N
N

N

HAL

open science

Towards a Disciplined Engineering of Adaptive

Service-oriented Business Processes

Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake

» To cite this version:

Nasreddine Aoumeur, Kamel Barkaoui, Gunter Saake. Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes. ICIW’09, 4th IEEE International Conference on Internet and

Web Applications and Services, Jan 2009, Venise, Italy. pp.474-480, 10.1109/ICIW.2009.76 .

01125688

HAL Id: hal-01125688
https://hal.science/hal-01125688
Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01125688
https://hal.archives-ouvertes.fr

Towards a Disciplined Engineering of Adaptive
Service-oriented Business Processes

Nasreddine Aoumeur Kamel

Barkaoui® Gunter Saake

ITI, FIN, Otto-von-Guericke-Universitat Magdeburg
Business Information group, D-39016 Magdeburg, Germany

E-mail: {aouneur |

saake}@ti.cs. uni - nagdeburg. de

LCEDRIC-CNAM, 292 Saint Martin, Paris - FRANCE bar kaoui @nam fr

ABSTRACT

Today'’s cross-organizations are increasingly coordigatheir ca-
pabilities in the quest of dynamically adaptable and thghklicom-
petitive realistic services. Unfortunately, challengimgblems are
still to circumvent towards such objective, including tmheérent
rigidity, knowledge-scarce and lack of dependability ofsth@/eb-
Services standards (e.g. WSDL, BPEL and WS-CDL). We are con-
tributing by putting forwards an integrated model-drivgapeach,
with as main conceptual / deployment milestones and phhedslt
lowings. Firstly, at the domain-level, we are bringing plefiUML
use-cases and class-diagrams to intuitively capture thetsting
of service-driven applications. Secondly, to cope with eeguired
knowledge and its agility, we are governing any businesiigct
with event-driven business rules. Thirdly, towards vedift®ncep-
tualization, we are shifting theddML_- BRul es-centric service re-
quirements towards a tailored rule-centric service-ae@iPetri nets
formalism, we endow with a truly-distributed operationaimgntics
based on rewriting logic. Fourthly, capitalizing on aspegénted
mechanisms, we progressively upgrade that service fosmaliith
an adaptability aspectual-level, where governing busimetes can
be dynamically adapted and (un)woven. Finally, towardsraptp
ant deployment, we are developing an aspectual .Net frankeian
efficiently adapting Web-Services. A typical travel-agersctaken
for proof of concepts

Categories and Subject Descriptors

H.4.m [Information Systemg]: Web-Services; D.2%oftware]: Soft-
ware Engineering, Adaptability

Keywords

Dynamic Adaptability, UML, Business rules, Service-otih Petri
nets, Rewriting logic, Aspectual .Net WS

1. MOTIVATION

The emerging of the service computing paradigm (SOC) ity
establishing a new organizational and business realitlesieed,
SOC is shifting them from traditional centralized compigtatcentric

standing-alone companies to loosely-coupled truly-iisted interaction-

centric massive cross-organizations. Atthe technoldgeal, Web-
Services are offering best networking platform-independiefras-
tructure for externally cooperating cross-organizatitoainess pro-
cesses [1]. Web-services are the explicit computationiés umhich

Copyright is held by the author/owner(s).
WWW2009April 20-24, 2009, Madrid, Spain.

can through their interfaces be universally described|ighdd and
more importantly (dynamically) composed using XML-bastahs
dards (e.g. WSDL, UDDI, BPEL4WS, WS-CDL [13)).

As these standards are maturing, more and more world-wixbs-r
organizations are opting for service-oriented soluti@ams thereby
putting at proof all capabilities and limitations while kding truly
realistic service-driven applications. Adaptability acmtrectness,
besides knowledge-intensivity seem to be the most chatignig-
sues to be addressed towards leveraging these standasedssaw-
alistic services [14]. Firstly, whereas WSDL and BPEL areein
ently static and manual, in face of the harsh competition raad-
ket globalization and volatility, realistic services areethed to be
highly adaptive and evolving. Secondly, whereas most ofmtl
service-driven applications such as E-commerce and Erheat
E-banking are becoming mission-critical, BPEL and the istlséan-
dards are only ad-hocly built without any means to formadijidate
them. Last but least, whereas most of potential servioeedrappli-
cations are knowledge-intensive (i.e. geared by busindes [23]
and policies), in BPEL only basic variables and primitiveditions
can be manipulating in static manner.

We aim thus join the tremendous efforts being invested tdsar
leveraging the service paradigm towards coping with higidyjle
and knowledge-intensive service-driven applicationsepwise and
rigorous model-driven manner. Broadly speaking, the agpgrave
are proposing enjoys the following capabilities, steps@ratacter-
istics:

e First, we are proposing to capture initial requirementeugh
UML diagrams [22, 7] and event-driven business rules [27].
More specifically, we propose profiled Use-cases and class-
diagrams to informally and diagrammatically express struc
tural features of any (composite) service requirements. To
wards tackling adaptability and knowledge-intensiveness
propose event-driven ECA business rules for governing any
business activity taking part in a given composite seraigented
business process.

To stay compliant with UML-rule centric business descrip-
tion while enhancing it with formal underpinnings, visualv
idation and high-distribution, we put forward a tailorederu
driven service-oriented high-level Petri nets formalisiike
framework, we refer to aR SRv-NETs is further endowed
with a true-concurrent operational semantics in termswfite
ing logic [20] and its efficient declarative MUDE language
[10]. Smooth translating steps are introduced to the bitiieg t
business-level to this conceptualization.

Environment

- changing of business rules

- changing of context

— changing of services properties
- changing of services interactions

Runtime (dynamic) adaptation

of business rules

- — Service functionalities

1esign—time (static) adaptation

Business rules Description (OCL+ECA)

Runtime adaptation of agile Web Services

eta—services behavior
I SR
<= > alidation rules

Reflection (reification)’
mechanisms

- Services Interaction functionalities

Oi isations

(service—driven|
requirements

business stakeholders
>>-0
>>0

Customers requests or
>0
Providers offers

v

Interactionl

<<servicel>> <<serviceN>>

propertiesl propertiesN

operations1 operationsN

—

m
o

UML Description of services structur

1
1

Services composition behavior (as interactive CCSrv—N@s,

Services biavior (as CSrv—-Nets)

Orchestration-level Choreography-le

.NET
Aspectual Rules

Figure 1: A disciplined approach for adaptive knoweldge-intensive service-driven business applications.

e A further step towards dynamic adaptability is proposed.
consists in recapitulating on aspect-oriented mechanj8ins
and meta-reflection [8] to extend that framework to cope with

runtime adaptability.

It tural vision of this approach could summarized as being otkth
ologically composed of four phases.

UML/Business-rules Requirements phase In this preliminary phase,

e As ultimate Web-Services-centric deployment we are devel-

oping, for this disciplined model-driven approach to adegpt
services, a strictly compliant aspectual .NET environment

The rest of this paper is organized as follows. The secortibsec

illustrates and summarizes the working architecture ofihoach
we are striving for. In the third section, using the trave¢acy as
proof of concept, we detail the semi-formal modelling ofgegs us-
ing the profiled UML diagrams and the event-driven businessr
In the third section, we present different steps for forgnapecify-

ing services witlR SRv-NETS, from the previous semi-formal step.

The fourth section demonstrates how validation could béeaed
using rewriting logic as semantics f®&SRv-NETS. In the fifth sec-
tion, we present how to progressively leverage that conegptodel
to cope with adaptability by recapitulating on aspect- aftbction-
mechanisms. In the sixth section, we summarize the mainresof
the aspectual .NET based environment we developing foiesffiy

implementing the approach using Web-Services technolbgihe
seventh section we detail some related work on service abldipt.

This paper is finally wrapped up by some concluding remarkk an

further required extensions of this work.

