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Abstract—Logs play a crucial role in system monitoring and
debugging by recording valuable system information, including
events and states. Although various methods have been proposed
to detect anomalies in log sequences, they often overlook the sig-
nificance of considering relations among system components, such
as services and users, which can be identified from log contents.
Understanding these relations is vital for detecting anomalies and
their underlying causes. To address this issue, we introduce GLAD,
a Graph-based Log Anomaly Detection framework designed to
detect relational anomalies in system logs. GLAD incorporates
log semantics, relational patterns, and sequential patterns into a
unified framework for anomaly detection. Specifically, GLAD first
introduces a field extraction module that utilizes prompt-based
few-shot learning to identify essential fields from log contents.
Then GLAD constructs dynamic log graphs for sliding windows
by interconnecting extracted fields and log events parsed from
the log parser. These graphs represent events and fields as
nodes and their relations as edges. Subsequently, GLAD utilizes
a temporal-attentive graph edge anomaly detection model for
identifying anomalous relations in these dynamic log graphs. This
model employs a Graph Neural Network (GNN)-based encoder
enhanced with transformers to capture content, structural and
temporal features. We evaluate our proposed methotﬂ on three
datasets, and the results demonstrate the effectiveness of GLAD
in detecting anomalies indicated by varying relational patterns.

Index Terms—log anomaly detection, GNN, transformer

I. INTRODUCTION

Anomaly detection is the task of identifying unusual or
unexpected behaviors in a system or process. As computer
systems become increasingly more sophisticated due to the
expansion of new communication technologies and services,
they are prone to various adversarial attacks and bugs [1]].
Moreover, such attacks are also getting evolved and becom-
ing increasingly sophisticated. As a result, the difficulty of
anomaly detection has increased, making many conventional
detection approaches no longer effective, and it requires us
to look deeper into the system, for example, the interaction
among system components.

System logs capture system states and events across time
to aid process monitoring and root cause analysis of running
services. These log files are ubiquitous in almost all com-
puter systems and contain rich information, including con-
trol commands of machine systems, transactions of customer
purchases, and logs of a computer program. As a result,
they have proven a valuable resource for anomaly detection

'Our code is available at https:/github.com/yul091/GraphLogAD
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Fig. 1: Two anomalous relations (anomalous edges highlighted
in red): unbalanced request (left) and malicious request (right).

in both academic research and industry applications [2]-[6].
Each log message usually consists of a predefined constant
key template (known as a “event”, e.g., a login activity)
and a few variables (known as “fields”, e.g, services and
users). When the events are arranged chronologically based
on the recording time, they form a discrete log sequence.
Various methods have been proposed to detect the anomalous
sequential patterns in the sequence: (1) Pattern recognition
methods consider event sequences with inconsistencies beyond
a certain threshold to be anomalous [7]-[11]. They treat event
alphabet sequence as input in an independent dimension and
ignore the sequential patterns between events. (2) Sequential
learning methods analyze events sequentially with a defined
sliding window in order to forecast the subsequent event based
on the observation window [6]], [[12].

However, the relation between log events and fields, an
essential indicator of system anomalies, has often been over-
looked. This oversight can lead to missed detection or false
alarms, as anomalies may not be apparent from individual
events or isolated patterns. Different from previous methods
that detect anomalous sequential patterns in log sequences, we
focus on a new task that aims at detecting anomalous relational
patterns between interconnected events and fields. Take, for
instance, a scenario where workers receive an unbalanced
number of requests from a coordinator in a period of time, or
a coordinator suddenly requests connection to other workers,
as illustrated in Figure 1| Traditional methods, without consid-
ering the relations, may fall short in detecting such anomalies.
Apart from detecting anomalous events, understanding these
anomalous relations between events can offer insightful details
about the system’s dynamics, for example, the underlying
causes of an anomaly and its propagation over time.
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To achieve our goal, there are several challenges: (1) Dy-
namic graphs need to be built to describe the interactions
between log events and fields in different time windows. (2)
Instead of merely detecting anomalies on graph level, we aim
to detect anomalous edges representing the relations among
nodes, which is a more challenging task. (3) In addition to
relational patterns, we need to integrate log semantics and
sequential patterns as a whole for anomaly detection.

To this end, we propose GLAD, a Graph-based Log
Anomaly Detection framework, to extract and learn the rela-
tions among log events and fields, in addition to log semantics
and sequential patterns, for system relation anomaly detection.
Our approach proposes a novel method to construct dynamic
graphs that describe the relations among log events and fields
over time and then leverages a temporal-attentive transformer
to capture the sequential patterns implicitly expressed in each
time period. Specifically, a field extraction module utilizing
prompt-based few-shot learning is first used to extract field
information from log contents. Then, with the fields extracted
and the log events parsed from a log parser, dynamic graphs
can be constructed for sliding windows with events and fields
as nodes and the relations between them as edges. Finally,
a temporal-attentive graph edge anomaly detection method is
proposed to detect anomalous relations from evolving graphs,
where a Graph Neural Network (GNN)-based encoder facili-
tated with transformers is used to learn the structural, content,
and sequential features. Experiments on real-world log datasets
are conducted to demonstrate the effectiveness of GLAD.

