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Abstract—Recurrent neural networks with a gating mechanism
such as an LSTM or GRU are powerful tools to model sequential
data. In the mechanism, a forget gate, which was introduced
to control information flow in a hidden state in the RNN, has
recently been re-interpreted as a representative of the time scale
of the state, i.e., a measure how long the RNN retains information
on inputs. On the basis of this interpretation, several parameter
initialization methods to exploit prior knowledge on temporal
dependencies in data have been proposed to improve learn-
ability. However, the interpretation relies on various unrealistic
assumptions, such as that there are no inputs after a certain
time point. In this work, we reconsider this interpretation of
the forget gate in a more realistic setting. We first generalize
the existing theory on gated RNNs so that we can consider the
case where inputs are successively given. We then argue that the
interpretation of a forget gate as a temporal representation is
valid when the gradient of loss with respect to the state decreases
exponentially as time goes back. We empirically demonstrate
that existing RNNs satisfy this gradient condition at the initial
training phase on several tasks, which is in good agreement with
previous initialization methods. On the basis of this finding, we
propose an approach to construct new RNNs that can represent
a longer time scale than conventional models, which will improve
the learnability for long-term sequential data. We verify the
effectiveness of our method by experiments with real-world
datasets.

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are deep learning mod-
els for representing sequential data, which have extensive
applications including speech recognition [1], [2], natural
language processing [3], video analysis [4], and action recog-
nition [5]. RNNs represent the temporal features of data using
time-variant hidden states whose transition is determined by
the previous state and an input at the present time. RNNs
are typically trained by gradient descent methods using back-
propagation through time. However, the training is usually
difficult because the gradient of loss tends to take too small
value as the sequence length increases. which is known as
the vanishing gradient problem [6], [7]. To enable models
to learn on long-term sequential data, RNNs with a gating
mechanism (called gated RNNs), such as a Long Short-Term
Memory (LSTM) [8] or Gated Recurrent Unit (GRU) [9], have
been proposed. Gated RNNs control how much information
of the past state is retained to the next state by means of
a forget gate function [10], which is useful to mitigate the
vanishing gradient problem [11]. Furthermore, the forget gate

has recently been considered to take a role to represent a
temporal characteristic in RNN models [12]. That is, output
values of the forget gate can be viewed as an expression of how
long the state keeps information (or memory), which is called
the time scale of the state1. On the basis of this interpretation,
several methods to impose a desired time scale on gated RNNs
have been proposed [12], [15], [16].

However, justification of the interpretation has not been
fully explored. The interpretation is commonly explained by
a theory using a “free input” regime [12], which ignores
inputs after some time step and even parameters in RNNs.
We empirically found such simplification sometimes generate
a gap between theoretical properties on a gated RNN and its
actual behavior. For example, while existing studies indicate
that the gradient of loss with respect to inputs decrease
exponentially as time goes back in gated RNNs [11], [17],
such experimental behavior does not necessarily occur in a
trained model (Figure 1). It is important to clarify when and
how we can fill this gap for a more advanced understanding
on RNNs and the construction of more sophisticated models.

In this paper, we first extend the aforementioned theory to
make it applicable to more practical situations where inputs
are successively given. This approach relates the time scale in
gated RNNs to the vanishing gradient problem. Specifically,
we show that when the gradient of loss with respect to inputs
decays exponentially as time goes back, the forget gate indeed
represents the time scale of the state. Through experimental
observation on RNNs trained with several tasks, we found that
this condition on the gradient holds, at least at the initial phase
of training. This is a new aspect to explain the effectiveness
of recent initialization methods [12], [15] based on the time
scale interpretation of the forget gate function. That is, since
the theory behind such methods is valid at least at the initial
phase of training, imposing a desirable time scale on the model
at initialization is reasonable.

