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Abstract— Stereo vision technique has been widely used in
robotic systems to acquire 3-D information. In recent years,
many researchers have applied bilateral filtering in stereo
vision to adaptively aggregate the matching costs. This has
greatly improved the accuracy of the estimated disparity maps.
However, the process of filtering the whole cost volume is very
time consuming and therefore the researchers have to resort to
some powerful hardware for the real-time purpose. This paper
presents the implementation of fast bilateral stereo on a state-
of-the-art GPU. By highly exploiting the parallel computing
architecture of the GPU, the fast bilateral stereo performs in
real time when processing the Middlebury stereo datasets.

Index Terms— stereo vision, disparity maps, real-time, fast
bilateral stereo, GPU.

I. INTRODUCTION

We live in a 3-D world but our eyes can only perceive
objects in 2-D. The miracle of our depth perception is due
to our brain’s ability to analyse the difference between the
two 2-D images which are projected on the retinas of our
eyes [1]. As for the digital images captured by cameras,
they are 2-D in nature. By comparing the difference between
the images captured using a pair of synchronised cameras,
the 3-D information of the surrounding environment can be
obtained [2]. This process is commonly referred to as stereo
vision, and it is very similar to the human binocular vision
[3]. For a well-calibrated stereo rig, the horizontal distance
between each pair of corresponding points pl = [ul, vl]

> in
the left image πl and pr = [ur, vr]

> in the right image πr
is defined as disparity [4].

The two important factors in stereo vision are speed and
accuracy [5]. A lot of research has been carried out over the
past decade to improve both the precision of the disparity
maps and the execution speed of the algorithms [6], [7].
However, the stereo vision algorithms designed to achieve
better disparity accuracy usually have higher computational
complexity and lower processing efficiency [8]. Hence, speed
and accuracy are two desirable but conflicting properties, and
it is very challenging to achieve both of them simultaneously
[7]. Therefore, the main motivation of developing a stereo
vision algorithm is to improve the trade-off between accuracy

and speed [7]. In most circumstances, a desirable trade-off en-
tirely depends on the target application. For example, a real-
time performance is required for the stereo vision systems
applied in mobile robotics because the other systems, e.g.,
lane detection [9], visual odometry [10], visual Simultaneous
Localisation and Mapping (SLAM) [11], [12] and visual
tracking [13], [14], can be easily implemented in real time if
the 3-D information is available [15].

The state-of-the-art algorithms for disparity estimation
can mainly be classified as local and global [4]. The local
algorithms [16], [17], [18], [5] simply match a series of
blocks from the left and right images and select the cor-
respondence with the lowest cost or the highest correlation.
This optimisation is also known as Winner-Take-All (WTA)
[5]. Unlike the local algorithms, the global algorithms process
the stereo matching using some sophisticated techniques,
e.g., Belief Propagation (BP) [19] and Graph Cut (GC) [20].
These techniques are usually developed based on the Markov
Random Fields (MRF) [21], where the process of finding
the best disparities translates to a probability maximisation
problem [4]. However, finding the optimum values for the
smoothness parameters is a difficult task due to the occlusion
problem. Over-penalising the smoothness term can reduce
the ambiguities around the discontinuities but on the other
hand can cause errors for continuous areas [4]. In [22],
Mozerov and Weijer proved that the initial energy optimi-
sation problem in a fully connected MRF model can be
formulated as an adaptive cost aggregation using bilateral
filtering. Since then, a lot of endeavours have been made
in local algorithms to improve the accuracy of the disparity
maps by performing bilateral filtering on the cost volume
before estimating the disparities. These algorithms are also
known as fast bilateral stereo (FBS). However, filtering the
whole cost volume is always computationally intensive and
therefore the FBS has to be implemented on some powerful
hardware for the purpose of real-time [4].

This paper presents the implementation of the FBS on an
NVIDIA GTX 1080 GPU. Firstly, we provide the readers
with some mathematical preliminaries about the FBS. The
cost computation is optimised based on our previously pub-
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Fig. 1
OVERVIEW OF THE PROPOSED DISPARITY ESTIMATION SYSTEM.

lished algorithm in [5]. Furthermore, each matching cost is
saved in two 3-D cost volumes, hence reducing the compu-
tations by 50% when estimating both the left and right dis-
parity maps. Then, we provide some details on the practical
implementation, such as the use of different types of device
memory. The source code of our implementation is publicly
available at: https://bitbucket.org/rangerfan/
bilateral_stereo_gpu_middlebury.git.

