struc-
tural features of any (composite) service requirements. To-
wards tackling adaptability and knowledge-intensiveness, we
propose event-driven ECA business rules for governing any
business activity taking part in a given composite service-oriented
business process.

• To stay compliant with UML-rule centric business descrip-
tion while enhancing it with formal underpinnings, visual val-
idation and high-distribution, we put forward a tailored rule-
driven service-oriented high-level Petri nets formalisms. The
framework, we refer to asRSRV-NETS is further endowed
with a true-concurrent operational semantics in terms of rewrit-
ing logic [20] and its efficient declarative MAUDE language
[10]. Smooth translating steps are introduced to the bring the
business-level to this conceptualization.

reify

reflect

reify

bu
si

ne
ss

 s
ta

ke
ho

ld
er

s
requirements

Organisations
 (service−driven)

C
us

to
m

er
s

re
qu

es
ts

 o
r

P
ro

vi
de

rs
 o

ffe
rs

Environment

Design−time (static) adaptation

− changing of business rules

− changing of context
− changing of services properties

− changing of services interactions

Runtime (dynamic) adaptation

of business rules

<<serviceN>>

Interaction1

<<service1>>

properties1

operations1

propertiesN

operationsN

. . . .

− Services Interaction functionalities

− Service functionalities

Business rules Description (OCL+ECA)

UML Description of services structures

. . .

.NET
 Aspectual Rules

mechanisms
Reflection (reification)

Meta−services behavior
framework

Evolutionary and
validation rules

Runtime adaptation of agile Web Services

. . . .

.

. . . .

.

Services behavior (as CSrv−Nets)

. . .

U
nw

eaving
W

eaving

 C
e
rtifie

d
 S

e
rv

ic
e
s

Services composition behavior (as interactive CCSrv−Nets)

C
o
m

p
lia

n
t .N

E
T

O
rc

he
st

ra
tio

n−
le

ve
l

C
ho

re
og

ra
ph

y−
le

ve
l

Figure 1: A disciplined approach for adaptive knoweldge-intensive service-driven business applications.

• A further step towards dynamic adaptability is proposed. It
consists in recapitulating on aspect-oriented mechanisms[?]
and meta-reflection [8] to extend that framework to cope with
runtime adaptability.

• As ultimate Web-Services-centric deployment we are devel-
oping, for this disciplined model-driven approach to adaptive
services, a strictly compliant aspectual .NET environment.

The rest of this paper is organized as follows. The second section
illustrates and summarizes the working architecture of theapproach
we are striving for. In the third section, using the travel agency as
proof of concept, we detail the semi-formal modelling of services us-
ing the profiled UML diagrams and the event-driven business rules.
In the third section, we present different steps for formally specify-
ing services withRSRV-NETS, from the previous semi-formal step.
The fourth section demonstrates how validation could be achieved
using rewriting logic as semantics forRSRV-NETS. In the fifth sec-
tion, we present how to progressively leverage that conceptual model
to cope with adaptability by recapitulating on aspect- and reflection-
mechanisms. In the sixth section, we summarize the main features of
the aspectual .NET based environment we developing for efficiently
implementing the approach using Web-Services technology.In the
seventh section we detail some related work on service adaptability.
This paper is finally wrapped up by some concluding remarks and
further required extensions of this work.

2. THE APPROACH WORKING ARCHITEC-
TURE: PHASES AND MILESTONES

As we motivated, the approach we are proposing for agile and
rule-centric service-driven complex applications is stepwise and model-
driven. As depicted in the Figure 1, the working general architec-

tural vision of this approach could summarized as being method-
ologically composed of four phases.

UML/Business-rules Requirements phase: In this preliminary phase,
the informal description of the composite service-driven ap-
plication at-hand is semi-formally and diagrammatically ex-
pressed in terms of UML Use-Cases and Class-diagrams. Be-
sides that, all related intra- and inter-organizational business
rules governing the behavioral features of different basicand
composite business activities are to be clearly described,fol-
lowing in particular the well-known Event-Condition-Action
(ECA) paradigm.

Concurrent services Nets specification / validation phase: Dur-
ing this decisive phase, should be precisely defined all func-
tionalities and behaviors of different service componentsand
their interactions (i.e. service interfaces, elementary and com-
posite services). Furthermore, we propose to formally vali-
date them against misconception, conceptual errors, etc. For
this crucial phase, we are thus proposing a tailored variant
of service-driven high-level Petri nets, that reflects all struc-
tural and behavioral features of elementary or composite rule-
centric services, such as distribution, persistency (statefull)
and conversation and complex structuring mechanisms (e.g.
classification, inheritance, aggregation). For validation pur-
pose, we are semantically interpreting this formalism using
rewriting logic.

Aspectual service Nets for runtime evolution : For the purpose of
dynamic adaptability of the governing rules of any activity,
we are extending the above service formalism with an explicit
adaptability-level. This adaptability-level is conceived by re-
capitulating on aspect-oriented mechanisms, where rules are

conceived as advices to be dynamically (un-)woven on respec-
tive transitions as business activities.

A Compliant .NET based environment : For the ultimate deploy-
ment phase, we are developing a strictly compliant environ-
ment that preserves all the capabilities of that conceptuallevel
yet exploit Web-Services technology and aspect-oriented mech-
anisms at the infrastructural-level

3. UML DIAGRAMS AND BUSINESS RULES
FOR SERVICE REQUIREMENTS

3.1 Travel Agency : Informal description
In the simplistic case, a travel agency sells flight tickets and re-

serves hotel rooms. In order to provide these services for its cus-
tomers, a travel agency needs to establish business links with other
enterprizes, i.e. airlines and hotels. In this context, a financial insti-
tution, i.e. a bank, is required to facilitate the financial transactions
between a customer and a business or between a business and an-
other business.

In order to make a trip, the customer accesses the Web serviceof a
travel agency that sells flight tickets and provides hotel rooms reser-
vations. The customer enters his requirements. The travel agency
receives the requirements of the customer and send them to different
airlines and hotels. The travel agency receives the possibilities from
these partners and chooses the best solutions for flights andhotels. It
sends them to the customer who chooses, reserves and pays forthis
(holiday) package. The payment is made with the support of a bank
usually using a credit card.

3.2 UML diagrams and Business Rules
To illustrate this simplified variant of vacation arrangement, Fig-

ure 2 presents its corresponding use-case diagram. This use-case
made the relationship between the activities to do and different ser-
vices with the travel-agency service coordinating these activities.

Travel−Agency−Service

Air−Lines

Hotel

Banking

Air_Lines_Services

Hotel_Service

Banking−Service

Travel Agency

Figure 2: A UML Use-Case for the Travel Agency Case Study.

The next Figure 3 goes in detail about the different classes (as
services) and their interactions to the travel-agency. We should point
out that detail about message parameters and other properties can be
kept semi-undefined as it should precisely defined in the nextformal
phase, depending on the business rules to put in place.

This case study is one of the most adopted and at the same time the
mostvolatile one. To stay competitive and attract more customers,

each travel agency has to offer the wider possible range of vaca-
tion packages depending of environmental situations (i.e.seasons,
events, years, short/long vacation, etc.) as well customers prefer-
ences and situations (i.e. individual/group, complete/partial pack-
ages, etc).