On the basis of this observation, we consider a different
approach from the existing methods to improve the learnability
of RNNs at the initial training phase. That is, we propose a
method to construct new RNN models, which can represent
a larger order time scale than conventional leaky or gated

1Note that the idea is considered as an extension of temporal representation
in older RNN models such as leaky units [13], [14].
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RNNs. Our strategy is to replace the exponential decay of the
gradient at the initial phase of training with a more gradual
(polynomial) decay by changing the model structure. By this
modification, we expect that the RNNs can capture the long-
term dependencies of data more efficiently. To achieve this, we
adopt the differential equation view on RNNs, which is often
used in theoretical analysis on RNNs [12]. The exponential
decay of memory in the RNN state is characterized by the
solution h(t) = e−c(t−t0)h(t0) of a basic ordinary differential
equation

dh

dt
(t) = −ch(t) (1)

with constant c > 0, which is obtained by simplifying the
continuous counterpart of state update rule in RNNs. By
exploiting the fact that modifying the linear decay term in
(1) to a higher degree term leads to a polynomial decaying
solution, we can model memory that decays much more
slowly than exponentially. We add the higher degree term
into existing RNNs to derive a new family of models that
can represent a much longer time scale. This method can
be implemented without any additional parameters and with
little computational overhead. We evaluated our method with
experiments on sequence classification tasks on real-world
datasets and found that it indeed helps RNNs to improve the
accuracy.

Our major contributions are as follows.
• We extend the existing arguments [12] to establish a

theory on temporal structures in gating mechanisms and
leaky units, which enables us to see how time scale in
RNNs behaves in more practical situations.

• Through observations on models while training, we found
that the time scale interpretation in the forget gate is
indeed valid, at least at initialization. This gives us a
new insight on previously proposed initialization methods
that impose a specific time scale on RNN models at
initialization [12], [15].

• On the basis of this insight, we derive a simple method to
construct new RNN models that can represents a larger
order time scale than previous models. We experimentally
verify our method on real-world datasets.

In Section II of this paper, we briefly review related works.
Section III explains the existing theory on time scale rep-
resentation in leaky or gated RNNs. We extend the theory
and compare the theoretical and actual behavior of RNNs in
Section IV. We propose our approach to construct RNNs that
represent a larger time scale in Section V. Section VI verifies
our proposed method by experiments. We conclude in Section
VII with a brief summary.

Notation. R is a set of real numbers. Vectors and matrices
are denoted by small and capital bold letters (e.g., x ∈ Rn and
W ∈ Rn×n). W> denotes the transpose of a matrix W. The
Jacobian matrix of a vector-valued function y = y(x) at x0

is ∂y
∂x (x0), or just ∂y

∂x when it does not cause confusion. a�
b = (ai · bi)i ∈ Rn denotes the element-wise multiplication,
and diag(a) ∈ Rn×n is a diagonal matrix with its diagonal

entries equal to the entries of a. A power xr of a vector x is
taken entry-wise. 1 ∈ Rn denotes a vector with all entries 1.
I ∈ Rn×n denotes an identity matrix. σ(x) = 1

1+e−x denotes
a sigmoid function. f ′ denotes the derivative of a function f .

II. RELATED WORKS

There have been many works on time scale representation
in RNNs [12], [18]–[21]. Since the use of gated RNNs such as
LSTMs and GRUs is dominant in a wide range of applications
among other RNNs, investigating the time scale representation
in gated RNNs is of particular importance. Tallec and Ollivier
[12] argued that the forget gate function in LSTMs and GRUs
represents how long memory is retained in hidden states, i.e.,
the time scale of the states. Based on this idea, several methods
have been proposed to improve learning ability of gated RNNs
[12], [15], [16]. Despite the effectiveness of these methods, a
possible gap between the theoretical and actual behavior of
hidden states in RNNs has been not well understood. We aim
to take an approach that bridges this gap. Moreover, previous
applications of the theory have been limited to controlling
the time scale in states with a bias term in the forget gate
[12], [15], [16]. In particular, RNNs used in such methods
model memory that decays exponentially. In this work, we
establish a method to represent larger order time scales by
modeling memory that decays polynomially. There is a recent
work that incorporates polynomial memory decay into RNNs
from a statistical view [22]. However, the method requires to
store numerous past states to update the state, which increases
computational costs for training and inference. In contrast, our
method does not need to store past states while inference, and
so has less additional computational costs.