2. THEAPPROACHWORKING ARCHITEC-
TURE: PHASES AND MILESTONES

As we motivated, the approach we are proposing for agile and
rule-centric service-driven complex applications is stisg and model-

driven. As depicted in the Figure 1, the working general isech

the informal description of the composite service-drivgn a
plication at-hand is semi-formally and diagrammaticatky e
pressed in terms of UML Use-Cases and Class-diagrams. Be-
sides that, all related intra- and inter-organizationaibess
rules governing the behavioral features of different basid
composite business activities are to be clearly descrifoéd,
lowing in particular the well-known Event-Condition-Aoti
(ECA) paradigm.

Concurrent services Nets specification / validation phase Dur-

ing this decisive phase, should be precisely defined all-func
tionalities and behaviors of different service componems
their interactions (i.e. service interfaces, elementad/@m-
posite services). Furthermore, we propose to formally-vali
date them against misconception, conceptual errors, etc. F
this crucial phase, we are thus proposing a tailored variant
of service-driven high-level Petri nets, that reflects @l
tural and behavioral features of elementary or composiée ru
centric services, such as distribution, persistency gfath}

and conversation and complex structuring mechanisms (e.g.
classification, inheritance, aggregation). For validatr-
pose, we are semantically interpreting this formalism gisin
rewriting logic.

Aspectual service Nets for runtime evolution: For the purpose of

dynamic adaptability of the governing rules of any activity
we are extending the above service formalism with an explici
adaptability-level. This adaptability-level is concaiviey re-

capitulating on aspect-oriented mechanisms, where rutes a

conceived as advices to be dynamically (un-)woven on respec each travel agency has to offer the wider possible range @i-va

tive transitions as business activities.

A Compliant .NET based environment : For the ultimate deploy-

ment phase, we are developing a strictly compliant environ-

ment that preserves all the capabilities of that conceftual
yet exploit Web-Services technology and aspect-orientechm
anisms at the infrastructural-level

3. UMLDIAGRAMS AND BUSINESS RULES
FOR SERVICE REQUIREMENTS

3.1 Travel Agency : Informal description

In the simplistic case, a travel agency sells flight ticketd ee-
serves hotel rooms. In order to provide these services $aruis-
tomers, a travel agency needs to establish business lirtksotfier
enterprizes, i.e. airlines and hotels. In this context, arfamal insti-
tution, i.e. a bank, is required to facilitate the financrahsactions

tion packages depending of environmental situations §easons,
events, years, short/long vacation, etc.) as well custemeefer-
ences and situations (i.e. individual/group, completiglapack-
ages, etc).

To specify such service-driven business applicationsppsam-
plex reactive distributed system we have to cope with sirattas
well as behavioural requirements. With the defacto statidar
tion of UML diagrams for structural aspects (i.e. class- ahpbct-
diagrams), we argue that UML class-diagrams with slighfiled
extensions allow capturing for each service, the opera@anl prop-
erties (attributes) structure. The challenging problemaia the
modelling of behavioural aspects, whegactivity, distribution com-
posabilityand more especiallgvolutionandadaptivityhas to be the
heart of any accepted conceptual model.

At early requirement stagesiisiness rulegepresent the best avail-
able modelling ingredients in organisations to cope witmpeti-
tiveness and evolution. Business rules reflect regulatmmscon-

between a customer and a business or between a business-and aditions for the functioning of any (inter-)organisatiortémally as

other business.

In order to make a trip, the customer accesses the Web sefidce
travel agency that sells flight tickets and provides hotehts reser-
vations. The customer enters his requirements. The traericy
receives the requirements of the customer and send therffieedt
airlines and hotels. The travel agency receives the pdigisibifrom
these partners and chooses the best solutions for flightsatals. It

sends them to the customer who chooses, reserves and palyis for

(holiday) package. The payment is made with the support afné b
usually using a credit card.

3.2 UML diagrams and Business Rules

To illustrate this simplified variant of vacation arrangeme-ig-
ure 2 presents its corresponding use-case diagram. Thisagse
made the relationship between the activities to do andreiffieser-
vices with the travel-agency service coordinating thesieities.

[Travel Agency Air-Line
O I
-y |
s

! T Hotel

REN Hotel_Service

Banking

*************** -> _ Banking—Service

Figure 2: A UML Use-Case for the Travel Agency Case Study.

The next Figure 3 goes in detail about the different clasass (

services) and their interactions to the travel-agency. Ndgelsl point
out that detail about message parameters and other pexpeatn be
kept semi-undefined as it should precisely defined in thefoextal
phase, depending on the business rules to put in place.

This case study is one of the most adopted and at the samégme t
mostvolatile one. To stay competitive and attract more customers,

well as externally, and thus as regulations change/evbleatles
change [27, 18]. Business rules are mostly expressed irstefm
Event-Conditions-Actions (ECA) forms.

The travel-agency functioning has to be governed by busines
rules, and so each service composing this application light
service, hotel service, car rental, attraction service,).etJust for
illustration, a possible business rule regulating theraad service
could be:

Rule (for flight) "The fare for a return ticket for a family with
childrens is reduced to 30% for each child. When booking
before 3 weeks, further discounts of 10% is applied for the
adults.”.

With respect to business rules change, we distinguish leetwe

adaptivity and evolution. Both aedffectshat arecauseddy changes

in the governing rules and environment. For adaptivity,dhanges

are usually made auntimewhereas in evolution changes happen
over a long period of time and statically. For instance, wey ma
assume refund system to change according to changes in the en
vironment (e.g. flight delay). In contrast to that, evolatis more
concerned with the introduction of new rules or the estabisnt of

new service operations (e.g. mobile-calling on flights)

Besides adaptivity and evolution, distribution remains ofthe
essential feature of service-orientation computing. diuides in our
case the possibility of requesting vacation services frogwaere
as well as the possibility of serving simultaneously seveguests
(i.e. true-concurrency). Related to distribution is thactevity fea-
ture. Reactivity implies stateful modelling, where a gitesmsac-
tion could be long-running (especially when we requirednigt For
instance, a customer should have the opportunity to changaya
time some of information and requirements. To cope with, theit-
vice states instances have to be explicitly representelaeimtodel.
Last but not least, while it easy to conceivedasign-timenew ser-
vices, it is more beneficial to adapt existing rules at ruetimithout
stopping the system or decreasing its degree of distributio

For all these considerations (i.e. distribution, reattjviuntime
adaptivity and design-time evolution), the next sectiosspnts the
approach we are working on that is based on a form of high-leve
Petri nets. This formal conceptual model will be automéicae-
rived from UML-class diagrams and business rules.

<<Composite Service>>
Agency—-Composite—Service

AgencyNm : String
AgencyLoc : Address

<<Service Interface>>

<<Service Interface>>

Customer—Service-Interface

CusName : String
CusAge : Date

CustAdr : Address
CustOccupation : String

<< .
e ‘p'aml“’bﬁte>
o N

TravelCancel(Interinary)

| Travel_Requsted(lterinary, Budget) -
- | Travel_Reserv(Foundinterinary)
Travel_Book(Foundinterinary)
Travel_Confirm(Foundinterinary)
TravelPay(OfferInterinary)

Airline-Service-Interface

AirLineNm : String
AgencyLoc : Address

Flightinfos : Record(DepartCity,
. DestCity,Date, Time,Price,..
- | AvailableSeat : Hidden

7
a\ed""yle'q? s
Leoned?