To summarize, in this work, we propose to detect log
anomalies from a novel point of view, i.e., the interaction and
relation between system components leveraging system logs.
In this way, we can dig into more system details and find
causes and solutions to the anomalies efficiently. Our main
contribution is a framework for constructing dynamic graphs
from logs and capturing relational anomalies from dynamic
graphs using temporal-attentive transformers, which allows
for more granular and accurate log anomaly detection. We
believe our proposed approach has the potential to significantly
improve the effectiveness of log analysis in detecting more
sophisticated anomalies in real applications.

II. RELATED WORK

Log Sequences Anomaly Detection. Detecting anomalies in
log sequences has recently gained substantial attention. Earlier
research hinged upon similarity measurements, wherein test
logs are compared with training logs to detect anomalies based
on their dissimilarity [[13]], [14]. Subsequent methods can be
categorized into three groups: pattern frequency-based [15],
sequence-based such as Hidden Markov Model (HMM) [16],
and contiguous subsequence-based anomaly detection such
as window-based techniques [3[], [[17]. While certain studies
utilize supervised learning for anomaly detection [18]-[21],
unsupervised learning, which observe only normal event se-
quences during training, has been proven to be a more efficient
learning paradigm [8]-[11]], [22f, [23[]. Our research mainly
focuses on the latter learning paradigm.

TABLE I: Notation Description.

Symbol  Description
e e= {zl, .rM} log message is a sequence of tokens
S S = {el, ...,e‘s‘} log sequence is a sequential series of logs
E E= {entl, e ent‘E‘} sequence of entities in a log message
Y Y = {ll, e I|E|} sequence of entity labels in a log message
S S= {Sl, S‘5|} total sequences are a set of log sequences
Gt the dynamic graph at time window ¢ with V; and &
Vi vertex set in graph G¢
Er edge set in graph G
X attribute matrix in graph Gy
Ay adjacency matrix in graph G;
w® learnable weights in the [-th layer of a model, e.g., Wyer, Wé”
I identity matrix
H; node representations of graph G; learned by GCN
N total number of graphs in S
Hs, long-term node representations of graph G; learned by transformers
Hi e short-term node representations of graph G learned by transformers
H node representations of graph G by concatenating Hs,; and Hy ¢
R graph representation of G; by maxpooling node representations H¢

o(-) activation function, e.g., ReLU(-), Sigmoid(-)
L loss objective, including Lner, £, Lreg
P prompt P = {p1, ..., pm }, including P* and P~

Log Knowledge Graph Construction. Raw log files offer a
wealth of information pertaining to system states and service
interconnection, e.g., whether a computing machine is running
under an abnormal state or a user is a malicious attacker. To
analyze such data and avoid tedious searching clues or tracing
system events across log sources, existing studies have put ef-
forts into identifying and linking entities (log fields) across log
sources, thereby enriching them with knowledge graphs [24]-
[26]. They often apply information extraction techniques such
as Named Entity Recognition (NER) to identify log fields
within log messages. The resulting fields are considered nodes
within a knowledge graph, and rule-based relation linking is
used to integrate the log fields into the knowledge graph.
However, these methods require a large amount of label data
for training, which introduce high cost in real applications. In
comparison, we try to solve this problem in a few-shot setting.

Graph-based Anomaly Detection. GNNs have become in-
creasingly popular due to their ability to learn relation pat-
terns, making them favorable for anomaly detection. Leading
GNN models include GCN [27], GIN [28], SAGE [29],
GAT [30], and Transformer Graph (GT) [31]]. Existing graph-
based anomaly detection methods can be categorized into three
types based on the range of anomaly detection: (1) Node-level
auto-encoders [32]-[35]] regard nodes with atypical attribute
and relation distributions as anomalies. The key idea is to use
GNN-based encoder-decoders to reconstruct original graphs
and calculate the reconstruction errors for each node. Nodes
with above-threshold errors are detected as anomalies. Some
further consider temporal relations on dynamic graphs [36],
[37] to detect anomalies. (2) Edge-level auto-encoders [38]],
[39] first use graph encoders to learn node feature repre-
sentations, then determine edge scores for each node pair
in the graph to represent how likely it is normal. Some
further consider representative structural information from the
dynamic graph in each time stamp and their dependencies
[36], [40], [41]] to detect anomalous edges. (3) Graph-level
auto-encoders [42]]-[46] use a graph encoder to learn feature
representations and aggregates all node features within each
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Fig. 2: Overview of our GLAD framework. GLAD first extracts
log fields and events and connects them to construct dynamic
log graphs, where node features are text embeddings. These
graphs, along with their sequential dependencies, are jointly
encoded to identify anomalous edges.

graph as the graph representation. Hypersphere learning is then
applied to cluster all normal graphs into a central distribution,
distinguishing them from anomalous ones.