To specify such service-driven business applications, as any com-
plex reactive distributed system we have to cope with structural as
well as behavioural requirements. With the defacto standardiza-
tion of UML diagrams for structural aspects (i.e. class- andobject-
diagrams), we argue that UML class-diagrams with slight profiled
extensions allow capturing for each service, the operations and prop-
erties (attributes) structure. The challenging problem remain the
modelling of behavioural aspects, wherereactivity, distribution, com-
posabilityand more especiallyevolutionandadaptivityhas to be the
heart of any accepted conceptual model.

At early requirement stages,business rulesrepresent the best avail-
able modelling ingredients in organisations to cope with competi-
tiveness and evolution. Business rules reflect regulationsand con-
ditions for the functioning of any (inter-)organisation internally as
well as externally, and thus as regulations change/evolve the rules
change [27, 18]. Business rules are mostly expressed in terms of
Event-Conditions-Actions (ECA) forms.

The travel-agency functioning has to be governed by business
rules, and so each service composing this application (i.e.flight
service, hotel service, car rental, attraction service, etc.). Just for
illustration, a possible business rule regulating the airlines service
could be:
Rule (for flight) ”The fare for a return ticket for a family with
childrens is reduced to 30% for each child. When booking
before 3 weeks, further discounts of 10% is applied for the
adults.”.
With respect to business rules change, we distinguish between

adaptivity and evolution. Both areeffectsthat arecausedby changes
in the governing rules and environment. For adaptivity, thechanges
are usually made atruntimewhereas in evolution changes happen
over a long period of time and statically. For instance, we may
assume refund system to change according to changes in the en-
vironment (e.g. flight delay). In contrast to that, evolution is more
concerned with the introduction of new rules or the establishment of
new service operations (e.g. mobile-calling on flights)

Besides adaptivity and evolution, distribution remains one of the
essential feature of service-orientation computing. It includes in our
case the possibility of requesting vacation services from anywhere
as well as the possibility of serving simultaneously several requests
(i.e. true-concurrency). Related to distribution is the reactivity fea-
ture. Reactivity implies stateful modelling, where a giventransac-
tion could be long-running (especially when we require history). For
instance, a customer should have the opportunity to change at any
time some of information and requirements. To cope with that, ser-
vice states instances have to be explicitly represented in the model.
Last but not least, while it easy to conceive atdesign-timenew ser-
vices, it is more beneficial to adapt existing rules at runtime without
stopping the system or decreasing its degree of distribution.

For all these considerations (i.e. distribution, reactivity, runtime
adaptivity and design-time evolution), the next section presents the
approach we are working on that is based on a form of high-level
Petri nets. This formal conceptual model will be automatically de-
rived from UML-class diagrams and business rules.

B
oo

kR
oo

m
(R

oo
m

In
fo

s)

F
in

d_
ro

om
(R

oo
m

In
fo

s)

C
on

fir
m

R
oo

m
(R

oo
m

In
fo

s)

N
ot

ify
(R

oo
m

In
fo

s)

C
an

ce
l(R

oo
m

In
fo

s)

P
ay

R
oo

m
(R

oo
m

In
fo

s)

H
ot

el
S

ta
r

: [
1.

.6
]

H
ot

el
Lo

c
: A

dd
re

ss

H
ot

el
N

m
 :

S
tr

in
g

H
ot

el
−

S
er

vi
ce

−
In

te
rf

ac
e

<
<

S
er

vi
ce

 In
te

rf
ac

e>
>

<
<

S
er

vi
ce

 In
te

rf
ac

e>
>

B
an

k−
S

er
vi

ce
−

In
te

rf
ac

e

B
an

kN
am

e
: S

tr
in

g
C

ar
dI

nf
os

 :
R

ec
or

d(
H

ol
de

r,

N
um

be
r,

 E
xp

ire
D

at
e

C
ar

dV
al

id
(b

oo
le

an
).

.

D
eb

it_
A

m
ou

nt
(M

on
ey

,C
ar

dI
nf

os
)

C
re

di
t_

A
m

ou
nt

(M
on

ey
,C

ar
dI

nf
os

)
D

eb
ite

d_
A

m
ou

nt
(M

on
ey

,A
cc

ou
nt

)
C

re
di

te
d_

A
m

ou
nt

(M
on

ey
,A

cc
ou

nt
)

AgencyLoc : Address
AgencyNm : String

<<Composite Service>>

CustAdr : Address

CusName : String

CusAge : Date

CustOccupation : String

Requst_travel(Iterinary, Preferenc)

TravelCancel(OfferInterinary)

TravelPay(OfferInterinary)

Travel_Requsted(Iterinary, Budget)

Travel_Reserv(FoundInterinary)
Travel_Book(FoundInterinary)
Travel_Confirm(FoundInterinary)

Travel2Accept(OfferInterinary)

TravelAccepted(OfferInterinary)

TravelPay(OfferInterinary)
TravelCancel(Interinary)

<<
pa

rt
ic

ip
at

e>
>

AgencyLoc : Address

AirLineNm : String

<<Service Interface>>
Customer−Service−Interface
<<Service Interface>>

Airline−Service−Interface

Agency−Composite−Service

<<participate>>

FlightInfos : Record(DepartCity,

DestCity,Date, Time,Price,..
AvailableSeat : Hidden
ConfmPassg : [PassengerId,ResRef]

Flight_Requst(CustInfos, Flight−Infos)
Flight−Resrv(FlightDate)

Flight_book(FlightInfos, DateRes)

Flight_Pay(FlightInfo)
Flight_Cancel(FlightInfo)

<<
pa

rt
ic

ip
at

e>
>

<<participate>>

Figure 3: The Travel Agency with a SteroTyped UML Class-diagram for Services.

4. FORMAL MODELLING OF SERVICES
STRUCTURE: RSRV-NETS STATES

The first step towards formalizing service-driven applications con-
sists in precisely defining different states and messages accepted by
basic service interfaces as well as composite services. In the ap-
proach we are proposing, as we already emphasized we endeavor
benefiting from advanced structuring mechanisms of the object-orientation
(i.e. classification, inheritance, composition and aggregation) and
thereby also facilitate the derivation of formal service interface struc-
tures from UML class-diagrams and business rules we described in
the previous section. So, in our approach besides the description
of messages signatures (as most of XML-technology languages of-
fer), the precise description of servicestatesenables us afterwards to
specify thestatefullconcurrent behaviour of service interfaces: a ca-
pability completely missing in XML-based languages (e.g. WDSL,
BPEL, etc.) and only partially addressed in recent formalisms to ser-
vice specification (e.g. Petri Nets [19] Graph-Transformation [17],
Temporal Logic [26], Process Algebras[15].