Requst_travel(lterinary, Preferenc)|
Travel2Accept(Offerinterinary)

|
|
|
! | TravelCancel(Offerlnterinary)
|
|
|
|

i 'é&éd\0‘3’€d7
e

| ConfmPassg : [Passengerld,ResRef]

Flight_Requst(CustInfos, Flight-Infos)
Flight-Resrv(FlightDate)

Flight_Pay(Flightinfo)
Flight_Cancel(FlightInfo)

<<Service Interface>>
Bank-Service-Interface

Number, ExpireDate

CardValid(boolean)..
(Money,CardInfos)
Credit_Amount(Money,CardInfos)
Debited_Amount(Money,Account)
Credited_Amount(Money,Account)

Cardinfos : Record(Holder,

BankName : String
Debit_Amount|

i
i
i
i
Flight_book(Flightinfos, DateRes)
i
i
i
i

TravelAccepted(Offerinterinary) é‘/,\
TravelPay(OfferInterinary) S

S

o

v
A
N8
Q8 —
g g 8
“— w v € —
oT e £ ¢ 3
= o a S £ 5 € %
S] E E o9 £ 2
s 28@ s SE€g 5=
2§ d3s L LEEEE
S5 E g s S szgo Ec
o2 2395 e g EL 83
N2 333 Jd X222 8
vV 5835 £ 88§38 &7 &
Vv I T T L moOoZa O
Figure 3

4. FORMAL MODELLING OF SERVICES
STRUCTURE: rRsrv-NeTs STATES

The first step towards formalizing service-driven applmas con-

sists in precisely defining different states and messagepted by
basic service interfaces as well as composite serviceshdrap-
proach we are proposing, as we already emphasized we emdeavo
benefiting from advanced structuring mechanisms of thecblgjgentation
(i.e. classification, inheritance, composition and agatieg) and
thereby also facilitate the derivation of formal serviceiface struc-
tures from UML class-diagrams and business rules we destiib

the previous section. So, in our approach besides the gésari

of messages signatures (as most of XML-technology languafye
fer), the precise description of servismtessnables us afterwards to
specify thestatefullconcurrent behaviour of service interfaces: a ca-
pability completely missing in XML-based languages (e.dD8V,
BPEL, etc.) and only partially addressed in recent formagiso ser-

vice specification (e.g. Petri Nets [19] Graph-Transfoiomaf17],
Temporal Logic [26], Process Algebras[15].

More precisely, we propose to specify service states abelge
terms in the form of specifituples These service states as tuples al-
though inspired by the structure of theaMDE language [21] object
states, they enjoin very specific properties reflecting entiost the
main characteristics of service interfaces. More pregiské struc-
ture of service states we are following can be informallylaxgd
as follows:

e Any service state is conceived as an algebraic term of tme for
(SvId | sv_pry :vly, ..., sv_prp : vlp, svp, (SvId), sy SUR, (SvId))

where

: The Travel Agency with a SteroTyped UML Class-diagam for Services.

— Svl d is interpreted as an observed service state identity
taking its values from a given appropriate abstract data
type ADT (that we assume denotedZH d);

— Sv_prq,..., Ssv_pryarethe observed identifiers for ser-
vice state properties or attributes, which we assume hav-
ing at a given time as current values respectivély, ..., vl .
We assume both service states identifiers and values to
be algebraically defined (elsewhere), by denoting their
respective ADT a$SPI d andSP_Val ue (as abbrevia-
tion for ServicePropertieddentifiers andserviceProperties
Values).

— To enhance privacy, we allohiding values of specific ser-
vice state properties when required. To declare such
Hidden service state properties we adopt the notation of
"attribute-as-functions”; so if for instance the value of
an attribute identifier, denoted Isy/;,, , is to be hidden,
we denote it as a functioswv ,, (Svl d) , with Svi d the
corresponding service state identity.

e Messages involved in a given service interface are also-spec
ified as algebraic operations. Since messages act on service
state instances, they should include as parameters ableast
state identifier. Moreover, in a given service interface som
messages may be declared to act only on states within this
interface; other messages may be exported to participate in
a composite service interaction (as a choreography) or take
partin other service interface description (as an orchgstr),
and finally messages may be imported from other interfaces
to constraint the messages flow in such service interface (as

allowed by BPEL orchestration). In other words, in a given 4.1 Application to the Airlines Service
service interface three categories of messages may be-disti

] Following this RSRV-NETS- service template, the corresponding
guished

service structure corresponding to the flight service fatey, for in-
stance, can be straightforwardly derived from the semi&dtUML
service-diagram description we presented in section 2. eNpoe-
cisely this description is as below, where first we have tcipall
imported abstract data types allowing to specify diffefoperties
and parameters of service states and their messages. Tdiese d
types should include, for instance, the city of departure aefndes-
Imported : These messages are declared in other service in- tination (we abbreviate bipest andDepart both of sort string).
terfaces and used by the given service interface in the Reservation and confirmation codes have to be specifiedd@bbr
message flow for orchestration purpose (as BPEL pro- ated byRsvRef andCf r nRef). Date of departure and of return,
poses for instance). the maximal cost not to go beyond as well as the fare of fligheha
to be declared. Information about any customers (packayeh
as names, addresses, ages, number of adults, child antsimfan
gathered in one sort denotét/ ST I N F'O. Such information and
more similar are crucial for expressing different busirmesdss later

Local messages. These are messages that are declared and
exclusively exchanged within a given service interface.
They either act for state changes in such service interface
and/or allow participating and controlling the flow (i.e.
the business process) of such service interface.

Exported : These messages are declared within a given ser-
vice interface and used by other service interfaces or by
COmpose Services.

To bring more understandability and expressivity in ouner in the service net behaviour. Additionally, to keep trackddfer-
interface formal structure, we thus explicitly distinduibetween €Nt passenger reservations and bookings we have previeligd a
these three types of messages. This allows us afterwards-to a composed of the customer ID and an identifier indicating twaet
dress their corresponding specific behaviour adequatelfprinally its reservation or booking (e.g. "Rsv” for reservation ak™ for

capture this intuitive description GRSRv-NETS service interface P00King).

structure specification, first we define the notion RV-NETS

)service stzfte Importantly to mention that this m(fjfz(limgeavily Service F i ght - Servi ce is

/== : . . extending Servi ce-state

inspired by our previous work on component Petri nets foedgy protecting Ai r Li ne- Dat a.

ing information systems [2, 4, 3, 5]. subsort Fl ghtld AirLId< STId .
subsort Fl ght St < Srv_State

subsort CHK_.SEAT < | ocal _Msg.

Definition 4.1 (SERVICE-state template)A service state is defined subsort FLGHT_RQ FLGHT.RSV FLGHT_BK

as a pair(Svp U STsy, {Op}srg,) With: FLGHT.CL < i nport ed_Msg.
e Svup is a set of (service data) sorts with: subsort FLGHT_RQSTD FLGHT_BKD FLCGHT_CLD
{Bool,STId,SPId,SP_Value} C Svp. To allow aggregate PAY_FLGHT PAY_PNLY < exported_Msg.

(* AirLine State Properties *)
op (| AirLId: _, FlInf : _, AvSt(Flighld),
RsvP:_,CmfP:_DIRs:) :

service states, we allowT'Id to be subsort o5 P_Value (i.e.
STId < SP_Value).

e STs, is a set of service state sorts (different fréiap), which Flghtld string FLGINFOS nat PSSGS
we assume contains at least one sort (so we can speak about PSSGS Dat e— AirLine_State.
statefull service interface). [+ Local messages */

e {Op}srg, is asetof service state operations indexed @y d x op ChkSt = Flgld Bool — CHKSEAT .

(SPId x SP_Value)™ x STs,. More precisely, with each ser- /+ Inported i.e. received messages */
vice state sort fronb7Ts, a service state operation is associated op FlgRg : CustldCUSTIINFO AGCYld AirLld

reflecting the corresponding tuple of such service state sor RQFLGI NFO — FLGHT_RQ .
op FlgRs : CustldCUST.INFO AGCYlId AirLld

i . RQFLGI NFO — FLGHT_RSV .
Remark 4.1 This important concept of service state structure leads op FlgBk : Custld RsvRef CUST.INFO

to the concept oRSRv-NETstemplate specification by extending it BK.| NFO — FLGHT.BK .
with involved service message sorts and service operations op Flgd : Custld AGCYIdd Ref — FLGHT.CL .