III. LoG ANOMALY DETECTION FRAMEWORK

In this section, we introduce GLAD, a graph-based frame-
work that learns structural, content, and sequential features
among logs for anomaly detection, as shown in Figure [2}

A. Preliminaries

We first define several important terminologies pertinent to
our work. The notions are summarized in Table [l

A log is a sequence of tokens e = {1, ..., |¢| }, where x;
denotes the i-th token and |e] is the log length.

A log sequence is a series of logs ordered chronologically
within an observed time window S = {61, ...,6‘5|}, where
e; represents the i-th log and |S| denotes the total number of
logs in a time window.

For a log sequence S; in time window t, we construct a
dynamic graph G, = (V;, &, Xy, Ay), where V;, & denote
the union of vertices and the union of edges, X; € R"*¢
and A; € R™*" are its attribute and adjacency matrices. Note
that the dynamic graph used in this paper is an undirected,
weighted, and attributed heterogeneous graph.

B. Log Graph Construction

To build graph representations from log sequences, we
propose a prompt-based model to extract fields from log
messages. The extracted fields, along with the parsed log
events via a log parser, are interconnected following pre-
defined principles to construct dynamic graphs. Subsequently,
we employ a pre-trained Sentence-BERT [47] to capture the
semantics of each node using its content information. The
encoded hidden representations for each node are treated as its
attributes, while the adjacency matrix represents the structure
of the graph. These node attributes and adjacency matrices are
collectively used to detect anomalous edges.
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Fig. 3: Illustration of prompt-based few-shot field extraction.

Prompt-Based Few-Shot Field Extraction. Real-world log
datasets contain substantial log events and log fields with
diverse syntactic formats, making manual annotations virtually
infeasible. While existing off-the-shelf tools [48]], [49]] employ
either rule-based or search-based algorithms to extract event
templates and fields from raw log messages, their effectiveness
is limited. They work well with fields exhibiting fixed syntax
patterns, such as IP, email, and URL, but falter with those that
have flexible syntax patterns, like user and service.

To overcome this challenge, we approach log field extraction
as a NER task and propose a prompt-based few-shot learning
method using BART [50] that excels in identifying log fields
in low-resource scenarios. We define 15 common log field
types vital for system monitoring by referring to common log
ontology [24]]-[26]. These include IP, email, process ID (pid),
user ID (uid), user name, timestamp, service, server, file path,
URL, port, session, duration, domain, and version.

We frame the field extraction as a seq2seq learning process,
as shown in Figure Given a log message e = {;1:1, vy Lef },
which contains a set of gold fields £ = {entl,...,ent|E|
and a label set Y = {l1, g }, we create a target sequence
(prompt) Py, ... = {p1,...,pm} for each candidate text span
x;,; and its label [);. Specifically, P is a positive prompt P if
the text span is a gold field (z;.; € E), e.g., “(x;.;) is a/an (I3)
entity”; otherwise, it is a negative prompt P~, e.g., “(z;.;) is
not a named entity”.

During training, we create prompts using gold fields fol-
lowing [51]], [52]. For each log message e, we create positive
pairs (e, PT) by traversing all its gold fields and negative
pairs (e, P~) by randomly sampling non-entity text spans. For
efficiency, we limit the number of n-grams for a span to 1~5,
i.e., Sxn negative prompts are created for each log message.
After sampling, the number of negative pairs is three times
that of positive pairs. Given a sequence pair (e, P), we feed
the log message e to the encoder of BART whose hidden size
is dj,, and obtain the hidden states he"c € Rd:

h“"® = Encoder(z./|) (1)

At the c-th decoding step, h®”“ and previous output tokens
D1.c—1 are used to generate a representation via attention [53]:

hfec = Decoder(h®"*, p1.._1) 2)
The conditional probability of a word p,. is defined as:

P(pc|p1:c—17 6) = SOftmaX(hgecwner + bner) (3)



where W ., € R**IVl and b,,., € RIVl. Here |V| denotes
the vocab size of BART. The decoding objective is the Cross-
Entropy (CE) loss for prompt with length m:

Ener = - Z log P<pC‘pLC—1a e) “)

c=1

During inference, we enumerate all possible 1~5-grams text
spans x;.; for a log message e and compute scores for each
prompt Py, .. = {p1,...,pm} as follows:

f(Plk7wiJ]) = Z log P(pc‘pl:cfla 6) ()

c=1

For each traversed text span x;;, we compute the score

f(Plfme) for every entity type and f(P,, ) for the non-
entity type. A resulting type [; than garners the highest score
is assigned to z;.;. Such iterative process ensures the extraction
of all relevant fields, as depicted in Figure
Graph Structure Configuration. To model the relation be-
tween fields and events across different log messages, we use
a sliding window with a fixed time interval to snapshot a
batch of log messages and construct a corresponding graph.
Specifically, each log instance consists of a parsed event
template (obtained via a log parser such as Drain [54]), e.g.,
“FAILED LOGIN for (x) to (x)”, along with a list of extracted
fields, e.g., [“della”, “imap://localhost/’] with corresponding
types, e.g., [user, server]. We then interconnect the event
template to each extracted field to capture inherent behaviors in
the log with the number of connections as edge weight. In the
resultant undirected graph, any two log instances that share
any of the defined nodes are indirectly connected, thereby
indicating their implicit relations.
Graph Node Attribute Configuration. We define types of
nodes based on the corresponding event and field types, such
as server for “imap://localhost/”. For each node, we define
its input text format and employ a pre-trained Sentence-
BERT [47] to learn the sentence embedding as its attribute.
Specifically, for log events, we directly use their templates as
the encoder input texts, while for log fields we use our defined
prompts as the input texts, e.g., “imap://localhost/ is a server
entity”. The output hidden states for each input text capture the
node semantics and are used as node features for constructing
attributed graphs.

C. Temporal-Attentive Graph Edge Anomaly Detection

We now introduce our proposed temporal-attentive graph
edge anomaly detection method, as illustrated in Figure []
which operates on the dynamic graphs constructed for logs
within corresponding time slots. Specifically, a Graph Convo-
lutional Network (GCN) is first used to encode the structural
information for each graph. Then, a transformer encoder
is deployed to learn the temporal dependencies within the
sequence of dynamic graphs. For each graph, we sample
certain negative edges and compute the edge score using the
learned hidden states. The process concludes by employing
a pair-wise margin loss to minimize the positive edge scores
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Fig. 4: Overview of our temporal-attentive graph edge anomaly
detection framework. Edges highlighted in red are negative
edges. Y; and Y;“? denote the aggregation of positive and
negative edge scores, respectively, for a specific graph G;.

and maximize the negative edge scores, in adherence with the
one-class training objective.
GCN Shared Encoder. At time window ¢, we receive a
graph snapshot G; = (V;, &, X4, Ay), where X; € R"*¢
and A; € R™*" represent its attribute and adjacency matrices
respectively. We apply GCN [27] to capture both its attribute
and structural features. While there exist advanced GNNs, such
as Graph Transformer (GT) [31]], we found that GCN offers a
blend of efficiency and competitive performance. It considers
high-order node proximity when encoding the embedding
representations, thereby alleviating network sparsity beyond
the observed links among nodes [32]. For an L-layered GCN,
each layer can be expressed with the function:

B = Y A W)

J 6

Y AW — oD LAD, W)
where W,(Jl) is a learnable weight matrix for the [-th layer,
l € [1,L]. Ay = A, + I denotes the adjacency matrix with
added self-loops and f)” =5 =0 /1” represents its diagonal
degree matrix. o(-) is a non-linear activation function, for
which we use the ReLU.

We designate the attribute matrix X, as the initial hidden
state HEO). The resultant embedding Z; = HgL) captures
the nonlinearity of complex interactions between log entities
and events within each graph. However, it is still inadequate
for detecting anomalies caused by malicious relations due to
neglect of temporal features across graph snapshots.
Temporal-Attentive Transformer. Given the chronologically
generated nature of system logs, and the logical dependencies
that exist between past and present log states, we employ a
transformer encoder to incorporate the temporal features of
entire sequence into the latent space.

We receive a sequence of node embeddings {Z,...,Zy}
for all graphs. Note that nodes in each graph are an unordered
set, Vy = {v1,...,v)y,}, rather than a sequence. We propose
a Set Transformer (ST) to eliminate this order dependencies
when encoding node embeddings. Specifically, we first com-
pute the position embeddings based on each graph’s position in
the sequence, assigning all nodes belonging to each graph the
identical position embedding E,,. Subsequently, the embedding



for the graph at time ¢ (with position p) is determined as
E; = E, + Z;, and the representation sequence as Egs =
{E1,...,Ex}. The representation sequence is then fed into
self-attention blocks to derive long-term representations Hs:

HIY = FEN(Attention(H ) )

where [ denotes the layer index, with the initial hidden state
H(SO) = Es. We formulate subsequences using a sliding
window of size k. Consequently, each subsequence comprises
unique local information, pivotal in determining whether the
entire sequence is anomalous. For a subsequence of graph
node embeddings {Z;_x_1, ..., Z;}, corresponding to graphs
{Gt—k-1,...,G¢}, its representation can be expressed as Ej =
{E;{_k—1,..., E;}. The same operations are executed to obtain
short-term representations Hj, by considering k local graphs.
We then concatenate the encoded long-term H s and short-
term representations H;, to form the final node features:

H = [Hs||Hildim=1 )

where [-||-]¢im=1 represents the concatenation operator of
two matrices over the column-wise dimension. Consequently,
the final node representations H; for graph G; captures the
structural, content, and temporal features.

