
Learning Dynamic Preference Structure Embedding
From Temporal Networks

Tongya Zheng1, Zunlei Feng2, Yu Wang2, Chengchao Shen3, Mingli Song1,*,
Xingen Wang1, Xinyu Wang1, Chun Chen1, Hao Xu4

1College of Computer Science, Zhejiang University, 2School of Software Technology, Zhejiang University,
{tyzheng,brooksong,newroot,wangxinyu,chenc}@zju.edu.cn, {zunleifeng,yu.wang}@zju.edu.cn

3Central South University,4Zhejiang Lab
scc.cs@csu.edu.cn,xuhao.econ@outlook.com

Abstract—The dynamics of temporal networks lie in the con-
tinuous interactions between nodes, which exhibit the dynamic
node preferences with time elapsing. The challenges of mining
temporal networks are thus two-fold: the dynamic structure of
networks and the dynamic node preferences. In this paper, we
investigate the dynamic graph sampling problem, aiming to cap-
ture the preference structure of nodes dynamically in cooperation
with GNNs. Our proposed Dynamic Preference Structure (DPS)
framework consists of two stages: structure sampling and graph
fusion. In the first stage, two parameterized samplers are de-
signed to learn the preference structure adaptively with network
reconstruction tasks. In the second stage, an additional attention
layer is designed to fuse two sampled temporal subgraphs of
a node, generating temporal node embeddings for downstream
tasks. Experimental results on many real-life temporal networks
show that our DPS outperforms several state-of-the-art methods
substantially owing to learning an adaptive preference structure.
The code will be released soon at https://github.com/doujiang-
zheng/Dynamic-Preference-Structure.

Index Terms—Graph Embedding, Graph Neural Networks,
Temporal Networks, Dynamic Structure

I. INTRODUCTION

Networks in real-life scenarios usually present dynamic
interactions between nodes, such as online payment networks,
movie rating networks, and question-answering networks [1]–
[4]. Researchers are interested in mining node preferences of
networks to make precise predictions for account malicious-
ness [5], [6], commodity recommendation [7], [8], and so
on. In contrast to static networks, temporal networks exhibit
dynamic node preferences through the continuing dynamic
interactions. For example, a user likes watching both action
movies and comedy movies in a static movie rating network;
however, the user may show distinctive preferences for movie
genres at different time points when the movie ratings are
labeled with timestamps.

As shown in Fig. 1, challenges to graph representation
learning on temporal networks are two-fold. The first challenge
is learning the dynamic structure of temporal networks. Fig. 1
depicts the expansion of node U’s neighbors from t2 to t3,
while other nodes except V and W keep the same neighbor-
hood. The asynchronous interactions among nodes will change

*Corresponding author

Introduction: different significant structure w.r.t time; dynamic structure

(c) Discrete Time Models

(b) Our Method(a) Temporal Graph

(d) Sampling Models

VA

B

D

E

F

C

𝑡0

𝑡2
𝑡1

𝑡3

𝑡4 𝑡4

V

A
B

C
E

V
F

D

V

FA

B E V

𝑡4
V

A

B

𝑡1

𝑡0

𝑡1

𝑡0 𝑡4 𝑡4

Aggregation

Propagation

A
B V

A
V

F

E
𝑡0 𝑡1 𝑡4 U V

(a) Interaction (U, V, 𝑡2)

V

A AB

W

U W

(b) Interaction (U,W, 𝑡3)

W

B BV

AV

A

𝑡2

𝑡1

𝑡0

𝑡0

𝑡0 𝑡0

𝑡1 𝑡1 𝑡2

𝑡0

𝑡1

𝑡0

𝑡0

𝑡3

New interaction

Preference

Normal

Fig. 1: The preference structures (highlighted in orange) of
node U are dynamic with respect to time, contributing to the
new interactions. (a) A new interaction (U, V, t2) is related
with the previous interaction (U, A, t1) and U’s second-order
interaction (A, V, t0). (b) Another new interaction (U, W, t3)
is related with the previous interaction (U, B, t1) and U’s
second-order interaction (B, W, t0).

the graph topology thousands of times even in a short period,
challenging existing methods on a fixed graph topology. The
second challenge is identifying the preference structures of
nodes with time elapsing. Fig. 1 shows the different preference
structures of node U’s two new interactions, which obey the
common-neighbor assumption. The interaction (U, V, t2) is
attributed to the temporal path U t1→A t0→V, where A is the
common neighbor of {U, V}; while the interaction (U, W, t3)
is attributed to the temporal path U t1→B t0→W, where B is the
common neighbor of {U, W}. It requires both mining high-
order relations in networks and catching up with dynamic node
preferences.

Previous methods mainly resort to recurrent mechanisms to
capture the dynamic node preferences, e.g., recurrent neural
networks [5], [9], [10], and temporal point process [7], [11],
[12]. The recurrent mechanism uses nodes’ historical interac-
tions to predict future behaviors, which pays more attention to
sequential modeling than network modeling. Recently, graph
neural networks (GNNs) [13]–[15] have shown great success
in graph learning tasks. Compared with GNNs, the recurrent
mechanism loses the high-order collaborative filtering signal
in networks [16], [17]. For instance, recurrent methods are not
good at inferring the second-order proximity between node U

ar
X

iv
:2

11
1.

11
88

6v
1

 [
cs

.I
R

]
 2

3
N

ov
 2

02
1

and node V in Fig. 1(a). Although some hybrid methods bridge
the gap between sequential modeling and network mining [9]–
[11], these methods rely on a sequence of static networks
and cannot handle the dynamic structure of temporal networks
adaptively. However, recent proposed temporal GNNs [6], [8]
based on heuristic sampling strategies can hardly capture the
dynamic node preferences. These heuristic strategies sample
nodes’ neighborhoods uniformly or chronologically and take
no account of personalized preference structures, which may
fail in long-range preference modeling.