More precisely, we propose to specify service states as algebraic
terms in the form of specifictuples. These service states as tuples al-
though inspired by the structure of the MAUDE language [21] object
states, they enjoin very specific properties reflecting at the most the
main characteristics of service interfaces. More precisely, the struc-
ture of service states we are following can be informally explained
as follows:

• Any service state is conceived as an algebraic term of the form

〈SvId | sv pr1 : vl1, ..., sv prp : vlp, svh1
(SvId), ..., svhq

(SvId)〉

where

− SvId is interpreted as an observed service state identity
taking its values from a given appropriate abstract data
type ADT (that we assume denoted asSTId);

− sv pr1,. . ., sv prk are the observed identifiers for ser-
vice state properties or attributes, which we assume hav-
ing at a given time as current values respectivelyvl1,. . .,vlk.
We assume both service states identifiers and values to
be algebraically defined (elsewhere), by denoting their
respective ADT asSPId andSP Value (as abbrevia-
tion forServicePropertiesIdentifiers andServiceProperties
Values).

− To enhance privacy, we allowhidingvalues of specific ser-
vice state properties when required. To declare such
Hidden service state properties we adopt the notation of
”attribute-as-functions”; so if for instance the value of
an attribute identifier, denoted bysvh1 , is to be hidden,
we denote it as a functionsvh1(SvId), with SvId the
corresponding service state identity.

• Messages involved in a given service interface are also spec-
ified as algebraic operations. Since messages act on service
state instances, they should include as parameters at leastone
state identifier. Moreover, in a given service interface some
messages may be declared to act only on states within this
interface; other messages may be exported to participate in
a composite service interaction (as a choreography) or take
part in other service interface description (as an orchestration),
and finally messages may be imported from other interfaces
to constraint the messages flow in such service interface (as

allowed by BPEL orchestration). In other words, in a given
service interface three categories of messages may be distin-
guished

Local messages: These are messages that are declared and
exclusively exchanged within a given service interface.
They either act for state changes in such service interface
and/or allow participating and controlling the flow (i.e.
the business process) of such service interface.

Imported : These messages are declared in other service in-
terfaces and used by the given service interface in the
message flow for orchestration purpose (as BPEL pro-
poses for instance).

Exported : These messages are declared within a given ser-
vice interface and used by other service interfaces or by
compose services.

To bring more understandability and expressivity in our service
interface formal structure, we thus explicitly distinguish between
these three types of messages. This allows us afterwards to ad-
dress their corresponding specific behaviour adequately. To formally
capture this intuitive description ofRSRV-NETS service interface
structure specification, first we define the notion of (RSRV-NETS-
)service state. Importantly to mention that this modellingis heavily
inspired by our previous work on component Petri nets for develop-
ing information systems [2, 4, 3, 5].

Definition 4.1 (SERVICE-state template)A service state is defined
as a pair(SvD ∪ STSv, {Op}STSv) with:

• SvD is a set of (service data) sorts with:
{Bool, ST Id, SPId, SP V alue} ⊂ SvD . To allow aggregate
service states, we allowSTId to be subsort ofSP V alue (i.e.
STId < SP V alue).

• STSv is a set of service state sorts (different fromSvD), which
we assume contains at least one sort (so we can speak about
statefull service interface).

• {Op}STSv is a set of service state operations indexed bySTId×

(SPId× SP V alue)+ × STSv. More precisely, with each ser-
vice state sort fromSTSv a service state operation is associated
reflecting the corresponding tuple of such service state sort.

Remark 4.1 This important concept of service state structure leads
to the concept ofRSRV-NETS template specification by extending it
with involved service message sorts and service operations.

Definition 4.2 (SERVICE-template specification)is defined as a pair
(SvD ∪ STSv ∪ MsgSv, {Op}STSv ∪ {Op}MsgSv) with:

• (SvD∪STSv, {Op}STSv) is a service state structure as defined
above.

• MsgSv is a set of ‘message generator’ sorts different fromSvD∪

STSv. We assume thatMsgSv is composed of three sets of mes-
sage sorts:{Mesl1 , ..., Mesll} for local message sorts,{Mesi1 , ..., Mesii}

for imported ones and{Mese1 , .., Mesee} for exported ones.

• The message operations,{Op}MsgSv is a set of message oper-
ations, that is, operations indexed bySTId+ × Sv∗

D × MsgSv.
Thus, with each message sortMesij from MsgSv a message
operation (denotedmsij) is associated.

4.1 Application to the Airlines Service
Following thisRSRV-NETS- service template, the corresponding
service structure corresponding to the flight service interface, for in-
stance, can be straightforwardly derived from the semi-formal UML
service-diagram description we presented in section 2. More pre-
cisely this description is as below, where first we have to specify all
imported abstract data types allowing to specify differentproperties
and parameters of service states and their messages. These data-
types should include, for instance, the city of departure and of des-
tination (we abbreviate byDest andDepart both of sort string).
Reservation and confirmation codes have to be specified (abbrevi-
ated byRsvRef andCfrmRef). Date of departure and of return,
the maximal cost not to go beyond as well as the fare of flight have
to be declared. Information about any customers (package),such
as names, addresses, ages, number of adults, child and infants we
gathered in one sort denotedCUST INFO. Such information and
more similar are crucial for expressing different businessrules later
in the service net behaviour. Additionally, to keep track ofdiffer-
ent passenger reservations and bookings we have previewed alist
composed of the customer ID and an identifier indicating whether
its reservation or booking (e.g. ”Rsv” for reservation and ”Bk” for
booking).

Service Flight-Service is
extending Service-state
protecting AirLine-Data.
subsort FlghtId AirLId< STId .
subsort Flght St < Srv State
subsort CHK SEAT < local Msg.
subsort FLGHT RQ FLGHT RSV FLGHT BK

FLGHT CL < imported Msg.
subsort FLGHT RQSTD FLGHT BKD FLGHT CLD

PAY FLGHT PAY PNLY < exported Msg.
(* AirLine State Properties *)

op 〈 | AirLId : , F lInf : , AvSt(F lighId),
RsvP : , CmfP : , DlRs : 〉 :

FlghtId string FLG INFOS nat PSSGS
PSSGS Date→ AirLine State.

/* Local messages */
op ChkSt : FlgId Bool → CHK SEAT .

/* Imported i.e. received messages */
op FlgRq : CustId CUST INFO AGCYId AirLId

RQFLG INFO → FLGHT RQ .
op FlgRs : CustId CUST INFO AGCYId AirLId

RQFLG INFO → FLGHT RSV .
op FlgBk : CustId RsvRef CUST INFO
BK INFO → FLGHT BK .

op FlgCl : CustId AGCYId ClRef → FLGHT CL .

/* Exported i.e. invoked messages */
op FlgRqsd : CustId FLG INFO AGCYId
AirLId RsvRef → FLGHT RQSTD .

op FlgBkd : CustId AGCYId AirLId
BkRef → FLGHT BKD .

op FlgCld : CustId AGCYId AirLId
BkRef → FLGHT CLD .

op Payflg : CustId AGCYId BkRef
money → PAY FLGHT .

op PayPnlt : CustId AGCYId BkRef
money → PAY PNLTY .

(* Variables to use in the service net *)
vars Dy : Date ; Gc:AGCYId .

endo.