III. PRELIMINARIES: TIME SCALE IN RNNS

An RNN consists of a hidden state and its transition driven
by inputs. Let ht ∈ Rn and xt ∈ Rd denote a state and
an input at time t respectively. In order to model complex
temporal dependencies in sequential data, it is crucial for
RNNs to learn temporal representation efficiently. In this
section, we review how such representation is implemented
in RNN structures following Tallec and Ollivier’s argument
[12].

We begin with explaining a leaky RNN model [13], [14],
which is a simplified variant of gated RNNs such as LSTMs
and GRUs. In the leaky RNN, temporal representation is
achieved in the simplest way with leaky units [13], [14], whose
state update rule is written as

ht = (1− α)ht−1 + αh̃t, (2)

h̃t = tanh(Uht−1 +Wxt + b), (3)

where α ∈ (0, 1),U ∈ Rn×n,W ∈ Rn×d, and b ∈ Rn are
parameters to be learned. We call U a recurrent weight matrix.
α controls the information flow in the state. When α is small,
the state is almost unchanged and information is retained, and
when α is close to 1, the state is largely replaced by a new
state h̃t.



Fig. 1. Euclidean norm of gradient of the cross-entropy loss with respect to an input at each time step ||∂L/∂xt||. An LSTM on sMNIST (left) and HAR
(center) tasks (Section VI) and a leaky RNN on HAR (right) are shown. Gradient is backpropagated from right to left over time. At initialization (blue solid
line), the gradient decrease exponentially along with back-propagation. After learning (red solid line), there is no longer any such exponential behavior. Dashed
lines correspond to the model after 1, 5, and 10 training epochs, from below (blue) to upper (red) with additional plots after 50 and 100 epochs in the left
figure.

Tallec and Ollivier [12] estimated how long the state of a
leaky RNN retains information via a “free input” regime, that
is, the case where xt = 0 for t > t0 for some time step t0,
with furthur simplification assuming U = 0,b = 0. Under
this assumption, (2) reduces to

ht = (1− α)ht−1, (4)

which leads to an explicit expression

ht = (1− α)t−t0ht0 . (5)

This formula indicates that the state decays by a constant factor
after every τ = −1/ log(1−α) time steps2. The decay of the
state in (5) is considered as a loss of memory in RNN, and
the decay rate represents the time scale of the state, that is,
how long the state retains information.

The above insight can also be applied to RNNs with gating
mechanism such as an LSTM [8] or GRU [9], which is written
in a general form as

ht = ft � ht−1 + it � h̃t, (6)
ft = σ(Ufht−1 +Wfxt + bf ), (7)
it = σ(Uiht−1 +Wixt + bi). (8)

Here, h̃t is a quantity to represent new information at time t. ft
and it are called a forget gate and an input gate, respectively.
Again, by ignoring h̃t and assuming ft = f to be constant, we
see the same exponential decay structure ht = f t−t0 � ht0 .
Thus, it is considered that the forget gate controls the unit-wise
forgetting time to represent complex time scale dynamically
[12].

The above theory on time scale in leaky or gated RNNs has
been utilized to improve learnability [12], [15], [16], [23]. For
a leaky RNN, it has been theoretically and empirically shown
that setting α proportionally to 1/T for sequence length T
helps with the convergence and generalization of learning [23].
For gated RNNs, when time-variant terms Ufht−1,Wfxt in

2In the context of a continuous counterpart of RNN, which was originally
argued [12], the characteristic time is τ = 1/α. In an asymptotic sense where
α is small, these two are equivalent since we have − log(1− α) ≈ α.

the forget gate ft are centered around zero, ft takes values near
σ(bf ). Therefore, the time scale in gated RNNs is considered
to be controlled largely by the bias term bf . In particular,
for a gated RNN to learn long-term dependencies efficiently,
one can impose some entries in bf to take large values at
initialization [12], [15] or throughout training [16].