Edge-level Training objective. Until now, we have established
the hidden states of nodes H; at time window ¢. For each edge
(i, j,w) € E* with weight w, we retrieve the embeddings for
the i-th and j-th node in ;. This allows us to calculate its
anomalous score as follows:

f(i,j,w) =w-o(Wih; + Wah; — p) 9)

where h; and h; are the hidden states of the i-th and j-
th node respectively, and o(-) is the sigmoid function. W,
and Wy, are the weights in two fully-connected layers. p is
a hyperparameter in the score function. Note that this single
layer network can be replaced by more complex networks.

To overcome the scarcity of anomaly data during training,
we build a model to optimize one-class (normal) data instead.
In essence, this means that all edges are considered normal
during training. Inspired by the sampling method proposed
in [55]], we apply a Bernoulli distribution with parameter T4d;
for sampling anomalous edges according to the node degree
d. In particular, for each normal edge (7, 7) in the graph, we
generate an anomalous edge by either replacing node ¢ with
node ¢’ (with a probability of diii dj) or replacing node j with
node j’ (with a probability of diij 7 ). Here, d; and d; are the
degrees of the ¢-th and j-th node respectively. Realizing that
the generated edges may still be normal [41]], [56]], we propose
a margin-based pairwise edge loss in training rather than a
strict objective function such as cross entropy, to distinguish
between existing edges and generated edges:

= X o B

N (gw)EET (15 w)get
max {0, + f (i, j,w) = f(7',j',w)}

(10)

where v € (0, 1) is the margin between the likelihood of nor-
mal and anomalous edges, and f(-,-,-) is the aforementioned
anomalous edge score function. Minimizing the loss function
L. results in a smaller f(i,7,w) and a larger f(¢/,5,w),
thereby achieving our one-class optimization goal.

To enhance efficiency, we aim to select edges of high
significance for training. Specifically, for each pair of normal
edge (i,j,w) and negatively sampled edge (i',j',w), we
discard it if f(i,j,w) > f(¢', 7', w) and retain it otherwise, for
pair-wise optimization. The intuition behind is that some edges
in snapshots may not be entirely normal after training, and we
aim to increase the reliability of normal edges that are used to
learn graph representations. This selective negative sampling
paradigm bolsters the stability of GLAD in training.
Multi-granularity Learning. Besides the margin loss that
differentiates normal and anomalous edges, we introduce an
ad-hoc heuristic to form a “soft-margin” decision boundary.
This means we select graph representations whose distance
to a center ranks at specific percentile as the decision bound-
ary’s radius [12]. To this end, we first formulate the graph
representation for G, by maxpooling its node representations:

(1)

At the graph-level, anomalous graphs can be detected via
one-class classification training. The objective L, is to learn
a minimized hypersphere that encloses graph representations:

R+ = maxpooling(H;)

N
min R? + C E I
R,c,e P}

st ||Ry —c||> < R? +e4,6 >0, Vt

12)

where ¢ and R are the center and radius of the hypersphere
respectively, ||R; — ¢||? is the distance between a graph
representation and the center, € is a slack variable introduced
for R; to accommodate outliers during training, and C' is a
hyperparameter that balance the trade-off between the errors ¢,
and the volume of the sphere. The objective defined in Eq.
aims to cluster all training samples within a minimum hyper-
sphere using Lagrange multipliers, similar to SVDD [42]. We
propose a multi-granularity loss function that considers both
edge-level and graph-level objectives:

L= Lotalyt S IW B IWal3+ W B+ [W215)

13)
where W, denotes the weights of temporal-attentive trans-
formers. Hyperparameter « controls the trade-off between
edge-level and graph-level violations, and A modulates the
weight decay L2 regularizer to avoid overfitting.

IV. EXPERIMENTS
A. Experimental Settings

We evaluate our method in both the new anomalous relation
detection setting and the traditional setting: (1) Edge-level
detection: it aims at detecting anomalous relations in a log
sequence, which are the edges in a log graph for a given time
window. For each dataset, we label edges connected to the



TABLE II: Statistics of the three datasets.