Using this flight data level specification as well as the general
service state description and being bounded to the general form of
service structure, the corresponding service structure ofthe flight
interface could be presented as follows. That is, first for referring
service state flight sort we introduce a state sort we are denoting by
Flight St. Instances of flights are identified by the sortFlghtId.
Secondly, for each message declared in the corresponding UML
class-diagram, we associate a corresponding sort and an operation.
For instance, for the messageFlightRequest we declared the
sortFLGHT RQ and an (imported) operation we abbreviate byFlgRq,
and which should have parameters like information about thecus-
tomer, the agency ID, and clearly all detail about his/her flight itere-
niary and preferences. The same reasoning is to be applied toall
other messages. The service state is constructed by gathering in a
tuple-like all properties of the flight from the UML class-diagram
specification. The flight state is identified by the FlightId and is
composed of the Airline name, all information about the flight (e.g.
departureCity, DestinationCity, DepDate, DepTime, ArrDate, Ar-
rTime), the number of still available seats (Denoted byAvSeat(FlghtId),
the list of customers (IDs) reserved or booked.

5. BEHAVIOURAL MODELLING OF SER-
VICES: RSRV-NETS TRANSITIONS

In the previous section we presented how given a service structure
specification denoted byTSrv captures the structural aspects of a
given service interface. In this section we address the behavioral
concerns by incrementally constructing it from the servicestructure
specification and the business rules. We refer to such behaviour is-
sues as CSRV-NET as the behaviour is a form of high-level Petri
nets tailored to this service modelling and service structure specifi-
cation. A service specification as a whole is hence a pair composed
of ServSP =≺ TSrv,CSRV-NET≻.

5.1 Service Net structural Features
Informally speaking, the net to be associated with a given service

structure specification is constructed as follows.

• The places of the net are precisely defined by associating with
each service message generator one ‘message’ place.

• With each service state sort a ‘state’ place is associated.

• Transitions, which may include conditions, reflect the effect
of messages on service states to which they are addressed.

5.2 The flight RSRV-NETS service
With respect to the above flight service structure specification, the
application of these behavioral constructions result in the following
flight CSRV-NET behavioral interface model as depicted in Figure
4.
As defined above, for each service state and message sort a corre-
sponding (typed) place are conceived. That is, to the service state
sortFlght corresponds a service state place we denote byFlight-St.
This service place regroups thus all flight state instances in accor-
dance with the flight service structure specification. On theother
side, with each service message a corresponding message place is
constructed. So, for the three received (i.e. imported) messages
(from the agency composite service as will be detailed later) namely
Flight-Request,Flight-Booking,Flight-Cancel cor-
respond three associated sortmessagesplaces. Also, for the five in-

voked (exported) messages places, namelyFlight-Requestd,
Flight-Booked,Flight-Canceld,PayFlight andPayPenalty
correspond five messages. Besides that, in order to capture all dif-
ferent exceptions and errors related to different behaviour, we have
added another message place we denote byFlghtOP-Err. As we
will explained subsequently this place receive all attempts for vio-
lating the business rules related to different message functionalities.

5.3 Service Net Behaviour Using Business rules
The crucial contribution and added-value of our approach tothe

service paradigm concerns thus the concurrent behaviour that we
are able to assign to different messages and services states. Such
behavior will be clearly captured by differenttransitions, with their
inherent inscriptions and conditions. For that purpose, that is, for the
conception of different transitions, we mainly relies on the business
rulesgoverning at this stage the (intra-)organization at hand, which
the is flight company in our case.
More precisely, first we propose to follow the widely dominating
forms of business rules, that is, theEvent-Conditions-Actionspat-
tern. With respect to the formal definition ofRSRV-NETS, a tran-
sition in its general pattern allows interacting some triggering mes-
sages with service states, leading to the change of invoked states,
absorption of the triggering messages and apparition of newinvoked
messages; all this reaction is of course to be allowed under valid
conditions.

For this similarity, it becomes very straightforward how a given
ECA business rules can be translated into aRSRV-NETS transition
that correctly reflects its behaviour. That is:

event-part : It corresponds to different input messages inscriptions
involved in this event part of the rule.

condition-part : it has to be translated into a compatible transition
condition. Information related to service states have to trans-
lated into input arcs inscriptions from the service state place

action-part : It to expressed in terms of exported messages and
changes in the involved service states.

For the flight service interface, we have associated three transi-
tions (i.e.) to reflect the (business) semantics of the threereceived
messages, namely: The transitionTflgh rq for capturing the re-
quest activity with the offered flights (i.e. flightrequested) as output
result; the transitionTbkfl for capturing the booking activity and
finally the transitionTclfl to gouvern the cancel activity if any.

In the following, we detail the rigorous inscriptions of each of
these transitions with respect to very simple business rules (BR).
Afterwards, we hint how any complex business rule governingthese
transitions can be straightforwardly reflected into formalinscriptions
in theRSRV-NETS formalism.

5.3.1 The flightRSRV-NETS service behaviour
A typical business rule governing the behavior for flight-request

activity in this flight service could formulated as follows.
Rule (for flight) ”On a customer request for a flight, the of-
fered flights have toexactlymatch the departure and destina-
tion cities, the dates and the time of the customer wish. The
flight cost should not exceed what the customer tolerates and
finally if the customer is minor (less than eighteen years) a re-
duction of 2% is granted”.

E
xp

or
te

d
(in

vo
ke

d)
 m

es
sa

ge
s

. . .

. . .

. . .

. . .

FlgRq(Ann,...)

Flight_Cancel

FlgCl(anni,.....)

. . .

FlightOP_Err

FlgRqErr(Cs,...)

FlgBkErr(Cs,...)

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s
A

N
D

/O
R

 (
tr

ig
ge

rin
g)

 e
ve

nt
s

The Flight Service Interface Behavioural Specification

FlgBk(...)

Flight_Book

Flight_Requst

Tflight_rq

ChkSeat

. . .

Flight_St

. . .
ChSt(...)

. . .

FlgCl(Cs,...)

. . .

. . .

. . .

Flight_Bookd

. . .

Flight−Rsrvd

Flight_Refund

Flight_Pay

Flight_Cancld

FlgRfnd(Cs,...)

FlgPay(Cs,...)

PlgPnt(Cs,...)

Tflight_cl

Tflight_bk

FlgRsv(fl1,..)

Flgbkd(Cs,..)