To overcome the two challenges mentioned above, we in-
vestigate the problem of sampling from the dynamic structure
of temporal networks adaptively, making GNNs aware of
temporal patterns. Our motivations are three-fold. First, it is
reasonable to generate high-quality node embeddings with
a few sampled neighbors [6], [8], [14], [18]. Second, the
preference structure of temporal networks will evolve forward
with time elapsed, as shown in recurrent methods [7], [9],
[11], [19]. Third, sampling methods can significantly boost
the training efficiency of GNNs [14], [18].

Our proposed Dynamic Preference Structure (DPS) frame-
work consists of two stages: structure sampling and graph
fusion. In the first stage, we devise two parametrized samplers
to capture the preference structure adaptively: the Time Decay
Sampling (TDS) is proposed to capture the temporal patterns
of each node with a parametrized time decay distribution;
while the Gumbel Attention Sampling (GAS) is proposed to
encode the semantic proximity of nodes with a shallow graph
neural network. In the second stage, we devise an attention-
based fusion layer to fuse the node embeddings from different
sampled subgraphs for each node. These sampled subgraphs
are generated from the dynamic structure of temporal networks
by the pre-trained TAS and GAS samplers, respectively. The
temporal link prediction is used as a pretext task to train both
stages of the DPS framework. Finally, experimental results on
many real-life temporal networks show that our proposed DPS
outperforms several state-of-the-art methods.

Our contributions can be summarized as follows:
• We devise two parametrized samplers TDS and GAS, to

select the preference structures of temporal networks with
network reconstruction tasks.

• We further devise an attention-based fusion layer to
fuse node embeddings from different temporal subgraphs
sampled by TDS and GAS.

• Experiments are conducted over a wide range of temporal
networks, and results demonstrate the efficiency of our
proposed DPS framework.

II. RELATED WORKS

A. Static Graph Embedding

Recently, with the widespread use of deep learning tech-
niques in computer vision [20] and natural language process-
ing [21], researchers are inspired to propose several deep graph
learning methods [22], [23], which mainly consist of two cate-
gories: skip-gram models [23] and graph neural networks [22].

On the one hand, DeepWalk [24] is the pioneering skip-gram
model following word2vec [21], encoding the random walks
of graphs as sampled node sequences. Node2Vec [25] further
explores the width and depth of the random walk strategy
with two controllable parameters, while LINE [26] encodes
the high-order proximity between nodes in the graph topology.
On the other hand, researchers [27] attempt to define the graph
convolution operation in the non-euclidean space from graph
signal processing. GCN [13] simplifies existing GNNs and
applies successfully in semi-supervised node classification.
GAT [15] further introduced a self-attention mechanism to
compute the weights of neighbors adaptively and achieves
substantial improvements on node classification.

B. Temporal Network Embedding

Existing researches involve temporal networks from a wide
range of scenarios, including citation and collaboration [11],
[12], [28], commodity purchasing [5], [7], fraud detection [6].
From the property of graphs, previous methods can be divided
into two categories: discrete-time graph (DTG) methods and
continuous-time graph (CTG) methods. On the one hand,
the input of DTG methods [9], [11] is a sequence of graph
snapshots, where the graph topology in each snapshot will
evolve chronologically. This kind of method is unable to
handle edges at the finest granularity (e.g., at a time scale of
seconds) [19]. On the other hand, CTG methods are designed
to generate temporal node embeddings with the upcoming new
interactions. Methods following the recurrent paradigm, like
HTNE [7], DyRep [12], JODIE [5], and TigeCMN [28], update
node embeddings with new interactions. Recurrent methods
are not yet powerful in learning the graph topology. Not until
recently, TGAT [8] and APAN [6] are proposed for inductive
learning on temporal networks using graph neural networks.

III. METHOD

Figure 2 depicts that our proposed Dynamic Preference
Structure (DPS) framework consists of two stages: structure
sampling, and graph fusion, aiming at providing temporal
node embeddings with respect to time. Firstly, we devise
Time Decay Sampling (TDS) and Gumbel Attention Sampling
(GAS) to capture the preference structures adaptively. As
shown in Fig. 2, TDS samples the neighborhood according
to a normalized categorical distribution pU = f(N(U);λU),
parametrized by a learnable personalized λU for the node
U. Meanwhile, GAS selects the most significant neighbors
according to the attention coefficients of a one-layer graph
attention network. Secondly, in the graph fusion stage, each
sampled subgraph generates a specified node embedding. Then
a fusion layer is devised to combine the node embeddings from
different subgraphs sampled by TDS and GAS. The temporal
link prediction is used as a pretext task to train both stages.

A. Problem Definition

A temporal network can be defined as G = (V,E, T),
where E is a set of temporal edges (interactions), and T :
E → R+ is a function that maps each edge to a corresponding

Ego Network Structure Sampling Graph Fusion

U V

(a) Interaction (U, V, 𝑡2)

V

A AB

W

U W

(b) Interaction (U,W, 𝑡3)

W

B BV

AV

A

𝑡2

𝑡1

𝑡0 𝑡0

𝑡0

𝑡1 𝑡2

𝑡0

𝑡1

𝑡1

𝑡3

U

W

B V

A

𝑡0

𝑡0

𝑡1

𝑡2

A

V
𝑡1

𝑡0

⇒ ⇒

U
A exp 𝜆𝑈𝑡1
B exp(𝜆𝑈𝑡1)

V exp(𝜆𝑈𝑡2)