BGL AIT Sock Shop
# Log Messages 4,713,494 1,074,902 14,674
# Anomalies 348,460 45,651 408
# Nodes 4,393,108 1,663,188 10,340
Avg. degree 11.80 15.85 13.84
# Edges 25,918,022 13,180,752 71,540
# Anomalous edges 1,572,696 567,906 2,468
# Graphs 36,169 15,464 270
# Anomalous graphs 2,659 1,078 16

annotated anomalous logs as anomalies under this new setting.
(2) Interval-level detection: it aims at detecting anomaly time
windows which contains anomalous logs. We use this setting
for a fair comparison with traditional log anomaly detection
methods and more recent graph-based anomaly detection
methods. In this setting, we treat a time window as anomaly
if it contains any labeled anomalous logs. This is equivalent
to the graph-level detection in our context.

Datasets. Among several potential candidates, we choose
three publicly available datasets or platforms that have been
examined by previous researches. We collect log sequences
from these data sources to evaluate the effectiveness of our
approach. Below we describe the details of the three datasets,
and their statistics is shown in Table

o BlueGene/L (BGL) [57]]. BGL is an open dataset of logs
collected from a BlueGene/L supercomputer system with
131,072 processors and 32,768GB memory. The logs
can be categorized into alert (anomalous) and non-alert
(normal) messages identified by alert category tags.

o Austrian Institute of Technology (AIT) [58]. AIT (v1.1)
is collected from four independent testbeds. Each of the
web servers runs Debian and a set of installed services
such as Apache2, PHP7, Exim4, Horde, and Suricata.
Furthermore, the data includes logs from 11 Ubuntu hosts
on which user behaviors were simulated.

e Sock Shop Microservices [59]]. Sock Shop is a test bed
that can be used to illustrate microservices architectures,
demonstrate platforms at talks and meetups, or as a
training and education tool. Specifically, we deploy and
generate anomalous relations by adding shopping items
that have not been browsed by each customer or intro-
ducing a large number of items in certain time periods.

Baselines. We compare the performance of GLAD with a wide
range of baselines. For the edge-level setting, we consider five
graph-based anomaly detection baselines. For fairness, except
for AddGraph [41]] that directly identifies anomalous edges,
we use their reconstructed node feature vectors to compute
edge scores and evaluate their edge-level performance.

« DOMINANT [32]. DOMINANT contains a GCN en-
coder, a structure reconstruction decoder and a attribute
reconstruction decoder. It learns a weighted reconstruc-
tion errors as the node anomalous score.

o CONAD [35]. CONAD first generates augmented graphs
based on prior human knowledge of anomaly types, then
applies a Siamese GNN to detect node anomalies.

o AnomalyDAE [33]. AnomalyDAE uses a structure
encoder-decoder to learn structure reconstruction errors

and an attribute encoder-decoder to learn feature recon-
struction errors. These errors are balanced to form an
anomalous score of each node.

« MLPAE [60]. MLPAE applies a Multi-Layer Perceptron
(MLP) autoencoder to detect anomalous nodes without
considering structure information in a graph.

o AddGraph [41]. AddGraph incorporates a temporal-
attentive RNN into a GCN encoder to learn structure
and attribute representations in dynamic graphs. It learns
edge scores according to pairwise node latent vectors and
detects anomalous edges.

For the interval-level setting, existing works focusing on
logs can be divided into two categories: 1) sequence-based
methods, including traditional methods such as PCA [11],
Isolation Forest [9], OCSVM [7] and deep learning-
based methods such as DeepLog [6], LogAnomaly [61],
LogBERT [12]; and 2) graph-based methods, including
LogGD [62]], LogFlash [63], and DeepTral.og [64].

o Principal Component Analysis (PCA) [[11f]. PCA builds
a counting matrix according to the log event frequency
and then maps the matrix into a latent space to detect
anomalous sequences.

« Isolation Forest (iForest) [9]. An unsupervised learning
method that represents features as tree structures for
anomaly detection.

e One-class SVM (OCSVM) [7]]. A well-known one-class
classification method by building a feature matrix based
on the norm data for anomaly detection.

o DeepLog [6]. DeepLog uses LSTM to capture patterns
of normal log sequences and further identifies anomalous
log sequences based on log key predictions.

o LogAnomaly [61]. LogAnomaly proposes template2vec
to extract log template semantics and use LSTM to detect
sequential and quantitative log anomalies.

o LogBERT [12]]. LogBERT uses BERT to encode each
log sequence into a feature space by self-supervision, and
detect anomalous log sequences via hypersphere learning.

e LogGD [62]. LogGD constructs directed graph by con-
necting log templates following sequential relations, and
identifies anomalies via graph classification based on
Graph Transformer network.

o LogFlash [[63]]. LogFlash builds a time-weighted control
flow graph (TCFG), where nodes are log templates and
edges represent the transition between them, and compare
log streams with TCFG to find deviations.

e DeepTralLog [64]. DeepTral.og constructs trace event
graph (TEG) to represent various relations between the
span/log events of the trace. It learns a gated GNN-
based SVDD representation for each TEG and identifies
anomalies via hypersphere learning.