. . PR ; ; /* Exported i.e. invoked nessages x/
Definition 4.2 (SERVICE-template specification)s defined as a pair op FlgRgsd - Custld FLGINFOAGCYI d

(Svp U STso U Msgsv, {Op}sts, U{Op}msgs,) with: AirLld RsvRef — FLGHT_RQSTD .

e (SupUSTs.,{Op}sry,) is aservice state structure as defined op FlgBkd : Custld AGCYId AirLld
above. BkRef — FLGHT_BKD .
op FlgQd: Custld AGCYId AirLld

e Msgs, is asetof ‘message generator’ sorts different fiém U BKkRef — FLGHT CLD

STs,. We assume that/ sgs., is composed of three sets of mes- op Payflg : Custid AGCYId BkRef
sage sorts{Mesi, , ..., Mes,, } for local message sort§Mes;, , ..., Mesi;} noney — PAY.FLGHT .
for imported ones andlMes., , .., Mes., } for exported ones. op PayPnlt : Custld AGCYld BkRef
e The message operation&)p} vy, is a set of message oper- money — PAY.PNLTY .

. . . . -+ *
ations, that is, operations indexed BY'Id™ x Sv} x Msgsy. (* Variables to use in the service net *)
Thus, with each message sdifes;; from Msgs, a message vars Dy : Date ; Goc:AGCYId .

operation (denotedhs;;) is associated. endo.

Using this flight data level specification as well as the gaher

service state description and being bounded to the gerwral df
service structure, the corresponding service structurtnefflight
interface could be presented as follows. That is, first féerreng
service state flight sort we introduce a state sort we aretihgnby
Fl i ght _St . Instances of flights are identified by the delright | d.

Secondly, for each message declared in the corresponding UM

class-diagram, we associate a corresponding sort and aatiope
For instance, for the messagéi ght Request we declared the
sortFLGHT_RQand an (imported) operation we abbreviatdsbygRq,
and which should have parameters like information abouttise
tomer, the agency ID, and clearly all detail about his/hghflitere-

niary and preferences. The same reasoning is to be applialii to

other messages. The service state is constructed by gahera
tuple-like all properties of the flight from the UML classadram
specification. The flight state is identified by the Flightiadais
composed of the Airline name, all information about the fligghg.
departureCity, DestinationCity, DepDate, DepTime, ArndaAr-

voked (exported) messages places, nanktlyght - Request d,

Fl i ght - Booked, Fl i ght - Cancel d,PayFl i ght andPayPenal ty
correspond five messages. Besides that, in order to capltulié a
ferent exceptions and errors related to different behayioe have
added another message place we denoté lght OP- Err . As we

will explained subsequently this place receive all attenfpt vio-

lating the business rules related to different messagditinatities.

5.3 Service Net Behaviour Using Business rules

The crucial contribution and added-value of our approactin¢o
service paradigm concerns thus the concurrent behaviatirnh
are able to assign to different messages and services.s@teh
behavior will be clearly captured by differemmainsitions with their
inherent inscriptions and conditions. For that purposa, ih) for the
conception of different transitions, we mainly relies on lhusiness
rulesgoverning at this stage the (intra-)organization at hartd¢chv
the is flight company in our case.

More precisely, first we propose to follow the widely domingt

rTime), the number of still available seats (Denoted\Naseat (FI ght | dprms of business rules, that is, tEvent-Conditions-Actionpat-

the list of customers (IDs) reserved or booked.

5. BEHAVIOURAL MODELLING OF SER-
VICES: rsrv-NeTs TRANSITIONS

In the previous section we presented how given a servicetate!

specification denoted by Srv captures the structural aspects of a

given service interface. In this section we address the etz
concerns by incrementally constructing it from the sengacture
specification and the business rules. We refer to such baimaig-

sues as CBv-NET as the behaviour is a form of high-level Petri

nets tailored to this service modelling and service stmacgpecifi-
cation. A service specification as a whole is hence a pair oseg
of Servg P =< T'Srv,CSRV-NET:-.

5.1 Service Net structural Features

Informally speaking, the net to be associated with a givevice
structure specification is constructed as follows.

e The places of the net are precisely defined by associatirig wit

each service message generator one ‘message’ place.
e With each service state sort a ‘state’ place is associated.

e Transitions, which may include conditions, reflect the @ffe

of messages on service states to which they are addressed.

5.2 The flight Rsrv-NeTS SEIVICE

With respect to the above flight service structure specifinathe
application of these behavioral constructions result enftllowing

flight CSRv-NET behavioral interface model as depicted in Figure

4

As defined above, for each service state and message sottea cor

sponding (typed) place are conceived. That is, to the seistiate

sortFl ght corresponds a service state place we denofd hyght - St .

This service place regroups thus all flight state instancesccor-
dance with the flight service structure specification. Ondtreer
side, with each service message a corresponding messageipla
constructed. So, for the three received (i.e. imported)sampss
(from the agency composite service as will be detailed Jai@mely
Fl i ght - Request ,Fl i ght - Booki ng,Fl i ght - Cancel cor-
respond three associated soressageplaces. Also, for the five in-

tern. With respect to the formal definition ®&SRv-NETS, a tran-
sition in its general pattern allows interacting some teigigg mes-
sages with service states, leading to the change of involegess
absorption of the triggering messages and apparition ofimevked
messages; all this reaction is of course to be allowed unalét v
conditions.

For this similarity, it becomes very straightforward how igeg
ECA business rules can be translated intl8 8Rv-NETS transition
that correctly reflects its behaviour. That is:

event-part : It corresponds to different input messages inscriptions
involved in this event part of the rule.

condition-part : it has to be translated into a compatible transition
condition. Information related to service states havedodr
lated into input arcs inscriptions from the service stateel

action-part : It to expressed in terms of exported messages and
changes in the involved service states.

For the flight service interface, we have associated theeesitr
tions (i.e.) to reflect the (business) semantics of the theeeived
messages, namely: The transitidhl gh_r q for capturing the re-
quest activity with the offered flights (i.e. flighequested) as output
result; the transitiombkf | for capturing the booking activity and
finally the transitioriTcl f 1 to gouvern the cancel activity if any.

In the following, we detail the rigorous inscriptions of baof
these transitions with respect to very simple businesss r(B&).
Afterwards, we hint how any complex business rule goveriiiege
transitions can be straightforwardly reflected into forinatriptions
in the R SRv-NETSformalism.

5.3.1 The flighiRsrv-NeTs service behaviour

A typical business rule governing the behavior for flighturest
activity in this flight service could formulated as follows.

Rule (for flight)"On a customer request for a flight, the of-
fered flights have texactly match the departure and destina-
tion cities, the dates and the time of the customer wish. The
flight cost should not exceed what the customer tolerates and
finally if the customer is minor (less than eighteen yearsy-a r
duction of 2% is granted”.

The Flight Service Interface Behavioural Specification

hkSeat Flight_St Flight-Rsrvd

(Fgl|FgInf : [K89.Uml.Paris.12306.1430.230], AvSt(Fg)..)

Fg2|FgInf : [I24.London.DC.02606.2245.817], AvSt(Fg)..

Flight_Requst,

lgRq(Cs.Ag, Fr.To.Dt. Tm.Mz) X
Flight _Bookd
(Fg|FgInf : [R.Fr.To.Dt.Tm.Cz], AvSt(Fg), Rsv : Rs, DIRs :)

Tflight_rqg

(AvSt(FG) > 1) A Rs.[Cs.R] A (Cz < Ma) A (Py := Cx)

Flgbkd(Cs,..)

A((Ag < 18) A (Py := Cz % 08)))
L
FlgRqd(Cs, Fg,[R.Fr.To.Dt.Tm], Py, Dy)

E FlgBk(Cs, R, Dy, Py)

(FG|FgInf : [R.Fr.To.Dt. Tm.Cxz], Rsv.Rs,Cmf : Fm)
\AZ Tflight bk

(De < Dy) A (Cs € Rs) A (Py = Ca) A (Pn = 0)A

Flight_Pay

FlgPay(Cs,...)

PlgPnt(Cs,...)