First Layer Second Layer

Time

Decay

Sampling

Gumbel

Attention

Sampling

U
A 𝛼𝑈𝐴
B 𝛼𝑈𝐵
V 𝛼𝑈𝑉

B
W exp(𝜆𝐵𝑡0)

V
A exp 𝜆𝑉𝑡0
⋯ ⋯

B
W 𝛼𝐵𝑊

V
A 𝛼𝑉𝐴
⋯ ⋯

W B

B

B

V

B

A

U

U

U

W

A

A

V

V

⋯

⋯

⋯

⋯

𝛼𝑈
𝐺𝐴𝑆

𝛼𝑈𝐵

𝛼𝑈
𝑇𝐷𝑆

𝛼𝑈𝑉

𝛼𝑈𝐴

𝛼𝑈𝐵

𝛼𝐵
𝑇𝐷𝑆

𝛼𝐵
𝐺𝐴𝑆

𝛼𝑉
𝐺𝐴𝑆

𝛼𝑉
𝑇𝐷𝑆

TDS Embedding GAS Embedding

Fig. 2: The architecture of the 2-layer Dynamic Preference Structure (DPS) framework. Given a node U before t3, we extract its
2-hop ego networks recursively. In the structure sampling stage, samplers, including Time Decay Sampling (TDS) and Gumbel
Attention Sampling (GAS), valuate the neighborhoods for each node and sample two neighbors according to their importance
distributions. The sampling procedure is repeated two times recursively. In the graph fusion stage, an attention-based fusion
layer combines node embeddings from different subgraphs, each of which generates a specified node embedding.

timestamp [19]. Our target of graph embedding is to learn an
embedding function revealing the underlying edge generation
distribution that neighbors of node u at time t can be drawn
from v ∼ p(·|u, t) in a temporal network [19], [24], [29]. The
temporal node embedding problem can be written as

arg max
h

p(u,t)(v) =
exp(h(v, t) · h(u, t))∑

v′∈V exp(h(v′, t) · h(u, t))
, (1)

where h(·, t) is the embedding function, the dot product is the
similarity function, (u, v, t) is an observed interaction, t is the
time point, and v′ iterates all nodes of V .

B. Structure Sampling

The structure of a temporal network keeps evolving with
time elapsing, called the dynamic structure. Since the graph
convolution works on a fixed graph topology [13]–[15], the
structure sampling stage aims at capturing the preference
structure of the temporal network with respect to time. On
the one hand, the proposed Time Decay Sampling (TDS) is
motivated by the influence decay of interactions with time
elapsing. On the other hand, the proposed Gumbel Attention
Sampling (GAS) is motivated by the semantic proximity of
nodes by graph neural networks (GNNs) [8], [13].

1) Time Decay Sampling: TDS valuates the neighborhood
significance of historical interactions by learning a personal-
ized time-decay distribution for each node u. Let N(u, t) =
{(u, v, tk)|(u, v, tk) ∈ E and tk < t} be the neighborhood
interactions of node u before t, and tk be the timestamp of an
interaction.

Exponential decay. Intuitively, a node’s historical interac-
tions show reduced influences on its future behaviors with
respect to the elapsed time. The function of TDS samples a
bunch of interactions from N(u, t) according to the reserved
influences of N(u, t). The normalized influences of N(u, t) is

here a categorical distribution following the exponential decay
rate, written as

p(u,t)(tk) =
λuexp(−λu(t− tk))∑

w∈N(u,t) λuexp(−λu(t− tw))
,

=
exp(λutk)∑

w∈N(u,t) exp(λutw)
,

(2)

which is only related to the temporal proximity. Once getting
λu and the corresponding interaction set N(u, t), we sample
a bunch of interactions from N(u, t), denoted by

S(u, t) = {(u, v, tk) ∼ p(u,t)(·|λu)}, s.t.|S| = s, (3)

where s is the sample size.
TDS optimization. To avoid the burdensome hyper-

parameter search over λu, we propose to use temporal link
repetition to estimate a proper decay rate λu. The task is to
find the interaction (u, v, t) that repeated at the latest time
tv in N(u, t). The probability of the repetition is denoted by
p(u,t)(tv), as defined in Eq. (2). The objective for a specified
node u is maximizing the likelihood of the temporal link
repetition by iterating over the interactions of u, written as

arg max
λu∈R+

log Π
(u,v,t)∈E

p(u,t)(tv), (4)

where the decay rate is constrained λu ≤ 100 for numerical
stability. It is a well-known log-sum-exp convex problem,
which can be tackled by convex programming solvers [30],
[31]. This task can well capture the repeated temporal patterns
of node u with λu, indicating the personalized node prefer-
ence. Moreover, interactions that didn’t happen in the past
are ignored in Eq. (4). Analysis of those interactions requires
high-order methods such as GNNs [16].

2) Gumbel Attention Sampling: TDS is designed to capture
personalized node preference of temporal patterns. However,
the lack of latent embedding methods makes it hard to
understand the semantic proximity of nodes. We combine

the Gumbel-softmax trick [32], which enables training neural
networks with efficient sampling from discrete distributions,
and GNNs [13]–[15], which have achieved remarkable success
in graph learning, to capture the semantic preference structure
of temporal networks. Like TDS, the goal of Gumbel Attention
Sampling (GAS) is sampling a bunch of interactions from
N(u, t) when given a node u and a time point t.