The remainder of this paper is organised as follows: Sec-
tion II describes the proposed disparity estimation algorithm.
Implementation details are provided in Section III. In Section
IV, we present the experimental results and evaluate the
performance of the proposed stereo vision system. Section
V summaries the paper and provides some recommendations
for future work.

II. ALGORITHM DESCRIPTION

In general, a disparity estimation algorithm usually consists
of four steps: cost computation, cost aggregation, disparity
optimisation and disparity refinement [22]. However, the
sequential use of these steps entirely depends on the chosen
algorithm [23]. In the following subsections, we discuss each
step in the proposed disparity estimation algorithm.

A. Cost Computation

In stereo matching, the most commonly used approaches
for cost computation are the Absolute Difference (AD) and
the Squared Difference (SD) [24]. However, these two ap-
proaches are very sensitive to the intensity difference between

the left and right images, which may further lead to some
incorrect matches in the process of disparity estimation. In
this paper, we use the Normalised Cross-Correlation (NCC)
as the cost function to measure the similarity between each
pair of blocks selected from the left and right images.
Although the NCC is more computationally intensive than
the AD and the SD, it can provide more accurate results when
the intensity difference is involved [4]. The cost function of
the NCC is as follows [5]:

c(u, v, d) =

x=u+%∑
x=u−%

y=v+%∑
y=v−%

il(x, y)ir(x− d, y)− nµlµr

nσlσr
(1)

where

σl =

√√√√x=u+%∑
x=u−%

y=v+%∑
y=v−%

il
2(x, y)/n− µl2 (2)

σr =

√√√√x=u+%∑
x=u−%

y=v+%∑
y=v−%

ir
2(x− d, y)/n− µr2 (3)

c(u, v, d) ∈ [−1, 1] is the correlation cost. il(x, y) denotes
the intensity of a pixel at (x, y) in the left image and ir(x−
d, y) represents the intensity of a pixel at (x−d, y) in the right
image. The centre of the reference square block is (u, v). Its
width is 2%+ 1 and the number of pixels within each block
is n = (2% + 1)2. % is set to 1 in this paper. µl and µr
represent the means of the pixel intensities within the left

https://bitbucket.org/rangerfan/bilateral_stereo_gpu_middlebury.git
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and right blocks, respectively. σl and σr denote the standard
deviations of the left and right blocks, respectively.

In practical implementation, the values of µl, µr, σl and σr
are pre-calculated and stored in a static program storage for
direct indexing [4]. Therefore, only the dot product

∑
ilir in

Eq. (1) needs to be calculated when computing the correlation
cost between each pair of left and right blocks. This greatly
reduces unnecessary computations. More details on the NCC
implementation are provided in our previously published
work [5].

The calculated correlation costs c are simultaneously stored
in the left and right 3-D cost volumes, as shown in Fig. 1. It
is to be noted that the value of c at the position of (u, v, d)
in the left cost volume is the same as that at the position of
(u− d, v, d) in the right cost volume. In the next step, each
correlation cost in the two 3-D cost volumes is updated by
aggregating the costs from its neighbourhood system.

B. Cost Aggregation

In global algorithms, finding the best disparities is equiv-
alent to maximising the joint probability in Eq. (4) [4].

P (p, q) =
∏

pij∈P

Φ(pij , qpij )
∏

npij
∈Npij

Ψ(pij ,npij ) (4)

where pij represents a vertex at the site of (i, j) in the
disparity map P and qpij denotes the intensity differ-
ences which correspond to different disparities d. Npij =
{n1pij , n2pij , n3pij , · · · , nkpij |npij ∈ P} represents the
neighbourhood system of pij . In this paper, the value of k
is set to 8 and N is an 8-connected neighbourhood. Φ(·)
expresses the compatibility between each possible disparity
d and the corresponding block similarity. Ψ(·) expresses
the compatibility between pij and its neighbourhood system
Npij

. However, Eq. (4) is commonly formulated as an energy
function, as follows [4]:

E(p) =
∑

pij∈P

D(pij , qpij ) +
∑

npij
∈Npij

V (pij ,npij ) (5)

where D(·) corresponds to the correlation cost c in this
paper and V (·) determines the aggregation strategy. In the
MRF model, the method to formulate an adaptive V (·)
is important because the intensity in a discontinuous area
usually greatly differs from those of its neighbours [25].
Therefore, some authors formulated V (·) as a piece-wise
model to discriminate the discontinuous areas [26]. However,
the process of minimising the energy function in Eq. (5)
results in a high computational complexity, making real-time
performance challenging. Since Tomasi et al. introduced the
bilateral filter in [27], many authors have investigated its
application to aggregate the matching costs [8], [28], [29].
Mozerov and Weijer also proved that the bilateral filtering is

a feasible solution for the energy minimisation problem in
the MRF model [22]. These methods are also known as fast
bilateral stereo, where both intensity difference and spatial
distance provide a Gaussian weighting function to adaptively
constrain the cost aggregation from the neighbours. A general
representation of the cost aggregation in the FBS is as
follows:

cagg(u, v, d) =

∑x=u+ρ
x=u−ρ

∑y=v+ρ
y=v−ρ ωd(x, y)ωr(x, y)c(x, y, d)∑x=u+ρ

x=u−ρ
∑y=v+ρ
y=v−ρ ωd(x, y)ωr(x, y)

(6)
where

ωd(x, y) = exp

{
− (x− u)2 + (y − v)2

γd2

}
(7)

ωr(x, y) = exp

{
− (i(x, y)− i(u, v))2

γr2

}
(8)

ωd and ωr are based on the spatial distance and the colour
similarity, respectively. γd and γr are two parameters used
to control the values of ωd and ωr, respectively. The costs
c within a square block are aggregated adaptively and an
updated cost cagg can be obtained.

Although the FBS has shown a good performance in terms
of matching accuracy, it usually takes a long time to process
the whole cost volume. Therefore, the FBS has to been
implemented on some powerful hardware in order to perform
in real time.

C. Disparity Optimisation

As discussed in Section II-B, the process of energy min-
imisation in global algorithms can be realised by performing
bilateral filtering on the initial cost volumes. The best dis-
parities can therefore be found by simply performing WTA
on the left and right aggregated cost volumes. The left and
right disparity maps, i.e., `lf and `rt, are shown in Fig. 1.

D. Disparity Refinement

This step usually involves several disparity map post-
processing algorithms, such as weighted median filtering
[8], left-right consistency (LRC) check [30] and subpixel
enhancement [4]. In this subsection, we only discuss the latter
two algorithms.

Firstly, according to the uniqueness constraint stated in [5],
for an arbitrary point pl = [ul, vl]

> in the left image πl, there
exists at most one corresponding point pr = [ur, vr]

> in the
right image πr, namely:

`lf (u, v) = `rt(u− `lf (u, v), v) (9)

Therefore, the LRC check is always performed to remove
the incorrect matches in the occlusion areas and find an
outline in the disparity map [5]. The corresponding LRC
check result is illustrated in Fig. 1.



Fig. 2
OVERVIEW OF THE PRACTICAL IMPLEMENTATION.

Furthermore, since the distance between a 3-D object
and the camera focal point is inversely proportional to the
disparity value, a disparity error larger than one pixel may
result in a non-negligible difference in the 3-D reconstruction
result [4]. Therefore, a subpixel enhancement is always
performed to increase the resolution of the disparity values.
This can be achieved by fitting a parabola f(u, v, d) to three
correlation costs c(u, v, d − 1), c(u, v, d) and c(u, v, d + 1)
around the initial disparity d and then selecting the centre
line of f(u, v, d) as the subpixel disparity ds [4]:

ds = d+
c(u, v, d− 1)− c(u, v, d+ 1)

2c(u, v, d− 1) + 2c(u, v, d+ 1)− 4c(u, v, d)
(10)

The corresponding subpixel disparity map is shown in
Fig. 1. In the next section, we provide more details on the
implementation.

III. IMPLEMENTATION

The proposed algorithm is implemented on an NVIDIA
GTX 1080 GPU to achieve real-time performance. An
overview of the practical implementation is shown in Fig.
2. The GPU has 8 GB GDDR5X and 20 streaming multi-
processors (SMs). Each SM consists of 128 streaming proces-
sors (SPs), and therefore the GPU has 2560 SPs in total. The
Single Instruction Multiple Data (SIMD) architecture allows
the SPs on the same SM to execute the same instruction
but process different data at each clock cycle [31]. The host
memory and the device memory are communicated with each

other via Graphical/Memory Controller Hub (GMCH) and
I/O Controller Hub (ICH), which are also known as the Intel
northbridge and southbridge, respectively.