IV. TIME SCALE IN RNNS UNDER TRAINING

The existing theory [12] interprets the rate of decay of the
state as a time scale in leaky or gated RNNs (Section III) under
the assumption of zero input xt = 0 for t > t0. Furthermore,
it assumes various extreme conditions on parameters such as
b = 0 and U = 0 in (2). In order to justify the interpretation
in practical situations, we need to deal with the following two
issues;

1) inputs xt after time t0, which have an effect on the state
ht, are successively given to a RNN, and

2) the quantity h̃t representing new information is related
to the previous state, which may have an effect on the
remaining time of information the state has.

In this section, we work around the first issue by reformulating
the theory on time scale in RNNs. Our idea is to consider the
Jacobian matrix of the state, rather than the state itself, to
formulate the memory of RNN models. We further discuss
the second issue by combining this reformulation with exper-
imental observations.

A. Revisiting the time scale theory on RNNs

First, we consider the following generalization of the theory
on time scale in RNNs to admit successive inputs. The
amount of information on ht0 that ht has can be quantified
as a variation of ht when ht0 is infinitesimally changed.
Mathematically, this amounts to measuring the Jacobian matrix
∂ht

∂ht0
(ht0) with ht considered as a function of ht0 . To see how

this new aspect naturally generalizes the existing theory, let us
first discuss this idea with a leaky RNN (2) (we treat a general
case with gating mechanism later). We rewrite the solution of
the “free input” equation (5) as ∂ht

∂ht0
(ht0) = (1 − α)t−t0I.



This equation indicates that the state ht0 at time t0 has expo-
nentially decaying effects on the state ht with characteristic
time τ . Note that this equation holds even when we admit
inputs after t0 and a non-zero bias b, that is, a solution ht for
a system

ht = (1− α)ht−1 + α tanh(Wxt + b) (9)

satisfies ∂ht

∂ht0
(ht0) = (1 − α)t−t0I. This can be checked by

the equation ∂ht/∂ht−1 = (1 − α)I and the chain rule.
Thus, formulating the memory of a state as a magnitude
of the Jacobian matrix ∂ht/∂ht0 is also reasonable in an
“input existing” regime. Note that this is closely related to
the vanishing gradient problem [6], [7]. Since the gradient of
loss function L with respect to the state ht0 at time t0 is
calculated by ∂L

∂ht0
= ∂ht

∂ht0

∂L
∂ht

, the fast exponential decay in
the Jacobian matrix ∂ht/∂ht0 tends to lead to the extreme
small gradient of loss function ∂L/∂ht0 .

The case for gated RNNs is similar. Ignoring recurrent
weight matrices in (6) by assuming ∂h̃t/∂ht−1 = 0,Uf = 0,
and Ui = 0, we obtain the Jacobian matrix as ∂ht/∂ht0 =∏t
s=t0+1 ft. The decaying behavior of the Jacobian matrix is

exactly the same as the state under the “free input” regime in
Section III.

Remark 4.1: It is not obvious what kind of value of a matrix
∂ht/∂ht−1 we should use to represent memory more clearly.
Adopting the spectral norm or the spectral radius is a natural
choice, which has indeed been taken previously to analyze
the memory of general RNNs [17]. Considering memory as
preserving the state as it is, it might be more appropriate to
deal with how close to the identity matrix the Jacobian matrix
∂ht/∂ht−1 is. We do not delve into this subtlety here, as we
are only interested in how models behave compared to the
simplified ones like (9) in realistic situations.

B. Observations on time scale in RNN under training

We move on to the second issue, that is, how to deal
with the dependency of ignored terms such as h̃t on the
previous state ht−1. This issue is more subtle than the first one,
since when recurrent weight matrices are large, the Jacobian
matrix ∂ht/∂ht0 gets unbounded and leaky units or forget
gates might not represent the time scale in RNNs any more3.
To tackle this, we first determine when the recurrent weight
matrices are small enough to be ignored.