Else

(Cmf.[Cs.R]) A (Dc > Dy) A (Pn := Py * 0.1))
|
FlgBkd(Cs, R.Fr.To.Dt.T'm, Py) |

Flight_Refund

Exported (invoked) messages

FlgPay(Cs, R, Py) AN FlgPnl(Cs, R, Pn)
FIgRfnd(Cs,...)
FlgCl(Cs, R, Py, Dt)

(Fg|FgInf : [R.Dt], Rsv : Rs,Cmf : Fm)
vy Tilight_cl

((Cs € Rs) A (Rfnd := Py)) vV ((Cs € Fm) A (Dc < Dt)A

Flight_Cancld

Else
(Rfnd = Py * 0.85)) V ((Cs € Fm) A (Rfnd = Py 0.45))

L
FlgRfnd(Cs, R, Rfnd)

FlgCI(Cs,...)

FlgCld(Cs, R)

‘imported (received) messages AND/OR (triggering) events

FlgClErr(Cs,’ FlgCancel Err') FJIghtOP_Err

FlgBkErr(Cm,’ Flight BookErr')

;ilgRqErr(Cs,...)

FlgRsvErr(Cs,’ Flight Request Error’) FIgBKET(Cs,...
»

Figure 4: The Behavioural Specification of the flight Service

Following the above guidelines, from this informal rule cigstion e To exhibit a maximum of concurrency, we allow distributing
the construction of the corresponding transitidhl(i ght _r q) in- ® over. Thatis, ifmt; andmt. are two marking parts in a
scriptions could be summarized as follows: given placep as(p, mt1 @ mt2), then we can always split it

1. To reflect the events part of this business rule, the tiansi to (p,mt1) ® (p, mtz).

Tf | gh_r g must have one input inscription from the request
message pladé i ght _Requst and one from the state flight
placeFl i ght _St . By respecting the template message struc-
ture and declared variables, the inscription of the request

e To promote maximum of concurrency within a same service
state, we propose a deduction rule thglits / recombineghe
service state at need and taking the form.

sage place takes the form: (Svl | Spsi,Sps2) = (Svl | Sps1) ® (Svl | Spsa2)
FlgRq(Cs.Ag, Fr.To.Dt. T'm.Mz), that is, the parameters
are "CusName, Age, From city, To city, Date, Time flight and with Sps; as an abbreviation &fspr; : vls, .., svp,, (SvI)”

max cost to bear. The selected (abstract) flight should have
the same information (i.e. same variables). That is, the in- Example 6.1 By applying these general guidelines for deriving tran-

scription from the flight state place could bef'g|FgInf : sition rewrite rules to the Customé® SRv-NETS service interface
[R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, RsD : Dy), Net, we result in a rewriting logic-driven operational impeetation,
with R as the flight reference,/z as the (normal) ticket price, \yhere rapid-prototypes are directly generated usingNh&UDE en-
and Dy the date limit for booking and lose the reservation. vironment [11]. Due space limitation, we restrict ourse\jast to

2. To reflect the rule conditions, the transition condititiowsld depicting the transition rule associated wih | g.r q1.
have the form:AvSt(Fg) —1 > 0 A Rs.[Cs.R] A ((Cz < Tflg_rq:(WCsRq, WCsRq(Cs, Am, Ad, Ac(C's), Bk))Q(WCsST,~ (Cs|))
Maz)V((Ag < 18)A(Py = Czx08))). Thatis, the available = (WCOsST,(Cs|CsN : Nm,Adr : Ad,Bth : Bd, RqLs :

seats has to be decreased by one and be still positive; ThelAm-Now])® (WCSRquvWCSRqOK(CSv'Avai Ac(Cs), Bk))
reserved list has to be updated to include the new customer if (Ag > 21) A (Am < Maz) A (Ad € List(Addss))
and the flight reference, the ticket pri€e: has to be less than

customer max, and finally if the age is less than 18, the payed 7. DYNAMIC ADAPTABILITY: ASPECTUAL

amount will be just 80% percent of the price. EXTENSION OF RSrRv-NETS

3. Finally, the output message to report back the foundeat+es After the stepwise specification and validation, the criucigher
vation with the flight references, the computed price and the phase is how to make su@hSRv-NETSsinteracting components dy-
date limit. namically evolving. In the following we summarize the difat

This is reflected by the inscriptiod?lg Rqd(C's, Fg, R, Py, Dy) steps that permit building on top of eaBBRv-NETS component /
interaction araspectualayer for coping with runtime adaptivity.
Meta-tokens as transition behavior As any R SRv-NETS transi-
tion is composed of an label, input/output arc inscriptiwoiith cor-
responding input/output places, and a condition insanptive first
propose tgatherthem as a tuple :

(trans_.id: version | in-inscript., out-inscript., cond.

In the same spirit, we can formulate any business rules fr th
reservation as well as the cancelation activities and cactstonse-
quently the associated net transitions (Tbkf | andTcl f|). The
reservation business rule should reflect the respect ofetberva-
tion deadline (ie reservation information should be stilthe cor-
responding flight state); otherwise a penalty is to be pasidee

the ticket price. The corresponding transition is easilposived) . . .
as depicted. The cancelation after a booking incur the payofea Wherever_ si onas natural qumber capturé&ferentt?ghawor ver-
penalty. sions’. With respect to the inter-component transitioneyahpat-
tern depicted in Figur@?, this tuple takes a more preuse form:
6. REWRITING-LOGIC SEMANTICS FOR {t : i| (obj, Icobj) Z@? (Mesp,lcp) (oby,CTobJ) (Mesq,lcq) TC(t))
RSRV-NETS Aspectual-level for Meta tokens To allow manlpulatlng—namely
Besides ordinary graphical animation, we endow B&8Rv-NETS modifying, adding and/or deleting—such tuples (i.e. tiamss’ be-
approach with drue-concurreniperational semantics expressed in havior), we propose an appealing Petri-net-based projusiaton-
rewriting logic [20]. That is, each transition is governeg & cor- sists in: (1) gathering such tuples into a correspondingeptaat
responding rewrite rule interpreted in a tailored insgtinn of this we refer to as aneta-place (2) associating with this meta-place
logic, we refer to agk SRv-NETsrewrite theory. The main ideas of ~ three main message operations—namely addition of new mehav
this interpretation can be sketched as follows: modification of an existing behavior, and deletion of a gien

havior; and (3) as for usugt SRv-NETS components conceive for
each of these three message types three places and three-resp
tive met a-t r ansi ti ons for effectively and concurrently adapt-
ing any meta-transition as tuple.
Relating the two levels with read-arcs Once building such aspectual-
e TorepresenR SRv-NETSstates as multisets over differentthe level, to dynamically manipulating any transition dynasiibe next
pairs(p:, mt;), we introduce another multiset generated by a important steps are twofold. First, we slightly enrich ése¢d)R Srv-
union operator we denote ly. That is, aR SRv-NETS state NETS component transitions by justdding (meta-) variables (we
is described as a multiset of the foripi , mt1)® (p1, mt2)® denote byIC'_, CT_,TC_) using a disjunction operator (e\g) to
each of their input/output and condition inscriptions. & of

e To bind each place marking.t with its corresponding place
p we capture them as a pdip, mt). Different tokens within
mt are gathered using a multiset union operator we denote by
®.

aspect-oriented concepts, these variables plajothgointsfor dy-
namically capturing the advice8][Transitions with these (meta-
)variables are referred to asolvingones. Secondly, in order to per-
mit weavingany new behavior (as meta-token) on the component-
level "hooked” transitions, we propose telate throughread-arcs
the meta-place with such respective non-instantiateditian.
Weaving meta-tokens as usual transitions The dynamic weav-
ing consists irselectingfrom the meta-place a given meta-token as
adviceand transformingit to a usual (instantiated) transition rule.
Given such a non-instantiated meta-rewrite rule, we camdiipam-
ically selectany particular tuple-as-behavior from the meta-place
and derive a usual transition rule. This process is capthyethe
following inference rule.
With the existence of the following substitutions:

Jo; € [Ts(pi)]@, ..,30']' S [Ts(q].)]@,ﬂa S [Tbool]

The following usual rewrite rule as the newtll behavior for the
transitiont(—) is obtained.