Gumbel-softmax trick. Let htu be the temporal node
embedding of (u, t) at the input layer generated by the GNN.
Then the unnormalized attention score of (v, tk) with respect
to (u, t) via the interaction (u, v, tk) is formulated as

p(u,t)(v, tk) = (WQhtkv) · (WKhtu), (5)

where WQ is the query transform matrix, WK is the key
transform matrix [17], and · is the inner product between vec-
tors. Despite the attention scores could represent the semantic
proximity between nodes, the attention mechanism is not well
suited for sampling the preference structure to provide better
temporal node embeddings. The Gumbel-softmax trick [32] is
further introduced to enable the training process of sampling
from attention scores. The Gumbel-softmax probability for
(u, v, tk) in N(u, t) is computed as

αuv =
exp((p(v, tk) + gv)/τ)∑

w∈N(u,t) exp((p(w, tw) + gw)/τ)
,

g = −log(−log(ε)),where ε ∼ Uniform(0, 1),

(6)

where g is drawn from a Gumbel distribution, and τ is the
softmax temperature. At the beginning of training, a large
temperature τ makes the attention scores more smooth. During
training, the attention scores approaches the real distribution
p(u,t) as the temperature τ → 0.

GAS optimization. Temporal link prediction, predicting the
probability of nodes’ future links, is used to train the one-
layer GNN of GAS. In each forward pass, GAS samples s
interactions of the node u according to

S(u, t) = tops{αuv,∀(u, v, tk) ∈ N(u, t)}. (7)

The temporal node embedding of u at the first layer is
computed as

h1u(t) =
∑

(v,tk)∈S(u,t)

αuvW
V htkv , (8)

where WV is the value transform matrix. The new node
embedding is a weighted sum of selected interactions. The
temporal link prediction is used as the training task since it
describes the node dynamics detailedly, as the temporal link
repetition of Eq. (4) in TDS optimization.

For simplicity, we adopt the same graph convolution ar-
chitecture and training objective in Section III-C and Sec-
tion III-C3 for training the GAS sampler. Section III-C depicts
the feature construction of an interaction in Eq. (10), and the
first-order graph attention convolution in Eq. (11). Due to the
dynamic structure of temporal networks, GAS only uses a one-
layer network for graph convolution. Section III-C3 trains the
neural network with the negative sampling technique [21], [24]
to boost the training efficiency.

C. Graph Fusion

1) Sampling-based Graph Convolution: Our proposed TDS
and GAS samplers are pretrained according to Eq. (4) and
Eq. (16) respectively. Let STDS(u, t) and SGAS(u, t) be the
sampled neighbor set of node u at time t. During graph
convolution, these pre-trained samplers replace the heuristic
uniform sampler [8], [14] to retrieve the preference structure
for a specified node.

An interaction e = (u, v, tk) in the neighbor set carries
multiple information: the neighbor identity v, the timestamp
tk, and the interaction feature mtk

uv . The information is then
transformed into dense vectors by some encoding functions
for back-propagation in neural networks. Let hl−1v be the node
embedding of v at (l−1)-th layer, which is a one-hot encoding
in the zero-th layer. A time kernel function developed by Xu et
al. [8] is used to encode the timestamp with cosine functions,
defined as

Φ(∆t) = concat(cos(ω1∆t), · · · , cos(ωd∆t)), (9)

where ∆t = t − tk is the timespan between two timestamps,
ω1 is a trainable parameter of the frequency of the cosine
function, and d is the dimension of the output vector. These
dense vectors are concatenated to represent the interaction
embedding as

hl−1e = concat(hl−1v ,Φ(∆t),mtk
uv). (10)

For each neighbor set, we employ an attention-based graph
convolution layer, written as

αue = softmax
e∈S(u,t)

{(WQh
l−1
u)(WKhl−1e)ᵀ},

hu(t) =
∑

e∈S(u,t)

αueWV h
l−1
e ,

(11)

where hl−1u (t) is the embedding of u at (l − 1)-th layer,
WQ,WK ,WV are transform matrices, αue is the attention
score of the interaction e = (u, v, tk) for node u, and the
timestamps of nodes are omitted for clarity.

2) Sampling Subgraph Fusion: Let hTDSu (t) and hGASu (t)
be the node embeddings of u with different structure samplers,
where the layer of graph convolution is omitted for clarity.
Since TDS and GAS are devised for different purposes, their
output node embeddings represent nodes’ specific structure
preferences. Therefore, an additional fusion layer is proposed
as

ωSu = qᵀ · sigmoid(WShSu + bS), S ∈ {TDS, GAS}, (12)

where q is a shared attention vector, WS is the specific
transform matrix for each sampler, and b is the bias term.
The attention scores for different samplers are normalized via
a softmax function, written as

αSu =
exp(ωSu)

exp(ωTDSu) + exp(ωGASu)
. (13)

The node embedding of u is finally fused by

hu(t) =
∑
S

αShSu , S ∈ {TDS, GAS}. (14)

TABLE I: Statistics of temporal networks. |V |, |E| are the
number of nodes and interactions in the network respectively.
The graph density is computed by |V |(|V |−1)2|E| . The repetition
of interactions describes that a node interacts with the same
neighbor last time. The time unit of the timespan is one day.

Temporal Graph |V | |E| Density Repetition Timespan

Temporal Link Prediction

ia-workplace-contacts 92 9.8K 2.34 77.1% 11.43
ia-contacts-hypertext2009 113 20.8K 3.28 59.0% 2.46
ia-contact 274 28.2K 0.75 6.9% 3.97
fb-forum 899 33.7K 0.08 20.8% 164.49
soc-sign-bitcoin 5.8K 35.5K 0.002 0.0% 1903.27
ia-retweet-pol 19K 61.1K 0.0003 4.7% 48.78
ia-radoslaw-email 167 82.9K 5.98 18.8% 271.19
soc-wiki-elec 7.1K 107.0K 0.004 0.2% 1378.84
ia-primary-school-proximity 242 125.7K 4.31 38.3% 1.35
ia-slashdot-reply-dir 51K 140.7K 0.0001 4.2% 977.36