To examine this closely, we again begin with a leaky RNN,
whose Jacobian matrix of 1-step state update (2) is given by

∂ht
∂ht−1

= (1− α)I− αU>Dt, (10)

where Dt = diag(tanh′(Uht−1+Wxt+b)) = diag(1−h2
t )

is a diagonal matrix given by a derivative of activation function
tanh. If U is large enough relative to I, e.g., U = cI with
c � 1, then we cannot ensure that the first term (1 − α)I
controls the time scale of the state any more.

3This consideration is in a similar spirit to a study on chaotic behavior in
RNNs [24], which observes trained gated RNNs from a dynamical system
viewpoint.

The situation is more involved in the case of RNNs with a
gating mechanism. For example, we consider a GRU, whose
state transition is defined by

ht = (1− zt)� ht−1 + zt � h̃t, (11)
zt = σ(Uzht−1 +Wzxt + bz), (12)

h̃t = tanh(U(rt � ht−1) +Wxt + b), (13)
rt = σ(Urht−1 +Wrxt + br), (14)

where Uz,Ur ∈ Rn×n,Wz,Wr ∈ Rn×d, and bz,br ∈ Rn
are additional parameters. The Jacobian matrix for this update
is given as

∂ht
∂ht−1

=diag(1− zt) + diag(zt)
∂h̃t
∂ht−1

+ diag(h̃t − ht−1)
∂zt
∂ht−1

. (15)

In addition to the “time scale part” diag(1−zt), there appear
more terms involving the derivative of other functions such as
∂h̃t

∂ht−1
and ∂zt

∂ht−1
. It is highly non-trivial to analyze when we

can reasonably ignore each term.
As we have seen, it is not straight-forward to take an

analytical approach to determine when we can ignore the
recurrent weight matrices. Luckily, we can utilize the gen-
eralized theory on time scale in Section IV-A to deal with
this issue. Namely, in order to ensure that terms other than
the leading term (i.e., “time scale part”) such as −αU>Dt in
(10) and diag(zt)

∂h̃t

∂ht−1
+diag(h̃t−ht−1) ∂zt

∂ht−1
in (15) have a

negligible effect on the decay rate of the memory of the state, it
is enough to directly check that the Jacobian matrix ∂ht/∂ht0
decays exponentially as time goes back. As the latter condition
can be checked directly by the backpropagation method, we
can detect whether or not the recurrent weight matrices are
ignorable without focusing on their values. This is a clear
advantage over the conventional theory that interprets the state
itself as memory, while we use the Jacobian matrix instead.

We now see how memory in RNNs behaves in practical
situations. In general, the Jacobian matrix ∂ht/∂ht0 is high
dimensional and so requires much computational cost to
compute. Thus, for simplicity, we treat the Euclidean norm of
the gradient ||∂L/∂xt|| of cross-entropy loss with respect to
an input at each time in sequence classification tasks (Section
VI), instead of the Jacobian matrix. Since ∂L

∂xt
= ∂ht

∂xt

∂hT

∂ht

∂L
∂hT

holds where T is the last time step to output prediction,
norm of this gradient can be viewed as a proxy for the
representation of memory in the state at prediction time T . If
the norm of the gradient ||∂L/∂xt|| decreases exponentially
during the backpropagation through time, we can conclude that
the gating mechanism or the leaky units indeed represent the
time scale of the state. We visualize how this value behaves
while training for leaky RNNs and LSTMs in Figure 1. We
found that the gradient does not behave exponentially after
learning. This indicates that there is a non-negligible effect of
recurrent weight matrices on the gradient, which might cause
a gap between theoretical expectation and the actual behavior
of the RNN model. In contrast, we observed that the input



Fig. 2. Euclidean norm of gradient of the cross-entropy loss with respect to
an input at each time step ||∂L/∂xt|| for a randomly initialized models used
in the sMNIST experiment (Section VI). The exponent is the value of the
rate parameter r in our proposed method (Section V). A leaky RNN model
(exponent r = 0) has an exponentially decaying gradient. With our proposed
method applied, the gradient behaves polynomially. We initialized the weight
matrix U by a normal distribution of mean 0 and standard deviation 0.1/