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx)

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉

RsSt(Cs, F g)

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08)))
Else

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy)

F lgRsvErr(Cs,′ F lightRequestError′)

F lgBk(Cs, R, Dy, Py)

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1))
Else

F lgBkd(Cs, R.F r.To.Dt.Tm, Py)

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn)

F lgBkErr(Cm,′ F lightBookErr′)

F lgCl(Cs, R, Py, Dt)

〈F g|F gInf : [R.Dt],Rsv : Rs, Cmf : F m〉

((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = P y ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = P y ∗ 0.45))
Else

F lgRfnd(Cs, R, Rfnd)

F lgCld(Cs, R)

F lgClErr(Cs,′ F lgCancelErr′)

Figure 4: The Behavioural Specification of the flight Service

Following the above guidelines, from this informal rule description
the construction of the corresponding transition (Tflight rq) in-
scriptions could be summarized as follows:

1. To reflect the events part of this business rule, the transition
Tflgh rq must have one input inscription from the request
message placeFlight Requst and one from the state flight
placeFlight St. By respecting the template message struc-
ture and declared variables, the inscription of the requestmes-
sage place takes the form:
F lgRq(Cs.Ag,Fr.T o.Dt.Tm.Mx), that is, the parameters
are ”CusName, Age, From city, To city, Date, Time flight and
max cost to bear. The selected (abstract) flight should have
the same information (i.e. same variables). That is, the in-
scription from the flight state place could be:〈Fg|FgInf :

[R.Fr.To.Dt.Tm.Cx], AvSt(Fg),Rsv : Rs,RsD : Dy〉,
with R as the flight reference,Cx as the (normal) ticket price,
andDy the date limit for booking and lose the reservation.

2. To reflect the rule conditions, the transition condition should
have the form:AvSt(Fg) − 1 ≥ 0 ∧ Rs.[Cs.R] ∧ ((Cx ≤

Mx)∨((Ag ≤ 18)∧(Py = Cx∗08))). That is, the available
seats has to be decreased by one and be still positive; The
reserved list has to be updated to include the new customer
and the flight reference, the ticket priceCx has to be less than
customer max, and finally if the age is less than 18, the payed
amount will be just 80% percent of the price.

3. Finally, the output message to report back the founded reser-
vation with the flight references, the computed price and the
date limit.
This is reflected by the inscription:F lgRqd(Cs,Fg,R, Py,Dy)

In the same spirit, we can formulate any business rules for the
reservation as well as the cancelation activities and construct conse-
quently the associated net transitions (i.e.Tbkfl andTclfl). The
reservation business rule should reflect the respect of the reserva-
tion deadline (ie reservation information should be still in the cor-
responding flight state); otherwise a penalty is to be paid beside
the ticket price. The corresponding transition is easily conceived
as depicted. The cancelation after a booking incur the payment of a
penalty.

6. REWRITING-LOGIC SEMANTICS FOR
RSRV-NETS

Besides ordinary graphical animation, we endow theRSRV-NETS

approach with atrue-concurrentoperational semantics expressed in
rewriting logic [20]. That is, each transition is governed by a cor-
responding rewrite rule interpreted in a tailored instantiation of this
logic, we refer to asRSRV-NETS rewrite theory. The main ideas of
this interpretation can be sketched as follows:

• To bind each place markingmt with its corresponding place
p we capture them as a pair(p,mt). Different tokens within
mt are gathered using a multiset union operator we denote by
⊕.

• To representRSRV-NETSstates as multisets over different the
pairs(pi, mti), we introduce another multiset generated by a
union operator we denote by⊗. That is, aRSRV-NETS state
is described as a multiset of the form:(p1, mt1)⊗(p1, mt2)⊗

...;

• To exhibit a maximum of concurrency, we allow distributing
⊗ over⊕. That is, ifmt1 andmt2 are two marking parts in a
given placep as(p, mt1 ⊕ mt2), then we can always split it
to (p,mt1) ⊗ (p,mt2).

• To promote maximum of concurrency within a same service
state, we propose a deduction rule thatsplits / recombinesthe
service state at need and taking the form.

〈SvI | Sps1, Sps2〉 = 〈SvI | Sps1〉 ⊕ 〈SvI | Sps2〉

with Spsi as an abbreviation of”spri : vli, .., svhn(SvI)”

Example 6.1 By applying these general guidelines for deriving tran-
sition rewrite rules to the CustomerRSRV-NETS service interface
Net, we result in a rewriting logic-driven operational interpretation,
where rapid-prototypes are directly generated using theMAUDE en-
vironment [11]. Due space limitation, we restrict ourselves just to
depicting the transition rule associated withTflg rq1.
Tflg rq :(WCsRq, WCsRq(Cs, Am, Ad, Ac(Cs), Bk))⊗(WCsST,∼ 〈Cs|〉)

=⇒ (WCsST, 〈Cs|CsN : Nm, Adr : Ad, Bth : Bd, RqLs :

[Am.Now]〉)⊗ (WCsRqOk,WCsRqOK(Cs,Am, Ad, Ac(Cs), Bk))

if (Ag ≥ 21) ∧ (Am ≤ Max) ∧ (Ad ∈ List(Addss))

7. DYNAMIC ADAPTABILITY: ASPECTUAL
EXTENSION OF RSRV-NETS

After the stepwise specification and validation, the crucial further
phase is how to make suchRSRV-NETS interacting components dy-
namically evolving. In the following we summarize the different
steps that permit building on top of eachRSRV-NETS component /
interaction anaspectuallayer for coping with runtime adaptivity.
Meta-tokens as transition behavior: As anyRSRV-NETS transi-
tion is composed of an label, input/output arc inscriptionswith cor-
responding input/output places, and a condition inscription, we first
propose togatherthem as a tuple :

〈trans id: version | in-inscript., out-inscript., cond.

〉

Whereversion as natural number capturesdifferentbehavior ’ver-
sions’. With respect to the inter-component transition general pat-
tern depicted in Figure??, this tuple takes a more precise form:

〈t : i |(obj, ICobj)
ip

⊗
p=i1

(Mesp, ICp), (obj, CTobj)
hr

⊗
q=h1

(Mesq, ICq), TC(t)〉

Aspectual-level for Meta-tokens: To allow manipulating—namely
modifying, adding and/or deleting—such tuples (i.e. transitions’ be-
havior), we propose an appealing Petri-net-based proposalthat con-
sists in: (1) gathering such tuples into a corresponding place that
we refer to as ameta-place; (2) associating with this meta-place
three main message operations—namely addition of new behavior,
modification of an existing behavior, and deletion of a givenbe-
havior; and (3) as for usualRSRV-NETS components conceive for
each of these three message types three places and three respec-
tive meta-transitions for effectively and concurrently adapt-
ing any meta-transition as tuple.
Relating the two levels with read-arcs: Once building such aspectual-
level, to dynamically manipulating any transition dynamics the next
important steps are twofold. First, we slightly enrich (selected)RSRV-
NETS component transitions by justadding (meta-) variables (we
denote byIC , CT , TC) using a disjunction operator (e.g∨) to
each of their input/output and condition inscriptions. In term of

aspect-oriented concepts, these variables play thejointpointsfor dy-
namically capturing the advices [?]. Transitions with these (meta-
)variables are referred to asevolvingones. Secondly, in order to per-
mit weavingany new behavior (as meta-token) on the component-
level ”hooked” transitions, we propose torelate throughread-arcs
the meta-place with such respective non-instantiated transition.
Weaving meta-tokens as usual transitions: The dynamic weav-
ing consists inselectingfrom the meta-place a given meta-token as
adviceand transformingit to a usual (instantiated) transition rule.
Given such a non-instantiated meta-rewrite rule, we can then dynam-
ically selectany particular tuple-as-behavior from the meta-place
and derive a usual transition rule. This process is capturedby the
following inference rule.
With the existence of the following substitutions:

∃σi ∈ [Ts(pi)]⊕, .., ∃σj ∈ [Ts(qj)]⊕,∃σ ∈ [Tbool]

The following usual rewrite rule as the new (kth behavior for the
transitiont(−) is obtained.