(t:k ‘[iél(l’iwai([ci))]M[jél(CIjan(CTi))]‘7‘7(Tci)>61w(Pmeta)

tins(k):\[él(pi,ai(wi))]\:>[él(qj,aj(CTi))H if o(TCs)

7.1 lllustration onthe Airline conceptual Model

As we pointed out the first step towards endowing any knovdedg
service-driven C8v-NETS specification consists in preparing that
specification to become adaptable-aware. More precisalyedch
of the CSRv-NETSAiIrline transition, we have to slightly enrich its
(input/output) arc-inscription as well as the conditionrtpaith a
(meta-)variable using the operater

The resulting of applying this enrichment is depicted in lie-
level of Figure 5. First note that to ease the manipulatiosteiad of
the long name for places (and transitions) we are shortethieiy.
So, for instance, instead of the place nafhé ght _Book, we are
using justFl Bk. Second, because we want that all activities of the
flight service to be adaptable, we are enriching all the timaesi-
tions; again here for sake of simplicity we are dropping Ehee
part (i.e. the exception cases) in all these transitions.ifi&ance,
for the transition

7.2 Building and lllustrating the csrv-NeTsAir-
line Adaptability-level

Towards effectively bringing this runtime knowledge-aenadapt-
ability conceptual machinery to the above Airline @ENETSpre-
pared specification, let us first consider three simplifiediress
rules scenarios: Two (2) concerning the booking requesness
activity (i.e. the transitiorilf | g_r q) and one new business rule
dealing the cancelling activity (ie. the transitidi | g_cl). Of
course as will understood from this progressive illustrative able
to dynamically deal with any business rule and with respeerty
business activity as transition.

These three business rules could informally described|ksvi

Flight to a specific destination and period R1) : This rule says,
for instance, that any person travelling to Cairo or Istanbu

Seasonial Flight-cancellR3) : This rule stipulates that during the
winter (Christmas time) season a refund will be correspond t
the VAT, whereas during the summer the refund concerns only
the half of the paid price.

The next step after this informal description of any businete to
be dynamically integrated in the running Airline @& NETS spec-
ification consists iformally expressing it as a five-element tuple
with respect to the transition governing the associate¢hbss ac-
tivity. For illustration, we detail how to translate the sad informal
rule to its precise five-element tuples description.

The business ruleR2 as meta-token.This rule concerns the flight
request and thus the transitidhl g_r q. This systematically means
that it is the second version or alternative besides theuttdfahav-
ior, and thus the counter for the version is to be set to two (2)
contrast to the first rule, this rule is to be triggered by thmeu$
taneous occurrence of two requests (i.e. from two personkijs
implies that from the input placEl Rq (flight-request) we require
two messages, one for instance fr@nl and the second fror@s 2
but the same other parameters (i.e. origin, destinatiom, dast).
The third element in the tuple, that is, the output places thed
corresponding inscriptions remain unchanged as in theutlpfo
we abbreviate them using the symbel’’ The last element in the
tuple concerns the condition, which formulated as for thevatiule.
We should just note that since two persons are at stake, #ilalae
seat should greater than 2 and both the two customer 1dsCs.&.
and Cs2) have to be added to the reservation Rst. The flight
cost should of course be less than the max budget of any ofvihe t
customers. Allin all this tuple takes the following form:

(Tflg-rq:2 |(FlRq, FlgRq(Csl.Ag, Fr.To.Dt.Tm.Mz))

FlgRq(Cs2.Ag, Fr.To.Dt. Tm.Mx)
(FLSt,(Fg|FgInf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg),
Rsv : Rs, DIRs : Dy)) ,— , (AvSt(FG) > 2)A
Rs.[0s1.Cs2.R] A\ (Cx < Mz) A (Fr ="Las Vigas")
A("Jan." = Dt) A (Py := 2% Cx % .70))

As depicted in Figure 5, for simplicity we have skipped ak th
places and associated transitions for manipulating tlesras-tuples.
In other words, we just assume that the three above tuples hav
been introduced using the (meta-)transitibgy s, (for the second
rule T4apnr @s it is the second version. The firing
of the (meta-)transitioff'4 451, three times successively results in the
emerging of three tuples in the meta-pl@res. Ai rl i ne- Pl ace
as depicted in the upper-layer of Figure 5. That is to sagetimew
rules have dynamically introduced at that adaptabilitieleTo keep
the Figure manageable we have indeed skipped this selé&iexpl
firing. Giving these rules, it is important to emphasize thatcan
in the same spirit change and/or delete them through the tier o
(meta-) transitions (and meta-places).

8. COMPLIANT ASPECTUAL .NET SERVICES

As we already emphasized, current Web-Services standanis s
as WSDL and BPEL are purely process-centric, static and man-
ual. Consequently, directly adopting them for implememptthe

between June and August gets a discount of 50 percent of theproposed approach simply means loosing all the strengthseve

normal fare.

Flight to a specific destination for a group (2) : Any two persons
travelling for instance to Las Vigas during the month of jan-
uary will automatically get 30 percent discount.

striving for, namely adaptability, knowledge-intensiesa and sep-
aration of concerns among others.

To cope with these limitations, we are instead proposing et
[6] environment and its recent extensions with aspect tigcies.
The .NET framework [28] is Microsoft proprietary progranmyi

" The Adaptability-level for Business Rules for Airlines Runtime Manipulatie®

BRs.AirLine-Place
(T flight.rq : 1 |— ,— |
(AvSt(FG) > 1) A Rs.[Cs.R] A (Cz < Mz) A (Fr ="Cairo" v"Instanbul”)
A("June" < Dt < "August”) A (Py := Cx * .50))

(T'flg-rq : 2 |(FlRqg, FlgRq(Csl.Ag, Fr.To.Dt. Tm.Mz) FlgRq(Cs2.Ag, Fr.To.Dt.Tm.Mz))

Dy)) =,
(AvSt(FG) > 2) A Rs.[Cs1.Cs2.R] A (Cx < Mz) A (Fr ="Las Vigas") A ("Jan." = Dt) A (Py := 2% Cz *.70)

(FISt,(Fg|Fglnf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, DIRs :

Tflgcl:1 |— ,— ,(Cz € Fm)A
"15 Dec.” < Dt < "30 Dec.") A (Rfnd := Vat(Py)) V ("May" < Dt < "Aug."” A (Rfnd := Py % .5))

(Tflg-cl : ve | (FICL ITE) (FISt, ITS) , (FIRfd, OTY) (Flcld, OTY) , CDF)

Adaptability-level for Business R

FlgRfnd(Cs, R, Rfnd) > OTf

T flg-bk : vb | (FIBk, IT?) (FISt,IT?) , (FIBkd,OT7) (FlPay,OT3) , CD") -

(Tflgrq :vr | (FIRq,IT]) (ChkS,ITYy) (F1St,ITY) , (FIRs,OT7) , CD") -

|||||||||||||||||I.IIIII|II-I||||||||||IIIIIIIIIIIIIIIIII-IIIIIIIIIIIIIII_
The Flight Service Interface Behavioural Specification

1 e hkSeat Fst C &g:

1 I ! (o))

N | (Fgl|FgInf : [K89.Uml.Paris.12306.1430.230], AvSt(Fg).. 1 g:

% E Fg2|Fglnf : [124. London.DC.02606.2245.817], AvSt(Fg), E & $

0 I — A : T E:

) ' RsSt(Cs, Fg) < IT] A} —> =

;CIEJ FlgRq(Cs.Ag, F§.Tp.Dt.Tm.Mz) < 1Ty ! 33

— ! rTqg.Dt. Tm.Cx], AvSt(Fg), Rsv : Rs, DIRs : Dy) <1 IT4% i g:

O I | -

‘D | v Tfig_rq ! E:

= | 1 s =

‘D o i | (Avst(FG) > 1) A Rs.[Cs.R] A (Cx < Mz) A (Py := Cx) | £ O

O ! o O

O T i A((Ag < 18) A (Py := Cx % 08))) b1 CD” i o =-

Res | | o-

N ' I Q‘:

he] ! lFZgqu(CS, Fg,[R.Fr.To.Dt.Tm], Py, Dy) >x1 OT" ' L|>j:

5 ‘ b { : :

e FlgBk(Cs, R, Dy, Fy) > ITY |‘ -

g‘ .Tm.Cz], Rsv.Rs,Cmf : Fm) IT;’ !