√
n,

where n is the dimension of hidden states.

gradient decreases exponentially with respect to time steps
at initialization, regardless of tasks. This implies that at least
at the initial learning phase, the leaky units and the forget
gate function indeed represent the time scale in states. This
phenomenon gives us a new insight on previously proposed
initialization techniques for parameters in a forget gate (Sec-
tion III). Namely, the reason those initialization methods are
effective is probably that the time scale representation in forget
gates is firmly valid at randomly initialized networks.

V. A METHOD TO REPRESENT LONGER TIME SCALE

Leaky units and forget gates model exponentially decaying
memory by (5) under settings where recurrent weight matrices
are ignored. With such exponential decay, the memory is
reduced by a constant factor at every constant time. For
an RNN to hold memory for a much longer time, it is
natural to expect memory to decay in a slower order, such
as a polynomial order. In this section, we investigate how to
incorporate such slow decay into the model structure. This
is done by introducing a higher degree term to the ordinary
differential equation (ODE) counterpart of RNNs.

We first derive the continuous version of RNN. We again
consider a leaky RNN for simplicity. The difference of states
is written as

ht − ht−1 = α
(
tanh(Uht−1 +Wxt + b)− ht−1

)
. (16)

Considering a sufficiently small time step, we get an ODE

dh

dt
= α

(
tanh(Uh(t) +Wx(t) + b)− h(t)

)
. (17)

We are interested in the case when the recurrent weight matrix
U can be ignored, which we have confirmed for a model
at initialization in Section IV-B. Setting the recurrent weight

matrix U as U = 0 in (17), we obtain a continuous counterpart
of memory decay (discussed in Section IV-A) as

∂h(t)

∂h(t0)
(h(t0)) = e−α(t−t0)I. (18)

We aim to make this exponential decay polynomial, which is
achieved by simply replacing a linear decay term h(t) in (17)
with a higher degree term. Formally, we consider an ODE for
1-dimensional state h ∈ R given by

dh

dt
= −|h|rh, (19)

with the exponent r ≥ 0 that determines the order of decay.
Since this ODE is symmetric with respect to the origin h = 0,
we only consider the case where h > 0. For r = 0, this ODE
has an exponential decaying solution, as discussed earlier.
When r > 0, the solution of this ODE is

h(t) =
(
r(t− t0) +

1

h(t0)r
)−1/r

. (20)

Taking the derivative with respect to h(t0), we get

∂h(t)

∂h(t0)
=
(
1 + h(t0)

r(t− t0)
)− r+1

r , (21)

which indicates a much slower decay of memory of the state
h. Adopting this idea into (17) leads to

dh

dt
= α

(
tanh(Uh(t) +Wx(t) + b)− |h(t)|rh(t)

)
. (22)

Going back to a discrete RNN model, we obtain a new
architecture by

ht = ht−1 + α(h̃t − |ht−1|rht−1), (23)

h̃t = tanh(Uht−1 +Wxt + b). (24)

We treat the rate parameter r > 0 as a hyperparameter.
We propose this method to construct a new RNN models to
represent a much longer time scale. We have explained the
method applied for a leaky RNN, but it naturally extends to
general gated RNNs, replacing multiplication with a forget
gate ft � ht−1 in (6) by ht−1 − (1− ft)� |ht−1|rht−1. This
modification of the model structure causes to the increase in
the computational complexity by taking the absolute values
and the power of the state. However, since the computational
cost for such operations is relatively small compared to the
matrix multiplication, the increase is negligible in the whole
forward and backward computation.

As we have seen in Section IV-B, the effectiveness of
imposing the desired time scale of states might particularly
have an effect in the initial learning phase. Therefore, we want
to achieve the “slow decaying memory” in the proposed model
at least at initialization. We visualize the input gradient on the
proposed model with random initialization by changing the
rate parameter r from 0 to 2 in Figure 2. We see that the
gradient decays polynomially instead of exponentially when
r > 0, which indicates that the proposed model has a longer
memory than the baseline leaky RNN model (r = 0).