〈t:k |[
k
⊗

i=1
(pi,σi(ICi))]|,|[

l
⊗

j=1
(qj ,σj(CTi))]|,σ(TCi)〉∈M(Pmeta)

tins(k):|[
k
⊗

i=1
(pi,σi(ICi))]| ⇒ [

l
⊗

j=1
(qj ,σj(CTi))]| if σ(TCi)

7.1 Illustration on the Airline conceptual Model
As we pointed out the first step towards endowing any knowledge

service-driven CSRV-NETS specification consists in preparing that
specification to become adaptable-aware. More precisely, for each
of the CSRV-NETS Airline transition, we have to slightly enrich its
(input/output) arc-inscription as well as the condition part with a
(meta-)variable using the operator⊲⊳.

The resulting of applying this enrichment is depicted in thelow-
level of Figure 5. First note that to ease the manipulation, instead of
the long name for places (and transitions) we are shorteningthem.
So, for instance, instead of the place nameFlight Book, we are
using justFlBk. Second, because we want that all activities of the
flight service to be adaptable, we are enriching all the threetransi-
tions; again here for sake of simplicity we are dropping theElse
part (i.e. the exception cases) in all these transitions. For instance,
for the transition

7.2 Building and Illustrating the CSRV-NETSAir-
line Adaptability-level

Towards effectively bringing this runtime knowledge-centric adapt-
ability conceptual machinery to the above Airline CSRV-NETSpre-
pared specification, let us first consider three simplified business
rules scenarios: Two (2) concerning the booking request business
activity (i.e. the transitionTflg rq) and one new business rule
dealing the cancelling activity (ie. the transitionTflg cl). Of
course as will understood from this progressive illustration, we able
to dynamically deal with any business rule and with respect to any
business activity as transition.

These three business rules could informally described as follows:

Flight to a specific destination and period (R1) : This rule says,
for instance, that any person travelling to Cairo or Istanbul
between June and August gets a discount of 50 percent of the
normal fare.

Flight to a specific destination for a group (R2) : Any two persons
travelling for instance to Las Vigas during the month of jan-
uary will automatically get 30 percent discount.

Seasonial Flight-cancel (R3) : This rule stipulates that during the
winter (Christmas time) season a refund will be correspond to
the VAT, whereas during the summer the refund concerns only
the half of the paid price.

The next step after this informal description of any business rule to
be dynamically integrated in the running Airline CSRV-NETSspec-
ification consists informally expressing it as a five-element tuple
with respect to the transition governing the associated business ac-
tivity. For illustration, we detail how to translate the second informal
rule to its precise five-element tuples description.
The business ruleR2 as meta-token.This rule concerns the flight
request and thus the transitionTflg rq. This systematically means
that it is the second version or alternative besides the default behav-
ior, and thus the counter for the version is to be set to two (2). In
contrast to the first rule, this rule is to be triggered by the simul-
taneous occurrence of two requests (i.e. from two persons).This
implies that from the input placeFlRq (flight-request) we require
two messages, one for instance fromCs1 and the second fromCs2
but the same other parameters (i.e. origin, destination, date, cost).
The third element in the tuple, that is, the output places andtheir
corresponding inscriptions remain unchanged as in the default; so
we abbreviate them using the symbol ”-”. The last element in the
tuple concerns the condition, which formulated as for the above rule.
We should just note that since two persons are at stake, the available
seat should greater than 2 and both the two customer Ids (i.e.Cs1
andCs2) have to be added to the reservation listRs. The flight
cost should of course be less than the max budget of any of the two
customers. All in all this tuple takes the following form:

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag,F r.To.Dt.Tm.Mx))

F lgRq(Cs2.Ag,F r.To.Dt.Tm.Mx)

(F lSt, 〈Fg|FgInf : [R.Fr.To.Dt.Tm.Cx],AvSt(Fg),

Rsv : Rs, DlRs : Dy〉) ,− , (AvSt(FG) ≥ 2)∧

Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (Fr = "Las Vigas")

∧("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)〉

As depicted in Figure 5, for simplicity we have skipped all the
places and associated transitions for manipulating the rules-as-tuples.
In other words, we just assume that the three above tuples have
been introduced using the (meta-)transitionTAdBh (for the second
rule TAdBh1 as it is the second version. The firing
of the (meta-)transitionTAdBh three times successively results in the
emerging of three tuples in the meta-placeBrs.Airline-Place
as depicted in the upper-layer of Figure 5. That is to say, three new
rules have dynamically introduced at that adaptability-level. To keep
the Figure manageable we have indeed skipped this self-explained
firing. Giving these rules, it is important to emphasize thatwe can
in the same spirit change and/or delete them through the two other
(meta-) transitions (and meta-places).

8. COMPLIANT ASPECTUAL .NET SERVICES
As we already emphasized, current Web-Services standards such
as WSDL and BPEL are purely process-centric, static and man-
ual. Consequently, directly adopting them for implementing the
proposed approach simply means loosing all the strengths wewere
striving for, namely adaptability, knowledge-intensiveness and sep-
aration of concerns among others.

To cope with these limitations, we are instead proposing the.Net
[6] environment and its recent extensions with aspect techniques.
The .NET framework [28] is Microsoft proprietary programming

. . . .

. . .

FlgBk(...)

ChkSeat

. . .

. . .
ChSt(...)

. . .

. . .

. . .

. . .

 A
da

pt
ab

ili
ty

−
le

ve
l f

or
 B

us
in

es
s

R
ul

es

FlSt

. . .

F
lB

k

. . .

FlgCl(anni,...)

. . .

FlgRq(Ann,..)

FlgRsv(fl1,..)

. . .

Flgbkd(Cs,..)

PlgPnt(Cs,...)

FlgPay(Cs,...)

FlgRfnd(Cs,..)

FlgCl(Cs,...)