To evaluate the impact of individual components in GLAD
on the final performance, we also conduct experiments on
different GLAD variants:

o GLADS. In this variant, GLAD applies a rule-based (in-
stead of prompt-based) field extraction during graph



TABLE III: Edge-level performance (%) of GLAD and baseline methods. Bold numbers denote the best metric among all the

methods. We ran each model 5 times to get the average results.

Method BGL AIT Sock Shop

Precision  Recall F-1 AUC  AUPR | Precision Recall F-1 AUC  AUPR | Precision Recall F-1 AUC  AUPR
DOMINANT 35.09 90.68  50.60 4299  24.30 39.94 89.56 5524 42.01 4339 11.59 95.63 20.68 39.83 13.33
CONAD 32.19 97.83 4844 4484 2599 39.93 89.54 5523 4448 4547 16.31 88.92  27.56 4382 17.49
AnomalyDAE 36.34 88.27 5148 4531 26.03 55.12 70.63 6192 4549  45.17 12.40 9393 2190 39.70 12.53
MLPAE 35.53 82.41  49.65 43776  24.65 39.94 89.58 5525 4371  43.60 11.33 93.87 2022 3822 11.34
AddGraph 48.21 66.27 5582 5429 3397 48.96 8592 6238 46.16 4694 34.49 84.51 4899 51.39  58.52
GLADE 38.94 7426  51.09 50.73  30.06 4491 89.87 59.89 45.16 4630 35.79 80.14 4948 50.74  52.88
GLAD! 40.60 73.31 5226 50.34  30.82 45.17 90.71 6031 45.83  46.12 32.28 8277 4645 4857 5239
GLADT 39.53 89.56 5485 5297 31.07 50.08 93.30 65.18 4629  46.53 50.86 8276 63.01 6185 6542
GLAD 47.09 86.06 60.87 56.56 38.99 54.15 90.81 67.84 49.09  48.66 56.02 91.00 69.35 6193 68.37

configuration. This allows us to evaluate the significance
of accurate identification of system entities and their
interrelations with log events.

e GLAD!. This version of GLAD is designed without the
use of transformer encoder, removing its ability to cap-
ture temporal features. The purpose is to investigate the
significance of temporal features.

o GLAD'. This variant removes multi-granularity learning
from the training process of GLAD, thereby examining
the importance of global features in detecting anomalies.

Metrics. We measure the model performance on anomaly
detection based on three widely-used classification metrics,
including Precision, Recall, and F-1 score, as well as two
ranking metrics, including AUC and AUPR score.
Implementation Details. All GNN models in our research are
built on PyTorch Geometric (PyG) framework. These models
are configured with two layers, with input channels set at
768, and output channels at 1,024. For Sentence-BERT and
BART, we use their pre-trained models, namely bert-base-
uncased and facebook/bart-base, from Hugging Face. For
field extraction, we either fine-tune BART over 100 epochs
using 10-shot training samples or use pre-defined regular
expressions. For anomaly detection, we split the log sequences
into a ratio of 6:1:3, where 60% as training set, 10% as
validation set, and 30% as test set. We apply an unsupervised
learning paradigm [7], [61], [64] where only normal log
sequences are used for training, and train each model for
100 epochs. Hyperparameters are adjusted via grid search on
the validation set. Specifically, we use AdamW optimizer [65]]
with a learning rate of le-3, p of 0.3, v of 0.5, global weight
a of 1, and weight decay A of Se-7. Our analysis operates
with a window size of 60 seconds. Our work is conducted in
a leading industry company using an NVIDIA RTX A4500
GPU. Our GLAD has been deployed to monitor internal cloud
system log data for anomaly detection.

B. Experimental Results

Edge-level Performance. We first compare GLAD with base-
line methods in terms of their edge-level performance. As
shown in Table [[l, we observe that: (1) GLAD outperforms all
baseline methods in F-1 score, AUC score and AUPR score.
This demonstrates the efficacy of our approach in identifying
anomalous relations between log fields and log events. (2)
While some baseline methods like DOMINANT, CONAD,
AddGraph in BGL dataset, and AnomalyDAE, MLPAE in

TABLE IV: Interval-level performance (%) in the BGL
dataset. We ran each model 5 times to get the average results.