= ! Tflg_bk ! 5 :

3 (Dc < Dy) A (Cs € Rs) A (Py = Cz) A (Pn = 0)A 3 [T

| (©mf.[Cs.R]) A (De > Dy) A (Pn := Py 0.1)) pa CDY) | :

' : ' :

i FlgBkd(Cs, R.Fr.To.Dt.Tm, Py) > ()T{’ k) :

i FlgPay(Cs, R, Py) A FlgPnl(Cs, R, Pn) bx OTY ! :

; . | B -

| FlgCL(C's, R, Py, Dt) b ITS 1 |FigrRmd(Cs,.) & -

! (Fg|FgInf : [R.Dt], Rsv : Rs,Cmf : Fm) b ITS ! 8

5 ! Tflg_cl 1 :

[| |

| ((Cs € Rs) A (Rfnd := Py)) V ((Cs € Fm) A (De < Dt)A | -

| (Rfnd = Py «0.85)) v ((Cs € Fm) A (Rfnd = Py * 0.45)) ba CDV | _—

| T : FlgCI(Cs,...) | S -

i ‘ w:

| ! :

Figure 5: The Runtime Adaptability of CSRv-NETSsflight service

tB Banking - [Business Activity]

o3l aumessﬁmess{ﬂil Business Activity(BR). AddRemove CSRules C5Rule Instantiation Adapt 5 Rules

Execute WorkFlow . & X

Business Activity 1D

. Business dctivity Mame

Business Activity

Business Frocess :Banking
Business Sctivity 10 Business Activity Name Business Process
[ori
2 Authentications Banking
_ 4 Depasit Banking

Figure 6: The main functionalities and IDE of the .NET Env.

development environment. It supports syntax for multiplegpam-
ming languages including C#, VB.NET, J# and C++ all genegati
Common Intermediate Language (CIL) on compilation. TheTNE
platform provides excellent support for software exteitisjhadapt-
ability, maintainability and customizability through vawms tech-
niques including reflection, proxy, intermediate languagd on-fly
code generation.

By fully exploiting these .NET capabilities we are propasia
service-oriented implementation of knowledge-intensigée busi-
ness process. This service-based implementation is inthe®m-
pliant with the business-conceptual approach milestowespre-
sented and illustrated in the previous section. More peggishe
main IDE of the .NET supporting tool we implemented inhelyent
reflects the generic pattern definition of service-oriertediness
process as discussed and depicted in Fig@re

As depicted in Figure 6, in this main IDE exposing the imple-
mented environment, first under the icdrusi ness process”,
reference and / or name for any business process can betio&ad
deleted or updated. The second icdmusi ness activity”
allows for manipulating the business activities composingiven
business process. As we motivated above, the partialioglef
such activities within a given business process are postptmlate
stages. For instance, depending on the business rulescie, glav-
erning a given business process, which are taken in chaogeuttph
the third, fourth and fifth icons, different semanticallgivén pro-
filed ordering can be put into place. More precisely, thedtidon
"Add/remove CS rule” allows for editing, creating or delggiany
rewriting (business) rule with respect to given busineswiac

Any of the implemented rules can be instantiated as firssala
dependent entities using the fourth icon "CS Rule Instéintid. As
we are striving for dynamically changing any existing baessrule,
we implemented a main functionality for doing so throughitten
"Adapt CS rule”. Finally, the last functionality allows faiefining a
concrete workflow (from the general business process) aecduéx
ing any case.

After this global presentation of the environment funcéititnes
through its IDE, in the following we first bring more detail bow
the event-driven business rules are defined, (design-tipéated,
instantiated and then performed. Afterwards, we presemiaspect-
oriented mechanisms are exploited dignamicallyadapting and ex-
tending any running business rule. Finally, the generdiitactural
design of the software environment is highlighted.

8.1 Mapping of Rsrv-NeTs Formalism in .NET

To facilitate a smooth yet conservative mapping of the cptuzd-
level to the .NET service-based implementation, we have bea-
efiting from the extensive capabilities of the using Micriddtork
Flow Foundation (WFF) [6, 28]. Indeed, WFF supports, amathg o
ers, the manipulation of (event-driven) business rule gisirsuit-
able XML-based templates. It further allows for defining,mag-
ing and executing stateful workflow. WFF consists thus of @iva
ity model, workflow designer and XML-based rules engine. eRul
Definitions tag is composed of multiple RuleSets. Each ReflésS
associated to a given business activity. A RuleSet is actaie of
rules, where each RuleSet is composed of Rule. Rule coritaéns
(Event-Conditions-Actions) specification as Then-Act@nd thus
very close toRSRv-NETSrewriting rules.

Figure [?] recapitulates the main translating steps of Th8Rv-
NETS event-driven rewriting rules from conceptual level towsard
the developed .NET environment. Firstly, as it should beceigx
different participating service states are internally ienpented as
Web-Services. In this sense all exposed functionalitiesafgiven
rule-driven interaction are to be efficiently implementethvgervice
components. The exposed functionalities, we require teeaelany
given interaction are of course captured as Web-Serviezfates
(described using WSDL). The second and main translationeros
the mapping of the ECA-driven rewriting rules themselveasstFwe
capture the rule itself as a (composite) Web-Service, wharh be
mostly owned by any of the involved providers; though we alsio-
sider the case of third-party ownership. For instance, mapplica-
tion the rules are normally owned by the bank; but they canute o
sourced to a third-party for more optimal, universal aneliigent
management. Second, the ECA-rule for a given businesstgctre
conceived as a workflow. In this ECA-driven intra-activityomk-
flow, instantiations of the rules can be performed. Sinceheale
is implemented as an aspect, the three elements (evenitioond
action) composing a rule can be woven on the basis of thenitista
ated rules.

9. RELATED WORK

The potentials of business rules in Web-services haveyfiisgn ex-
plored in [23]. A stepwise rule-driven methodology is preed to
enhance the dynamic adaptability while composing Web-iSesv
using BPEL-like standards. The milestone consists in jodiy
classifying in a repository different business rules sietd Web

i

sl BusinessSetup Inter-Activity CSRules Intra-Activiy CSRules Execute Work Flow _ e x
Trip Booking
Trip Name ;Partugel ‘wWeekend | Custorner |John Robert |
TripType Account (102030401 v|
Hotel [Metropolitan Hotel «| Fight |LFo044 chug 9200810:008M v
Reservation Name ;.]ohn Rober] | Booking Nams |E asulet Nomal Package
[Sosin_ gm0] ke
| Monday . August 11,2008 | O
1] Passenger Type
5']] Pazzengers I--- -'I |
" Tiip :
Trnp Comporent Customer Resenvation Check. Check
Discout PTIWB TypsName | Mama Name N auT Rooms
- ame
5 0.00 Rounddip | Flight Paul Martin o
Span20as . 40080 000 Roundiip ‘ol PaiMain |Span2Bays Specl 852008 8112008 2
s :

Figure 7: Rule-centric Instantiated Services execution

[RSRv-NETsConceptual Level || .NET mechanisms |
RSRV-NETSService states Service components
RSRv-NETSstates structures || WSDL-based interfaces
RSRV-NETSrewriting rules WFF-based workflow

Figure 8: Translating steps from RSRv-NETS semantics to the
compliant .NET env.