The Flight Service Interface Behavioural Specification

F
lR

q
F

lC
l

F
lR

s
F

lB
kd

E
xp

or
te

d
(in

vo
ke

d)
 m

es
sa

ge
s

F
lP

ay
F

lR
fd

F
lc

ld

Tflg_rq

Tflg_bk

Tflg_cl

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s

The Adaptability−level for Business Rules for Airlines Runtime Manipulation

BRs.AirLine−Place

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx) ⊲⊳ ITr
2

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉 ⊲⊳ ITr
3

RsSt(Cs, F g) ⊲⊳ ITr
1

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08))) ⊲⊳ CDr

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy) ⊲⊳ OTr

F lgBk(Cs, R, Dy, Py) ⊲⊳ ITb
1

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉 ⊲⊳ ITb
2

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1)) ⊲⊳ CDb

F lgBkd(Cs, R.F r.To.Dt.Tm, Py) ⊲⊳ OTb
1

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) ⊲⊳ OTb
2

F lgCl(Cs, R, Py, Dt) ⊲⊳ ITc
1

〈F g|F gInf : [R.Dt], Rsv : Rs, Cmf : F m〉 ⊲⊳ ITc
2

((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = Py ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = Py ∗ 0.45)) ⊲⊳ CDb

F lgRfnd(Cs, R, Rfnd) ⊲⊳ OTc
1

〈Tflg rq : vr | (F lRq, IT r
3) (ChkS, IT r

1) (F lSt, IT r
3) , (F lRs, OT r

1) , CDr〉

〈Tflg bk : vb | (F lBk, IT b
1) (F lSt, IT b

2) , (F lBkd, OT r
1) (F lPay, OT r

2) , CDb〉

〈Tflg cl : vc | (F lCl, IT c
1) (F lSt, IT c

2) , (F lRfd, OT r
1) (F lcld, OT r

2) , CDc〉

F lgCld(Cs, R) ⊲⊳ OTc
2

〈Tflight rq : 1 |− ,− ,
(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (F r = "Cairo" ∨ "Instanbul”)

∧("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)〉

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, F r.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, F r.To.Dt.Tm.Mx))

(F lSt, 〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉) ,− ,

(AvSt(F G) ≥ 2) ∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (F r = "Las Vigas") ∧ ("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)

〈Tflg cl : 1 |− ,− ,(Cx ∈ F m)∧

("15 Dec." ≤ Dt ≤ "30 Dec.") ∧ (Rfnd := V at(Py)) ∨ ("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5))

Figure 5: The Runtime Adaptability of CSRV-NETSflight service

Figure 6: The main functionalities and IDE of the .NET Env.

development environment. It supports syntax for multiple program-
ming languages including C#, VB.NET, J# and C++ all generating
Common Intermediate Language (CIL) on compilation. The .NET
platform provides excellent support for software extensibility, adapt-
ability, maintainability and customizability through various tech-
niques including reflection, proxy, intermediate languageand on-fly
code generation.

By fully exploiting these .NET capabilities we are proposing a
service-oriented implementation of knowledge-intensiveagile busi-
ness process. This service-based implementation is inherently com-
pliant with the business-conceptual approach milestones,we pre-
sented and illustrated in the previous section. More precisely, the
main IDE of the .NET supporting tool we implemented inherently
reflects the generic pattern definition of service-orientedbusiness
process as discussed and depicted in Figure??.

As depicted in Figure 6, in this main IDE exposing the imple-
mented environment, first under the icon ”business process”,
reference and / or name for any business process can be introduced,
deleted or updated. The second icon ”business activity”
allows for manipulating the business activities composinga given
business process. As we motivated above, the partial-ordering of
such activities within a given business process are postponed to late
stages. For instance, depending on the business rules in place, gov-
erning a given business process, which are taken in charge thorough
the third, fourth and fifth icons, different semantically-driven pro-
filed ordering can be put into place. More precisely, the third icon
”Add/remove CS rule” allows for editing, creating or deleting any
rewriting (business) rule with respect to given business activity.

Any of the implemented rules can be instantiated as first-class in-
dependent entities using the fourth icon ”CS Rule Instantiation”. As
we are striving for dynamically changing any existing business rule,
we implemented a main functionality for doing so through theicon
”Adapt CS rule”. Finally, the last functionality allows fordefining a
concrete workflow (from the general business process) and execut-
ing any case.

After this global presentation of the environment functionalities
through its IDE, in the following we first bring more detail onhow
the event-driven business rules are defined, (design-time)updated,
instantiated and then performed. Afterwards, we present how aspect-
oriented mechanisms are exploited fordynamicallyadapting and ex-
tending any running business rule. Finally, the general architectural
design of the software environment is highlighted.

8.1 Mapping ofRSRV-NETS Formalism in .NET
To facilitate a smooth yet conservative mapping of the conceptual-

level to the .NET service-based implementation, we have been ben-
efiting from the extensive capabilities of the using Microsoft Work
Flow Foundation (WFF) [6, 28]. Indeed, WFF supports, among oth-
ers, the manipulation of (event-driven) business rule using a suit-
able XML-based templates. It further allows for defining, manag-
ing and executing stateful workflow. WFF consists thus of an activ-
ity model, workflow designer and XML-based rules engine. Rule-
Definitions tag is composed of multiple RuleSets. Each RuleSet is
associated to a given business activity. A RuleSet is a collection of
rules, where each RuleSet is composed of Rule. Rule containsthe
(Event-Conditions-Actions) specification as Then-Actions and thus
very close toRSRV-NETS rewriting rules.

Figure [?] recapitulates the main translating steps of theRSRV-
NETS event-driven rewriting rules from conceptual level towards
the developed .NET environment. Firstly, as it should be expected
different participating service states are internally implemented as
Web-Services. In this sense all exposed functionalities for a given
rule-driven interaction are to be efficiently implemented with service
components. The exposed functionalities, we require to achieve any
given interaction are of course captured as Web-Service interfaces
(described using WSDL). The second and main translation concerns
the mapping of the ECA-driven rewriting rules themselves. First, we
capture the rule itself as a (composite) Web-Service, whichcan be
mostly owned by any of the involved providers; though we alsocon-
sider the case of third-party ownership. For instance, in our applica-
tion the rules are normally owned by the bank; but they can be out-
sourced to a third-party for more optimal, universal and intelligent
management. Second, the ECA-rule for a given business activity are
conceived as a workflow. In this ECA-driven intra-activity work-
flow, instantiations of the rules can be performed. Since, each rule
is implemented as an aspect, the three elements (event-condition-
action) composing a rule can be woven on the basis of the instanti-
ated rules.

9. RELATED WORK
The potentials of business rules in Web-services have firstly been ex-
plored in [23]. A stepwise rule-driven methodology is proposed to
enhance the dynamic adaptability while composing Web-Services
using BPEL-like standards. The milestone consists in judiciously
classifying in a repository different business rules specific to Web

Figure 7: Rule-centric Instantiated Services execution

RSRV-NETSConceptual Level .NET mechanisms

RSRV-NETSService states Service components
RSRV-NETSstates structures WSDL-based interfaces
RSRV-NETS rewriting rules WFF-based workflow

Figure 8: Translating steps from RSRV-NETS semantics to the
compliant .NET env.

Services composition. Nevertheless, no formal verification / vali-
dation of the constructed composition is undertaken. Another pro-
posal [24] conceives business rules as Web-Services described us-
ing extensions to reactive RuleML, instead of the passive and static
WSDL. The approach is automated with supporting tool calledViDre.
Nonetheless, the approach does not tackle the conceptualization level
neither copes with dynamic composition of the (WS) rules to specific
business processactivities.

A. Charfi et al. [9] leverages BPEL-like with more agility and
modularity, by enhancing it with an extra aspectual level. The re-
sulting new language named AO4BPEL, allows thus externalizing
cross-cutting concerns such as security and data handling as advices.
AO4BPEL uses XML-Query languageXPath as its pointcuts lan-
guage. The approach to agile services introduced by Erradi et al.
[16] also adopts aspect-orientation, and is specifically devoted to
policies and QoS concerns. In the same line, A.Finkelstein et al.
proposed in [12] a generic aspect-oriented language, they applied for
dynamically weaving behavioral advices on BPEL code. Another
aspect-driven approach to Web-services appeared most recently in
[25]. In this approach the emphasis is on the adaptability ofbusiness
protocolswhile composing Web-services.