Temporal Node Classification

Wikipedia 9.2K 157.4K 0.0036 79.1% 29.77
Reddit 10.9K 672.4K 0.011 61.4% 31.00

3) Optimization for Graph Fusion: Let hlu(t) be the node
embedding of u after l-layer graph fusion, coupled with our
proposed TDS and GAS samplers. To predict the connection
between node pairs, the output probability of the connection
is defined as

ŷtuv = sigmoid(W ×ReLU(Wuh
l
u(t) +Wvh

l
v(t))), (15)

where W,Wu,Wv are transform matrices. The obtained high-
order embeddings of (u, v) are fed into Eq. (15) to get the
probability of the edge existence. The cross-entropy loss is
adopted to classify the existence of the edge, which is defined
as follows,

L = −
∑

(u,v,t)∈E

{log(ŷtuv)− c · Ej∼Pn(u)log(ŷtuj)}, (16)

where Pn(u) is the negative sampling distribution, and c
is the number of negative samples. In practice, a uniform
distribution over nodes is used as Pn(u), and c is simply set to
1. The model parameters are then updated using the Adam [33]
optimizer, which uses the weight-decay strategy to regularize
the magnitude of model parameters.

IV. EXPERIMENT

A. Datasets
The temporal networks are obtained from Network Repos-

itory1 [4] and SNAP2 [3], [5]. Especially, datasets with no
node features or edge features collected from Network Repos-
itory are used for temporal link prediction. Datasets with
preprocessed edge features collected from SNAP are used for
temporal node classification. For clarity, in this work, we refer
to the network with more than 5,000 nodes as a large network,
and the network with less than 1,000 nodes as a small network.
Moreover, the density of a dense network is larger than 1.0,
and the density of a sparse network is less than 0.01. Overall,
the variety of datasets could fully demonstrate the effectiveness
of compared methods.

1http://networkrepository.com/dynamic.php
2http://snap.stanford.edu/jodie/

B. Tasks
1) Temporal Link Prediction: The task is predicting the

edge existence given a node pair and a timestamp. The datasets
are split chronologically that the first 70% of edges are taken
for training, the next 15% are used for validation, and the
final 15% are used for test evaluation. The unseen nodes in
the training data are removed due to the lack of node features
or edge features. The observed edges are treated as positive
samples, and the negative samples are sampled by substituting
the target node of the positive edges with a never-seen node.
For each dataset, we generate a labeled test set for evaluation.

2) Temporal Node Classification: The task is predicting a
user’s state that whether the user is banned from the Wikipedia
page and subreddit. The training, validation, and test sets are
also split as 70:15:15 for temporal node classification. The
labels of the additional two datasets are extremely imbalanced:
Wikipedia has 217 positive labels with 157,474 interactions
(=0.14%), while Reddit has 366 true labels among 672,447
interactions (=0.05%). The features of user edits in Wikipedia
and user posts in Reddit are both converted into the 172-
dimensional vectors under the linguistic inquiry and word
count (LIWC) categories [34].

3) Evaluation Metrics: For temporal link prediction, we
compute the classification accuracy and the area under the
ROC curve (AUC-ROC) when obtaining the prediction proba-
bilities of edge existence. For temporal node classification, we
use the AUC-ROC due to the extremely imbalanced labels.

C. Baselines
1) Temporal Link Prediction: The baseline methods are

initially designed to perform temporal link prediction, cate-
gorized as follows:
• Static graph methods. Node2Vec [25] is an effec-

tive skip-gram method for node embedding by explor-
ing the neighborhood with controllable random walks.
SAGE [14] is a strong baseline of graph neural networks,
which adopts MaxPooling aggregator for its best perfor-
mance in the original paper. For static graph methods,
node embeddings obtained in the training set are used
for temporal link prediction in the test set.

• Continuous-time graph methods. CTDNE [19] gen-
erates a final hidden embedding for each node with
temporal random walks. HTNE [7] firstly introduces
the Hawkes process in temporal network modeling.
JODIE [5], TGAT [8], and APAN [6] are three state-
of-the-art temporal network methods.

2) Temporal Node Classification: Continuous-time graph
methods predict users’ states using temporal node embeddings.
For other methods, we concatenate the node embeddings of the
user and the corresponding Wikipedia page or subreddit as
input features. We use the three-layer MLP [8] as a classifier,
whose hidden dimensions are {80,10,1} respectively. In addi-
tion, the MLP classifier is trained with the Adam optimizer,
the Glorot initialization, and the early-stopping strategy with
ten epochs. Due to the data imbalance, the positive labels are
oversampled to achieve the balance label ratio in each batch.

TABLE II: Performance of temporal link prediction over five runs of each method. The symbol ’—’ is used for failed
experiments. Bold font indicates the best performance. ’*’ denotes that DPS outperforms the best baseline performance
statistically significant with p < 0.05 under the two-sided t-test. The bottom line denotes the improvement percentages of
DPS against the best baseline.

ia-workplace ia-hypertext ia-contact fb-forum soc-bitcoin

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Node2Vec [25] 0.649 0.688 0.642 0.678 0.760 0.801 0.744 0.823 0.708 0.774
SAGE [14] 0.746 0.857 0.709 0.830 0.818 0.856 0.636 0.724 0.651 0.734
CTDNE [19] 0.625 0.673 0.546 0.572 0.821 0.851 0.745 0.817 0.778 0.836
HTNE [7] 0.621 0.661 0.517 0.540 0.806 0.831 0.668 0.715 0.611 0.639
JODIE [5] 0.538 0.600 0.610 0.667 0.812 0.850 0.632 0.751 0.814 0.880
APAN [6] — — — — — — 0.731 0.829 0.741 0.793
TGAT [8] 0.878 0.959 0.894 0.959 0.883 0.921 0.794 0.878 0.811 0.872