In our implementation, the left and right images are first
sent to the global memory of the GPU from the host memory.
Compared with the texture memory and constant memory
which are read-only and cached on-chip, the global memory
is off-chip and therefore less efficient in terms of memory
requesting [5]. Furthermore, a thread is more likely to fetch
the data from the closest addresses that its nearby threads
accessed, and thus the use of cache in global memory
is impossible [31]. Hence, we use the texture memory to
optimise the caching for the left and right images. We first
create two 2-D texture objects on the texture memory. Then,
the texture objects are bound directly to the addresses of the
left and right images in the global memory. The value of a
pixel in the left or right image can thus be fetched from the
texture objects instead of the global memory. This greatly
minimises the memory requests from the global memory
and further improves the speed of data fetching. Then, the
instruction unit in each SM sends the same instructions to
the SPs to compute and aggregate the correlation costs, and
then optimise and refine the disparities.

In the first step, µl, µr, σl and σr are pre-calculated and
their values are stored in global memory. When calculating
the correlation cost using Eq. (1), the values of µl, µr, σl and
σr are fetched from the global memory and the values of il
and ir are fetched from the texture memory. This significantly
reduces the expensive computations of µ and σ and the



memory requests from the global memory. The value of each
correlation cost c is saved in two 3-D cost volumes in the
global memory.

As discussed in Section II-B, bilateral filtering is per-
formed on the left and right cost volumes to aggregate the
correlation costs adaptively. Due to the fact that constant
memory is read-only and beneficial for the data that will
not change over the course of a kernel execution, the values
of ωd and ωr are pre-calculated and stored in the constant
memory to reduce the unnecessary computations in Eq. (7)
and (8). The left and right aggregated cost volumes are then
stored in the global memory.

In the third step, each SP searches for the highest corre-
lation cost cagg between (u, v, dmin) and (u, v, dmax). The
position in the d axis which corresponds to the highest cost
cagg is then selected as the desirable disparity for the position
of (u, v). The estimated left and right disparity maps are then
stored in the global memory for the following processes.

Finally, the instruction of disparity refinement is executed
on each SM. In this paper, the left image is set as the
reference, and therefore the LRC check is performed to
remove the incorrect matches in the left disparity map. Then,
each SP executes Eq. (10) and stores the corresponding
subpixel disparity values in the global memory. The subpixel
disparity map is then sent to the host memory via GMCH
and ICH for display.

The performance of the proposed implementation is dis-
cussed in Section IV.

IV. EXPERIMENTAL RESULTS

As discussed in Section I, accuracy and speed are two
main aspects of stereo vision and achieving desirable results
entirely depends on a good trade-off between these two
factors. Hence in the following subsections, we evaluate both
the precision of the proposed algorithm and the execution
speed of the practical implementation.

A. Accuracy Evaluation

In this subsection, we use Middlebury 2001 datasets [23]
and 2003 datasets [32] to evaluate the accuracy of the pro-
posed stereo matching algorithm. Some experimental results
are illustrated in Fig. 3.

To quantify the accuracy of the estimated disparity maps,
Barron et al. proposed to compute the Percentage of Error
Pixels ePEP as follows [33]:

ePEP =
1

N

∑
(u,v)

δ
(
|`et(u, v)− `gt(u, v)|, εd

)
×100% (11)

where

δ(d, εd) =

{
1 (d > εd)

0 (d ≤ εd)
(12)

The threshold εd is used to determine whether an estimated
disparity is correct or not and it is set to 2 in this paper. N
stands for the total number of disparities used for evaluation.
`et represents the estimated disparity map and `gt denotes
the corresponding ground truth data. To provide an in-
depth performance evaluation of the proposed algorithm,
we compute the values of ePEP for different regions of
interest: the disparity map excluding occlusions (non occ),
the disparity map excluding occlusions and texture-less areas
(non occ textl), and the disparity map excluding occlusions
and discontinuities (non occ discont). The corresponding val-
ues of ePEP with respect to different input images and
regions of interest are shown in Table I. Next, we use the
“Cones” dataset to evaluate the performance of the algorithm
with respect to different values of parameters in bilateral
filtering, i.e., ωd, ωr and ρ. The corresponding evaluation
results are shown in Fig. 4, 5 and 6.