10. CONCLUSIONS

In this contribution we put forwards a model-driven stepwise ap-
proach for describing, specifying, validating, adapting and efficiently
deploying distributed rule-centric service-driven applications. More
precisely, the first phase consists in describing (semi-formally) struc-
tural and functional requirements using UML class-diagrams and
business rules in a form of ECA statements. The second phase
allows deriving from the first phase a more rigorous specification
using tailored High-level Petri nets for services. Validation using
graphical animation are possible, we support with formal validation
using true-concurrent rewriting logic. The third phases, recapitu-
lates on aspect mechanisms and reflection and propose to endow
any service Net with a rule-centric aspectual-level, whererules are
dynamically (un)woven on runningRSRV-NETS services. Finally,
we proposed a compliant aspectual .Net environment for supporting
the approach at the implementation-level using Web-Services tech-
nology.

For more consolidation we are carrying several non-trivialcase
studies including in particular a realistic variant of an E-commerce
case study. Second, we are developing extensive tools supporting,
we are integrating the MAUDE language for rapid-prototyping and
formal verification purposes.

11. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services.

Springer-Verlag, 2004.
[2] N. Aoumeur and G. Saake. A Component-Based Petri Net Model for

Specifying and Validating Cooperative Information Systems.Data and
Knowledge Engineering, 42(2):143–187, August 2002.

[3] N. Aoumeur and G. Saake. Integrating and Rapid-prototyping UML
Structural and Behavioural Diagrams Using Rewriting Logic. In A.B.
Pidduck, J. Mylopoulos, C.C. Woo, and M.T. Ozsu, editors,Proc. of
the 14th International Conference on Advanced InformationSystems
Engineering (CAiSE’02), volume 2348 ofLecture Notes in Computer
Science, pages 296–310, 2002.

[4] N. Aoumeur and G. Saake. Dynamically Evolving Concurrent

Information Systems: A Component-Based Petri Net Proposal. Data
and Knowledge Engineering, 50(2):117–173, 2004.

[5] N. Aoumeur, G. Saake, and K. Barkaoui. Incremental Specification
Validation and Runtime Adaptivity of Distributed Component
Information systems. In11th European Conference on Software
Maintenance and Reengineering (CSMR’07), pages 123–136. IEEE
Computer Society, 2007.

[6] T. Archer and A. Whitechapel.Inside Microsoft C#. Microsoft Press,
2002.

[7] G. Booch, I. Jacobson, and J. Rumbaugh, editors.Unified Modeling
Language, Notation Guide, Version 1.0. Addison-Wesley, 1998.

[8] Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Reflective
Analysis and Design for Adapting Object Run-time Behavior.In
Zohra Bellahsène, Dilip Patel, and Colette Rolland, editors,
Proceedings of the 8th International Conference on Object-Oriented
Information Systems (OOIS’02), Lecture Notes in Computer Science
2425, pages 242–254, Montpellier, France, on 2nd-5th of September
2002. Springer-Verlag. ISBN: 3-540-44087-9.

[9] A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Extension
to BPEL.World Wide Web Journal: Recent Advances on Web Services
(special issue), 10:309–344, 2007.

[10] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C.L: Talcott. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in
Rewriting Logic.Lecture Notes in Computer Science (springer), 4350,
2007.

[11] M. Clavel, F. Duran, S. Eker, J. Meseguer, and M. Stehr. Maude :
Specification and Programming in Rewriting Logic. Technical report,
SRI, Computer Science Laboratory, March 1999. URL :
http://maude.csl.sri.com.

[12] C. Courbis and A. Finkelstein. Towards aspect weaving applications.
In Proceedings of the 27th international conference on Software
engineering (ICSE ’05), pages 69–77. ACM Press, 2005.

[13] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and
S. Weerawarana. Business Process Execution Language for Web
Services (BPEL4WS 1.1).
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/, IBM report, 2004.

[14] C. Dorn and S. Dustdar. Sharing hierarchical context for mobile web
services.Distributed Parallel Databases, 21:85–111, 2007.

[15] Zi Duan, A. Bernstein, P. Lewis, and S. Lu. A Model for Abstract
Process Specification, Verification and Composition. InProceedings
of the 2nd international conference on Service oriented computing
(ICSOC’04), pages 232–241. ACM Press, 2004.

[16] A. Erradi and V. Maheshwari, P. Tosic. Policy-Driven Middleware for
Self-adaptation of Web Services Compositions. InACM/IFIP/USENIX
7th International Middleware Conference, volume 4290 ofLecture
Notes in Computer Science, pages 62–80. Springer, 2006.

[17] R. Heckel and L. Mariani. Automatic Conformance Testing of Web
Services. InProceedings FASE 2005, volume 3442, pages 34–48. lncs,
2005.

[18] P. Kardasis and P. Loucopoulos. Expressing and Organising Business
Rules.Information and Software Technology, 2004.

[19] A. Martens. Analyzing Web Service Based Business Processes. In
Proceedings FASE 2005, volume 3442, pages 19–33. lncs, 2005.

[20] J. Meseguer. Conditional rewriting logic as a unified model for
concurrency.Theoretical Computer Science, 96:73–155, 1992.

[21] J. Meseguer. A Logical Theory of Concurrent Objects andits
Realization in the Maude Language. In G. Agha, P. Wegner, and
A. Yonezawa, editors,Research Directions in Object-Based
Concurrency, pages 314–390. The MIT Press, 1993.

[22] OMG. UML 2.0: Superstructure Specification. Version 2.0,
formal/05-07-04. Technical report, omg.org, 2005.

[23] B. Orriëns, J. Yang, and M.P. Papazoglou. A Framework for Business
Rule Driven Web Service Composition. InProc. of Conceptual
Modeling for Novel Application Domains, volume 2814 ofLecture
Notes in Computer Science, pages 52–64. Springer, 2003.

[24] F. Rosenberg and S Dustdar. Towards a Distributed Service-Oriented
Business Rules System. InProc. of the of EEE European Conference
on Web services (ECOWS). IEEE Computer Society Press, 2005.

[25] S. Ruy, B. Benatallah, and F. Casati. A Framework for Managing the
Evolution of Business Protocols in Web Services. InIn Asia-Pacific
Conference on Conceptual Modelling (APCCM’07), 2007.

[26] M. Solanki, A. Cau, and H. Zedan. Introducing Compositionality in
Web Service Descriptions. InProceedings of the International
Conference on World Wide Web. IEEE Computer Society Press, 2004.

[27] W.M.N. Wan-Kadir and P. Loucopoulos. Relating Evolving Business
Rules to Software Design.Journal of Systems Architecture, 2003.

[28] WFF:. Windows Workflow Foundation. Technical report,
http://netfx3.com/content/WFHome.aspx.

View publication statsView publication stats

https://www.researchgate.net/publication/220880621