DPS w/ TDS 0.882 0.955 0.887 0.955 0.865 0.910 0.792 0.880 0.816 0.912
DPS w/ GAS 0.914 0.975 0.910 0.969 0.895 0.928 0.798 0.885 0.821 0.913
DPS w/o Fusion 0.916 0.977 0.904 0.966 0.893 0.928 0.804* 0.890* 0.829 0.915
DPS 0.918* 0.978* 0.911* 0.970* 0.896* 0.933* 0.799 0.888 0.837 0.917*

Improvements 4.6% 1.9% 1.9% 1.1% 1.5% 1.3% 0.6% 1.2% 2.9% 4.1%

ia-retweet ia-radoslaw soc-wiki ia-primary ia-slashdot

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Node2Vec [25] 0.691 0.754 0.708 0.773 0.512 0.508 0.586 0.622 0.723 0.800
SAGE [14] 0.721 0.818 0.804 0.894 0.563 0.577 0.856 0.929 0.644 0.782
CTDNE [19] 0.772 0.846 0.723 0.795 0.558 0.606 0.593 0.637 0.782 0.851
HTNE [7] 0.714 0.741 0.679 0.744 0.536 0.535 0.559 0.613 0.660 0.691
JODIE [5] 0.771 0.864 0.713 0.784 0.683 0.801 0.560 0.588 — —
APAN [6] 0.774 0.861 — — 0.719 0.775 — — 0.801 0.892
TGAT [8] 0.813 0.889 0.830 0.905 0.819 0.869 0.910 0.960 0.611 0.604

DPS w/ TDS 0.851* 0.928* 0.803 0.887 0.761 0.901 0.907 0.952 0.869* 0.939
DPS w/ GAS 0.841 0.922 0.845 0.923 0.823 0.921 0.911 0.963 0.852 0.934
DPS w/o Fusion 0.850 0.928 0.847 0.925 0.763 0.908 0.907 0.959 0.855 0.938
DPS 0.850 0.927 0.859* 0.933* 0.835 0.922* 0.928* 0.971* 0.868 0.944*

Improvements 4.6% 4.3% 3.5% 3.1% 1.9% 6.1% 1.9% 1.1% 8.4% 5.9%

D. Implementation Details of DPS

1) Temporal Link Prediction: Our proposed framework is
implemented using numpy, cvxpy [30], [31], and PyTorch [35].
The TDS sampler optimizes the log-sum-exp objective of
Eq. (4) of each node, which approximates the optimal decay
rate by sampling at most 100 terms from a node’s temporal
interactions. The GAS sampler optimizes the temporal link
prediction objective of Eq. (16) using a one-layer graph
neural network and the Gumbel-softmax trick [32]. The inputs
of graph neural networks are concatenated edge features of
Eq. (10), where node features are one-hot encodings if not
provided. The implementation of the attention mechanism is
inspired by researchers [8], [17], including the multi-head
attention layer of Eq. (11) and the fusion layer of Eq. (13).
The temporal link prediction of Eq. (16) is minimized by
the Adam optimizer. For the hyper-parameters of model ar-
chitecture, the number of graph fusion layers is searched
over {1, 2}, the number of attention head is searched over
{1, 2, 4}, and the number of sampled neighbors is searched
over {10, 20, 30, 40}. For the hyper-parameters of training,
the batch size is selected among {100, 150, 200, 250}, and the
dropout ratio is selected among {0.0, 0.1, 0.2, 0.3}. We also
employ the early-stopping strategy until the validation AUC
score does not improve over three epochs.

2) Temporal Node Classification: Since our DPS can pro-
duce temporal node embeddings directly, we use the same
three-layer MLP of baseline methods except that the input
features are only users’ temporal node embeddings.

E. Experiment Comparison

1) Temporal Link Prediction:

• Compared with the performance degradation of several
temporal network methods, Node2Vec and SAGE are two
robust baselines on most datasets.

• TGAT performs significantly better than CTDNE and
HTNE on most datasets, demonstrating the superiority
of graph neural networks. Nevertheless, TGAT shows
performance degradation on the large and sparse network,
namely ia-slashdot. In contrast, APAN performs the
second-best on ia-slashdot among other methods. How-
ever, the implementation of APAN makes it incapable of
temporal networks of only a few nodes.

• JODIE, as a recurrent evolving method, not only un-
derperforms TGAT on most datasets but also shows a
performance decline on four small and dense temporal
networks, namely ia-workplace, ia-hypertext, fb-forum,
and ia-primary. It indicates the recurrent models may be
unsuitable for fast changes of user preferences.

TABLE III: AUC scores for temporal node classification over
five runs of each method.

Methods Wikipedia Reddit

Node2Vec [25] 0.812± 0.018 0.618± 0.050
SAGE [14] 0.824± 0.007 0.612± 0.006
CTDNE [19] 0.759± 0.005 0.594± 0.006
HTNE [7] 0.742± 0.011 0.612± 0.009
JODIE [5] 0.832± 0.005 0.599± 0.021
APAN [6] 0.899± 0.003 0.653± 0.004
TGAT [8] 0.837± 0.007 0.656± 0.007
DPS 0.902± 0.005 0.703± 0.004*

• Our proposed DPS achieves the best performance of
Accuracy and AUC scores on all temporal networks. Its
three variants also achieve better or comparable perfor-
mance against the state-of-the-art methods. Detailedly,
DPS performs much better than the second-best base-
line in low-repetition networks, including soc-bitcoin, ia-
retweet, soc-wiki, and ia-slashdot. It is mainly caused
by the interaction sparsity of these temporal networks
that DPS can capture a node’s dynamic preferences from
its historical interactions. DPS also obtains consistent
improvements over baseline methods for other high-
repetition networks.