Services composition. Nevertheless, no formal verificafioali-
dation of the constructed composition is undertaken. Aerofiio-
posal [24] conceives business rules as Web-Services Hedcuis-
ing extensions to reactive RuleML, instead of the passivksaatic
WSDL. The approach is automated with supporting tool cali€te.
Nonetheless, the approach does not tackle the concejttiatizevel
neither copes with dynamic composition of the (WS) ruleptxsic
business procestivities

A. Charfi et al. [9] leverages BPEL-like with more agility and
modularity, by enhancing it with an extra aspectual levethe Te-
sulting new language named AO4BPEL, allows thus exteringliz
cross-cutting concerns such as security and data handliadwvaces.
AO4BPEL uses XML-Query languagéPat h as its pointcuts lan-
guage. The approach to agile services introduced by Ertaali e
[16] also adopts aspect-orientation, and is specificallyotba to
policies and QoS concerns. In the same line, A.Finkelsteil.e
proposed in [12] a generic aspect-oriented language, thyaiea for
dynamically weaving behavioral advices on BPEL code. Aepth
aspect-driven approach to Web-services appeared mosttlseae
[25]. In this approach the emphasis is on the adaptabiliusiness
protocolswhile composing Web-services.

10. CONCLUSIONS

In this contribution we put forwards a model-driven stepwép-
proach for describing, specifying, validating, adaptind afficiently
deploying distributed rule-centric service-driven apgtions. More
precisely, the first phase consists in describing (senmédly) struc-
tural and functional requirements using UML class-diagraand
business rules in a form of ECA statements. The second phase
allows deriving from the first phase a more rigorous spedifica
using tailored High-level Petri nets for services. Validatusing
graphical animation are possible, we support with formétiesion
using true-concurrent rewriting logic. The third phases;apitu-
lates on aspect mechanisms and reflection and propose tovendo
any service Net with a rule-centric aspectual-level, whates are
dynamically (un)woven on runnin@ SRv-NETS services. Finally,
we proposed a compliant aspectual .Net environment foratipg
the approach at the implementation-level using Web-Sesviech-
nology.

For more consolidation we are carrying several non-tricede
studies including in particular a realistic variant of arc@nmerce
case study. Second, we are developing extensive tools dirgpo
we are integrating the WUDE language for rapid-prototyping and
formal verification purposes.

11. REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraj\leb Services
Springer-Verlag, 2004.
N. Aoumeur and G. Saake. A Component-Based Petri Net Mode
Specifying and Validating Cooperative Information SysteBata and
Knowledge Engineeringt2(2):143-187, August 2002.
N. Aoumeur and G. Saake. Integrating and Rapid-proiatyftyML
Structural and Behavioural Diagrams Using Rewriting LogjicA.B.
Pidduck, J. Mylopoulos, C.C. Woo, and M.T. Ozsu, editéhsc. of
the 14th International Conference on Advanced InformaS8gatems
Engineering (CAISE’02)volume 2348 of_ecture Notes in Computer
Sciencepages 296-310, 2002.
[4] N. Aoumeur and G. Saake. Dynamically Evolving Concutren

(2]

(3]

(5]

[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

(23]

Information Systems: A Component-Based Petri Net Prop&seth
and Knowledge Engineering0(2):117-173, 2004.

N. Aoumeur, G. Saake, and K. Barkaoui. Incremental Sjmetion
Validation and Runtime Adaptivity of Distributed Compomnen
Information systems. I 1th European Conference on Software
Maintenance and Reengineering (CSMR;@¥ges 123-136. IEEE
Computer Society, 2007.

T. Archer and A. Whitechapelnside Microsoft C#Microsoft Press,
2002.

G. Booch, I. Jacobson, and J. Rumbaugh, editdrstied Modeling
Language, Notation Guide, Version 1A&ddison-Wesley, 1998.
Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. Rftect
Analysis and Design for Adapting Object Run-time Behavior.
Zohra Bellahsene, Dilip Patel, and Colette Rolland, esjto
Proceedings of the 8th International Conference on Objaiented
Information Systems (OOIS’Q2)ecture Notes in Computer Science
2425, pages 242-254, Montpellier, France, on 2nd-5th ofeBeper
2002. Springer-Verlag. ISBN: 3-540-44087-9.

A. Charfi and M. Mezini. AO4BPEL: An Aspect-oriented Ertgon

to BPEL.World Wide Web Journal: Recent Advances on Web Services

(special issug)10:309-344, 2007.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oljet. Meseguer,
and C.L: Talcott. All About Maude - A High-Performance Loaic
Framework, How to Specify, Program and Verify Systems in
Rewriting Logic.Lecture Notes in Computer Science (springé50,
2007.

M. Clavel, F. Duran, S. Eker, J. Meseguer, and M. Stetaudle :
Specification and Programming in Rewriting Logic. Techhieport,
SRI, Computer Science Laboratory, March 1999. URL :
http://maude.csl.sri.com.

C. Courbis and A. Finkelstein. Towards aspect weavipgieations.
In Proceedings of the 27th international conference on Soéwa
engineering (ICSE '05)pages 69-77. ACM Press, 2005.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,T8atte, and
S. Weerawarana. Business Process Execution Language for We
Services (BPELAWS 1.1).
http://www-106.ibm.com/developerworks/webservices/
library/ws-bpel/, IBM report, 2004.

C. Dorn and S. Dustdar. Sharing hierarchical contextfobile web
servicesDistributed Parallel Database1:85-111, 2007.

Zi Duan, A. Bernstein, P. Lewis, and S. Lu. A Model for Afast
Process Specification, Verification and CompositiorPioceedings
of the 2nd international conference on Service orientedpding
(ICSOC’'04) pages 232-241. ACM Press, 2004.

A. Erradi and V. Maheshwari, P. Tosic. Policy-Drivenddieware for
Self-adaptation of Web Services CompositionsAGM/IFIP/USENIX
7th International Middleware Conferenceolume 4290 of_ecture
Notes in Computer Sciengeages 62—-80. Springer, 2006.

R. Heckel and L. Mariani. Automatic Conformance Tegtof Web

Services. IlProceedings FASE 2008olume 3442, pages 34-48. Incs,

2005.

P. Kardasis and P. Loucopoulos. Expressing and OrganiBusiness
Rules.Information and Software Technolqg3004.

A. Martens. Analyzing Web Service Based Business Fge In
Proceedings FASE 2008olume 3442, pages 19-33. Incs, 2005.
J. Meseguer. Conditional rewriting logic as a unifieddaldfor
concurrencyTheoretical Computer Scienc@6:73-155, 1992.

J. Meseguer. A Logical Theory of Concurrent Objects asd
Realization in the Maude Language. In G. Agha, P. Wegner, and
A. Yonezawa, editorsResearch Directions in Object-Based
Concurrency pages 314-390. The MIT Press, 1993.

OMG. UML 2.0: Superstructure Specification. Versiof,2.
formal/05-07-04. Technical report, omg.org, 2005.

B. Orriéns, J. Yang, and M.P. Papazoglou. A FrameworkBusiness
Rule Driven Web Service Composition. Rroc. of Conceptual
Modeling for Novel Application Domainsolume 2814 ot ecture
Notes in Computer Sciencgeages 52—-64. Springer, 2003.

[24]

[25]

[26]

[27]

(28]

F. Rosenberg and S Dustdar. Towards a Distributed &=@riented
Business Rules System. Rroc. of the of EEE European Conference
on Web services (ECOWSEEE Computer Society Press, 2005.

S. Ruy, B. Benatallah, and F. Casati. A Framework for kging the
Evolution of Business Protocols in Web Serviceslnmsia-Pacific
Conference on Conceptual Modelling (APCCM’'0Z007.

M. Solanki, A. Cau, and H. Zedan. Introducing Compasitlity in
Web Service Descriptions. roceedings of the International
Conference on World Wide WdEEE Computer Society Press, 2004.
W.M.N. Wan-Kadir and P. Loucopoulos. Relating EvolyiBusiness
Rules to Software Desigdournal of Systems Architectyr2003.
WEFF:. Windows Workflow Foundation. Technical report,
http://netfx3.com/content/WFHome.aspx.

https://www.researchgate.net/publication/220880621