TABLE I
STATISTICS OF DATASET AND TRAINING SETUP

Task Train Valid. Test Input dim. Time steps Hidden dim. Optimizer Learning rate Gradient clip [7] Batch size
sMNIST 50000 10000 10000 1 784 128 RMSprop {1e-3, 5e-3, 1e-4} {1, 5} 100

psMNIST 50000 10000 10000 1 784 128 RMSprop {1e-3, 5e-3, 1e-4} {1, 5} 100
HAR 5881 1471 2947 9 128 64 RMSprop {1e-3, 5e-3, 1e-4} {1, 5} 100

TABLE II
TEST ACCURACY

sMNIST psMNIST HAR
Leaky RNN 94.6 90.7 91.4

Ours 92.4 91.7 92.1

VI. EXPERIMENTAL EVALUATION

We conduct experiments to determine the effectiveness of
our proposed method. We evaluate a baseline leaky RNN
model (2) (Leaky RNN) and a model modified with our
proposed method (23) (Ours) on two sequence classification
tasks. One is a pixel-by-pixel image recognition task, which is
often used to benchmark how RNN models capture long-term
dependencies. The other is a human action recognition task,
which is taken as a more practical task for RNN applications.

A. Experiment setting

The statistics and hyperparameters used for each task are
shown in Table I. After each epoch of training, we record the
validation loss on the validation data. We train each model for
200 epochs on each task, reducing the learning rate by half
after 100 and 150 epochs. We perform random initialization
and training four times on each setting. Then, we evaluate
the accuracy for the test data on the model that has the
lowest validation loss among all hyperparameters, epochs, and
initialization.

The performance of both Leaky RNN and Ours strongly
depends on the initialization of the time scale parameter α.
It is recommended to set α proportionally to 1/T for the
sequance length T to easily adjust the time scale of the state
to that of the data [12], [23]. Thus, we test the initialization
by α = 1/T, 5/T , and 25/T and choose the best-performing
one according to the validation loss.

In the proposed method (23), we use the following setting.
For the rate parameter r, we use r = 2, which simplifies
the implementation as |ht−1|rht−1 = h3

t−1. We initialize the
recurrent weight matrix U by a normal distribution of mean
0 and standard deviation 0.1/

√
n, where n is the dimension

of hidden states (see Figure 2).
Our computational setup is the following: CPU is Intel Xeon

Silver 4214R 2.40GHz, the memory size is 512 GB, and GPU
is NVIDIA Tesla V100S.

B. Sequential MNIST (sMNIST)

We evaluate models on two pixel-by-pixel image recog-
nition tasks: sequential MNIST4 (sMNIST), and permuted

4http://yann.lecun.com/exdb/mnist/

Fig. 3. Mean validation accuracy over 4 independent learning iterations of
models under the best performing training setup on psMNIST task (Section
VI). The shaded area shows the standard deviation.

Fig. 4. Euclidean norm of gradient of cross-entropy loss with respect to
inputs on HAR task. Color bar is set as log scale. Ours (right) has a wider
range of time steps with large gradient than Leaky RNN (Left) in the early
stage of learning.

sequential MNIST (psMNIST) [25]. In these tasks, an image
of size 28 × 28 is treated as a sequance of 1-dimensional
pixel values of length 28 × 28 = 784. An RNN is given
a pixel value as an input at each time step. After that, it
predicts the label of the image. Since the RNN needs to utilize
information on distant pixels to classify images correctly, these
tasks have been used to test ability of RNNs to learn how to
capture long-term dependencies of data. In the sMNIST task,
the pixels are input to an RNN in an ordered way, from left-to-
right and top-to-bottom. To introduce more complex tempral
dependencies, a fixed random permutation is applied to pixels
in the psMNIST task.