2) Temporal Node Classification: There are only 44 posi-
tive labels in the test set of Wikipedia and 94 positive labels
in the test set of Reddit, indicating the user is banned from the
Wikipedia page or the subreddit. Table III presents the AUC-
ROC scores of our DPS and other compared temporal network
methods. Firstly, static graph methods (Node2Vec and SAGE)
outperform temporal network methods (CTDNE and HTNE),
implying that the banned users have discriminative features.
Secondly, continuous-time graph methods with GNNs (APAN,
TGAT, and DPS) perform much better than other baseline
methods, which shows the superiority of GNNs on learning
graph structures. Finally, our DPS performs comparably with
APAN on Wikipedia and much better than others on Reddit,
validating the robustness of DPS.

F. Ablation Study

1) DPS w/ TDS: The TDS is designed to capture nodes’
temporal patterns by personalized decay rates for each node.
As shown in Table II, DPS w/ TDS beats most baseline
methods on all networks. It even performs better than DPS on
two low-repetition networks ia-retweet and ia-slashdot, which
indicates that the objective of Eq. (4) is effective for sparse
networks. Compared with the robust baseline TGAT [8], the
deficiency of TDS on a few networks reveals the importance
of node semantics in temporal networks.

2) DPS w/ GAS: The GAS, complementary to the proposed
TDS, is designed to capture the semantic proximity among
nodes adaptively. As shown in Table II, DPS w/ GAS beats
nearly all the baseline methods on all networks. It implies that
heuristic sampling strategies used in SAGE [14], TGAT [8],
and APAN [6] may be suboptimal for graph learning of

1 2 3 4 5 6 7 8 9 10
Dataset index

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
U

C

1
2

Fig. 3: Number of graph fusion layers (over five funs).

1 2 3 4 5 6 7 8 9 10
Dataset index

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
U

C
1
2
4

Fig. 4: Number of attention heads (over five runs).

temporal networks. Moreover, the superiority of DPS to DPS
w/ GAS shows that the complementary TDS sampler can
further boost the performance.

3) DPS w/o Fusion: The attention-based fusion layer is
employed to overcome the heterogeneity of TDS and GAS.
Table II shows that DPS w/o Fusion can only achieve compara-
ble performance with the better one between DPS w/ TDS and
DPS w/ GAS on most datasets. Specifically, DPS w/o Fusion
even demonstrates performance degradation on the network
soc-wiki. Compared with DPS w/o Fusion, DPS achieves con-
sistent performance improvements on most datasets, indicating
the importance of fusing the heterogeneity of TDS and GAS.

G. Parameter Sensitivity

1) Number of Graph Fusion Layers: The number of layers
restricts the receptive field of nodes in graph neural networks.
Researchers observed that GNNs first benefit from the in-
crease of layers but later suffer from the over-smoothing and
overfitting problem when the number of layers is deep [13]–
[15], [27]. Due to the neighborhood expansion problem, Fig. 3
only depicts DPS’s performance of layer = {1, 2}. On most
datasets, DPS benefits from a deeper layer significantly, which
mainly owes to the high-order connectivity [13], [14] and the
collaborative filtering signal [16]. In contrast, the performance

1 2 3 4 5 6 7 8 9 10
Dataset index

 (a) Number of neighbors

0.80

0.85

0.90

0.95

1.00

A
U

C

10
20
30
40

1 2 3 4 5 6 7 8 9 10
Dataset index
 (b) Batch size

0.80

0.85

0.90

0.95

1.00
100
150
200
250

1 2 3 4 5 6 7 8 9 10
Dataset index

 (c) Dropout ratio

0.80

0.85

0.90

0.95

1.00
0.0
0.1
0.2
0.3

Fig. 5: Parameter sensitivity experiments over five runs. Dataset are indexed according to Table I.

degradation on the email network ia-radoslaw indicates the
involved noise of high-order neighbors.

2) Number of Attention Heads: Neural networks employing
the attention mechanism [8], [15], [17] often obtain per-
formance improvements with a few attention heads, which
enlarges the model capacity of representation learning. How-
ever, our DPS exhibits stable performance regardless of the
number of attention heads, which verifies the robustness of our
method firstly. Secondly, our proposed TDS and GAS, which
sample the preference structure of networks, actually have
the same effect as the attention mechanism, strengthening the
preference structure. Thirdly, the stable performance relieves
the burdensome work of tuning hyper-parameters.

3) Number of Neighbors: The number of neighbors is the
sampling number of neighborhoods for each node. Fig. 5(a)
shows the heterogeneity of different networks that DPS ben-
efits from the increase of neighbors on networks of a long
timespan (including fb-forum, ia-retweet, ia-radoslaw, and ia-
slashdot), while DPS performs stably with different neighbors
on networks of a short timespan (including ia-workplace, ia-
hypertext, and ia-contact).

4) Batch Size: Deep learning models update the parameters
once a mini-batch using the SGD strategy [20], [33]. Usually,
a smaller batch size accelerates the training speed, and a
larger batch size gives a more robust model. The correlation of
performance and batch size drawn in Fig. 5(b) can be divided
into two kinds: DPS’ performance on high-repetition networks
such as ia-workplace, ia-hypertext, ia-contact, and fb-forum is
relatively stable; while a better performance on the rest of
networks requires careful hyper-parameter search.