Fig. 4 shows the percentage of error pixels with respect
to different values of γd. The parameter ωd in Eq. (7) is
a Gaussian weighting function which is dependent on γd.
Therefore, the curves in Fig. 4 for each region of interest
have a local minimum. Similarly, it can be observed that each
curve in Fig. 5 has a local minimum. This also conforms to
the Gaussian weighting function in Eq. (8). Finally, it can
be seen that for each curve in Fig. 6, the value of ePEP
decreases with increasing ρ. However, this decrease in ePEP
is observed up to the point when ρ is equal to 8. Beyond
the latter value, ePEP increases slightly for each region
of interest. This indicates that the performance of the FBS
depends on the values of ωd, ωr and ρ and we have to find
their optimum values in order to achieve the best performance
in terms of accuracy.

B. Speed Evaluation

In addition to accuracy, the execution speed of the pro-
posed algorithm is also quantified in order to give an
evaluation of the overall system’s performance. However,
due to the fact that image size and disparity range are not
constant among different datasets, a general way to depict the
performance in terms of processing speed is given in millions
of disparity evaluations per second Mde/s as follows [7]:

Mde/s =
umaxvmaxdmax

t
10−6 (13)

TABLE I
ePEP WITH RESPECT TO DIFFERENT INPUT IMAGES AND REGIONS OF

INTEREST (εd = 2).

Region of interest Cones Teddy Venus Sawtooth
non occl 8.2264 10.9244 2.8573 7.3800

non occ textl 8.2928 10.8922 n/a n/a
non occ discont 2.7580 4.8556 n/a n/a



Fig. 3
EXPERIMENTAL RESULTS. THE FIRST ROW ILLUSTRATES THE LEFT IMAGES. THE SECOND ROW SHOWS THE GROUND TRUTH DISPARITY MAPS

EXCLUDING THE OCCLUSION AREAS. THE THIRD ROW SHOWS THE DISPARITY MAPS ESTIMATED USING SEMI-GLOBAL MATCHING. THE FOURTH ROW

ILLUSTRATES THE EXPERIMENTAL RESULTS.

where umax and vmax represent the width and height of
the disparity map, dmax denotes the maximum search range
and t represents the algorithm runtime in seconds. Our
implementation achieves a performance of Mde/s = 344.16
when ρ is set to 6.

Furthermore, we use the “Cones” dataset to evaluate the
speed performance with respect to different aggregation sizes.
The runtime t corresponding to different values of ρ is shown
in Fig. 7. It can be seen that t increases with increasing ρ.
When ρ is equal to 5, the execution speed of the proposed
implementation is around 50 fps. Although a better accuracy
can be achieved when ρ is set to 7 (see Fig. 6), the processing
speed is doubled (see Fig. 7). Therefore, ρ = 6 provides a
better trade-off between accuracy and speed in the proposed
algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the implementation of the
FBS on a GTX 1080 GPU. On the algorithm side, the
NCC is first simplified as a dot product. The values of
µ and σ are pre-calculated and stored in a static program
storage for direct indexing. Furthermore, each correlation
cost is simultaneously stored in two 3-D cost volumes, thus
decreasing the computations by approximately 50% when
estimating both the left and right disparity maps. Then, the
correlation costs are aggregated adaptively by performing
bilateral filtering on the left and right cost volumes. The left
and right disparity maps are estimated by simply performing
WTA on the filtered cost volumes. Finally, the disparities in
half-occluded areas are removed and the subpixel resolution
is achieved by conducting parabola interpolations around the



Fig. 4
ePEP WITH RESPECT TO DIFFERENT VALUES OF γd .

Fig. 5
ePEP WITH RESPECT TO DIFFERENT VALUES OF γr .

initial disparities. By highly exploiting the parallel computing
architecture, the proposed FBS performs in real time on the
GTX 1080 GPU.

However, performing the bilateral filtering on the whole
cost volume is still a time-consuming process. Therefore, we
plan to use a group of reliable feature points to suggest the
search range for their neighbours. Then, only the correlation
costs around the suggested search range are calculated and
the bilateral filtering is performed only on the space around
the calculated disparities.
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