We show the results in Table II (sMNIST/psMNIST). While
the baseline Leaky RNN shows a higher test accuracy on the
sMNIST task, Ours outperforms the baseline on the psMNIST
task. While RNN models can classify most images correctly



Fig. 5. Validation accuracy on HAR task for various rate parameters r in
(23). Mean and standard error are taken over four independent training results.
The exponent r = 0 case (green) corresponds to the baseline Leaky RNN.

by using relatively short-term dependencies of data on the
sMNIST task, they need to exploit information on far distant
inputs on the psMNIST task. Therefore, we conclude that the
proposed method can improve the accuracy especially on the
data with more complex and longer time scales.

Our proposed method builds on the hypothesis that impos-
ing a proper time scale on an RNN at the initial phase of
training improves the learnability of the model. This suggests
that the proposed method may have a particular effect on the
accuracy at the initial phase of training. To examine this, we
visualize the transition of the validation loss while training in
Figure 3. We observe that our method indeed improves the
performance especially at the earlier stage of training.

C. Human action recognition (HAR)

We next evaluate the models on more practical datasets,
that contains three types of sensor data for the x, y, and z axes
labeled with six types of human action5 [26]: walking, walking
upstairs, walking downstairs, sitting, standing, and laying. We
preprocessed the data and the labels in the same way as the
previous work [23] to make this task into a binary classification
on normalized data.

We show the results on Table II (HAR). Ours gives better
test accuracy than the baseline. This result demonstrates that
our proposed method improves the learnability of RNNs for
high-dimensional data with complex time scales. We further
visualize the gradient of cross-entropy loss with respect to
inputs for each model in Figure 4. We observe that Ours
takes large values on a wider range of time steps especially at
the early stage of training (∼ 60 epochs). This indicates that
modeling slow decaying memory helps the RNNs to capture
complex temporal dependencies over the whole sequence,
which results in an improvement of accuracy.

5https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+
smartphones

D. Sensitivity to the rate parameter

Our proposed method contains the rate parameter r as a
hyperparameter. Taking a limit r → 0, our method reduces
to conventional models. In contrast, a larger r corresponds to
modeling the memory decaying more slowly. In this subsec-
tion, we investigate how change in r affects the learnability
of RNNs. We test the proposed method applied to a leaky
RNN, changing r from 0 to a larger value, under the same
setting as the previous evaluation on the HAR task. When
r is smaller than 1, we found that the training is unstable,
and it tends to diverge in few epochs even with gradient
clipping [7] (Figure 5). This might be caused by numerical
instability in forward (20) or backward (21) computation for
the polynomially decaying quantity, or in its interaction with
the recurrent weight matrix U. Interestingly, the results show
that the learning dynamics in the proposed method behaves
discontinuously with respect to the limit r → 0, despite the
continuity of the gradient behavior at initialization (Figure 2).
On the other hand, for a large value of r, e.g., r = 4, we
found that the training converges more slowly and results in
a lower accuracy than the 1 ≤ r ≤ 2 cases (Figure 5). This
result indicates that retaining too much memory might prevent
smooth learning. This is consistent with previous findings
that it is desirable to model “forgetting” appropriately for
improving the learnability of RNNs [10], [27]. Therefore, it is
important to choose a proper rate parameter r to achieve higher
accuracy. We hypothesize that taking around r = 2 might
generally work, as the higher accuracy is also obtained in the
psMNIST task with r = 2 compared to the baseline. More
detailed analysis on the instability and further investigation
on applications to general gated RNNs will be a future work.

VII. CONCLUSION

In this paper, we extended the existing theory on temporal
representation of the forget gate function in gated RNNs
to make it applicable in practical situations. We empirically
showed that gated RNNs typically behave as the theory
predicts at least at the initial phase of learning, which is in
good agreement with the previously proposed initialization
methods. We proposed a method to change the RNN structure
to improve learnability for data with long-term dependencies.
Finally, we demonstrated the effectiveness of our method on
real-world datasets. The results highlight the importance of
theoretical modeling and of understanding the behavior of
RNNs in practical settings.
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