5) Dropout Ratio: The dropout strategy is a successful
technique to avoid overfitting for neural networks [36], which
dropouts the neurons randomly and adjusts the hidden outputs
accordingly. Similar to the effects of attention head shown
in Fig. 4, the dropout ratio shown in Fig. 5(c) is relatively
irrelevant to DPS’ performance on most networks. It may
also attribute to the sampling of preference structures, which
implicitly regularizes the noise from nodes’ neighborhoods.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the dynamic graph sampling
problem, recognizing the preference structure of temporal
networks adaptively with time elapsing. Two parameterized
samplers, Time Decay Sampling (TDS) and Gumbel Attention
Sampling (GAS), are proposed to deal with the personalized
temporal patterns of nodes, and temporal node semantics,
respectively. Besides graph neural networks, we devise an
attention-based fusion layer for DPS to combine node embed-
dings from different subgraphs sampled by TDS and GAS.
Extensive experiments validate the rationality and efficiency
of learnable structure samplers of temporal networks and
embedding fusion of different samplers.

Neighborhood sampling methods [14], [18], [37] usu-
ally aim at boosting training speed and avoiding the over-
smoothing problem in graph neural networks. Moreover, our
method also reveals the neighborhood effectiveness for tempo-
ral networks. In the future, we are more interested in develop-
ing self-supervised methods that distill the graph structure with
several pretraining tasks. This direction will both improve the
task performance and identify the interpretable graph structure
for predictions.

ACKNOWLEDGMENT

This research was partially supported by the Key-Area
Research and Development Program of Guangdong Province
(Grant no.2020B0101100005) and Key Research and Develop-
ment Program of Zhejiang Province (Grant no.2021C01014)

REFERENCES

[1] J. Bennett, S. Lanning et al., “The netflix prize,” in Proceedings of KDD
Cup and Workshop, 2007, pp. 35–35.

[2] J. Kunegis, “Konect: the koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web, 2013, pp.
1343–1350.

[3] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[4] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in National Conference
on Artificial Intelligence, 2015, pp. 4292–4293.

[5] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding
trajectory in temporal interaction networks,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2019, pp. 1269–1278.

http://snap.stanford.edu/data

[6] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang,
P. Cui, Y. Yang, B. Sun et al., “Apan: Asynchronous propagate attention
network for real-time temporal graph embedding,” in Proceedings of the
2021 ACM SIGMOD International Conference on Management of Data,
2021.

[7] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding temporal
network via neighborhood formation,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2018, pp. 2857–2866.

[8] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” in International Conference
on Learning Representations, 2020.

[9] U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal
graphs,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence, 2019, pp. 4605–4612.

[10] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs.” in Proceedings of the 34th
AAAI Conference on Artificial Intelligence, 2020, pp. 5363–5370.

[11] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in Proceddings of the
32nd AAAI Conference on Artificial Intelligence, 2018, pp. 571–578.

[12] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in International Conference on
Learning Representations, 2019.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[14] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceddings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1024–
1034.

[15] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[16] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph
collaborative filtering,” in Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Re-
trieval, 2019, pp. 165–174.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, 2017, pp. 5998–6008.

[18] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph convolu-
tional networks via importance sampling,” in International Conference
on Learning Representations, 2018.

[19] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in Compan-
ion Proceedings of the The Web Conference 2018, 2018, pp. 969–976.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems,
2012, pp. 1097–1105.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Proceedings of the 27th International Conference on Neural
Information Processing Systems, 2013, pp. 3111–3119.

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[23] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge Based Systems, vol. 151, pp.
78–94, 2018.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[25] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 855–
864.

[26] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 1067–1077.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proceedings
of the 30th International Conference on Neural Information Processing
Systems, 2016, pp. 3844–3852.

[28] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Li, and C. Wang,
“Learning temporal interaction graph embedding via coupled memory
networks,” in Proceedings of The Web Conference 2020, 2020, pp. 3049–
3055.

[29] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Understand-
ing negative sampling in graph representation learning,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020.

[30] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[31] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42–60, 2018.

[32] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in International Conference on Learning Represen-
tations, 2017.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015.

[34] J. W. Pennebaker, M. E. Francis, and R. J. Booth, “Linguistic inquiry
and word count: Liwc 2001,” Mahway: Lawrence Erlbaum Associates,
vol. 71, no. 2001, p. 2001, 2001.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” in Proceedings
of the 33th International Conference on Neural Information Processing
Systems, 2019, pp. 8026–8037.

[36] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[37] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep
graph convolutional networks on node classification,” in International
Conference on Learning Representations, 2020.

	I Introduction
	II Related Works
	II-A Static Graph Embedding
	II-B Temporal Network Embedding

	III Method
	III-A Problem Definition
	III-B Structure Sampling
	III-B1 Time Decay Sampling
	III-B2 Gumbel Attention Sampling

	III-C Graph Fusion
	III-C1 Sampling-based Graph Convolution
	III-C2 Sampling Subgraph Fusion
	III-C3 Optimization for Graph Fusion

	IV Experiment
	IV-A Datasets
	IV-B Tasks
	IV-B1 Temporal Link Prediction
	IV-B2 Temporal Node Classification
	IV-B3 Evaluation Metrics

	IV-C Baselines
	IV-C1 Temporal Link Prediction
	IV-C2 Temporal Node Classification

	IV-D Implementation Details of DPS
	IV-D1 Temporal Link Prediction
	IV-D2 Temporal Node Classification

	IV-E Experiment Comparison
	IV-E1 Temporal Link Prediction
	IV-E2 Temporal Node Classification

	IV-F Ablation Study
	IV-F1 DPS w/ TDS
	IV-F2 DPS w/ GAS
	IV-F3 DPS w/o Fusion

	IV-G Parameter Sensitivity
	IV-G1 Number of Graph Fusion Layers
	IV-G2 Number of Attention Heads
	IV-G3 Number of Neighbors
	IV-G4 Batch Size
	IV-G5 Dropout Ratio

	V Conclusion and Future Work
	References