Method Precision  Recall F-1 AUC  AUPR
PCA 9.04 98.12 1656 55.64 9.03

iForest 100.00 1474 2570 5737 21.64
OCSVM 1.09 12.48 2.00 28.22 7.32

DeepLog 89.02 80.54 8457 89.26  70.17
LogAnomaly 91.40 79.32 8493 9298 7521

LogBERT 91.47 92.69 92.07 9633 8270
LogGD 90.89 9331 92.08 9691 81.74
LogFlash 82.46 86.73 8454 86.78  74.52
DeepTraLog 79.48 97.68  87.64 84.77  70.92
GLADE 88.35 89.86  89.10 95.63 80.44
GLAD! 89.24 90.18 89.51 96.07 7991
GLaDt 89.73 91.64 90.67 96.31 81.65
GLAD 90.82 94.57 92.66 98.18 84.69

Sock Shop dataset, achieve high recall scores, and Anoma-
IyDAE in AIT dataset, AddGraph in BGL dataset achieve
high precision scores, their F-1 scores are relatively low.
This suggests that they either adopt an overly cautious stance
towards anomalies or produce a high number of false positives
by erroneously classifying many samples as anomalies. (3)
Edge-level anomaly detection is notably more challenging
compared to interval-level anomaly detection, e.g., no method
in the three datasets achieved a precision score exceeding 60%
or an F-1 score above 70%. (4) Those method optimized on
edge-level, i.e., AddGraph and GLAD, achieve better precision,
F-1, AUC and AUPR scores across all datasets. Specifically,
they exhibit larger advantages over other methods in our
generated Sock Shop datasets that contain specific anomalous
relations, substantiating our hypothesis that edge-level learning
can better detect anomalous relations that are elusive to other
methods. (5) While some methods, such as AnomalyDAE,
excel in one dataset, achieving a 61.92% F-1 score in the
AIT dataset, they flounder in others, dropping to a 21.90% F-
1 score in the Sock Shop dataset, for instance. (6) Compared
to AddGraph, GLAD achieves superior performance, especially
recall scores, across all three datasets. This demonstrates the
advantages of our graph configuration and graph-based edge-
level anomaly detection method.

Interval-level Performance. We further evaluate GLAD on
the common interval-level protocol to demonstrate its effec-
tiveness. Due to space limit, we only present the results
of the widely used BGL dataset in Table We observe
that: (1) Compared to edge-level detection results, GLAD
achieves much higher Precision (and F-1). Significantly, GLAD
surpasses all methods with a leading F-1 of 92.66%, AUC
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Fig. 6: GLAD performance using different GNN encoders.

of 98.18%, and AUPR of 84.69%. This demonstrates the
proficiency of GLAD in capturing conventional anomalies in
addition to relational ones. (2) Traditional sequence-based
methods such as PCA, iForest, and OCSVM have significantly
lower performance across all metrics. For instance, PCA suf-
fers severely in Precision (9.04%), while iForest has a notably
poor Recall (14.74%). OCSVM has the lowest performance
among the three, with a negligible F-1 score of 2.00%. (3)
DL sequence-based methods significantly outperform the tra-
ditional ones. Among these, LogBERT outperforms DeepLog
and LogAnomaly with a F-1 score of 92.07% and an AUC of
96.33%. This showcases the effectiveness of transformers in
capturing both long-term dependencies and semantic relations
in log sequences. (4) Among graph-based methods, LogGD
shows competitive results with an F-1 score of 92.08%, even
slightly better than LogBERT. This suggests that the inclusion
of both transformers and graph structures in hypersphere
learning could benefit anomaly detection.

Ablation Study. With results of GLAD variants shown in Ta-
ble [T and Table[[V] we observe that: (1) The performance gap
between GLAD¢ and GLAD—roughly 9% F-1 improvement for
edge-level detection in BGL—reveals the benefit of employing
prompt-based filed extraction in graph configuration, thereby
enhancing the effectiveness of GLAD in detecting anomalies.
(2) The difference between GLAD! and GLAD underscores the
significant role of temporal-attentive transformers. With the
incorporation of temporal features, GLAD gains over 8% (and
3%) F-1 increases when detecting anomalous relations (and
intervals) in BGL dataset. However, GLAD! still outperforms
numerous baseline methods, asserting the robustness of our
graph-based framework. (3) The comparison between GLAD'
and GLAD indicates the positive impact of incorporating global
features in anomaly detection, as evidenced by the superior F-

TABLE V: Two proposed prompts for field extraction.

Prompt Py

P : (candidate_span) is a/an {entity_type) entity
P~ : (candidate_span) is not a named entity
Prompt P2

PT : (entity_type) = (candidate_span)

P~ : (candidate_span) = none

TABLE VI: Performance of rule-based field extraction v.s.
prompt-based n-shot field extraction.

Technique Pre. Rec. F-1

regex 36.48 4428  40.00
I-shot | 16.53 5934 25.86

P, S5-shot | 28.33 7438 41.03
10-shot | 66.28 8522  74.57

I-shot | 17.89  58.14  27.36

P>  5-shot | 28.00 73.76 40.59
10-shot | 64.68 87.82 74.49

1, AUC and AUPR scores of GLAD.

To further illustrate how multi-granularity learning bene-
fits GLAD during training, we record the normalized global
distance (L, in Eq. [T2), edge loss (L. in Eq. [T0) and
validation F-1 scores after each training epoch in BGL dataset.
In Figure |§|, we observe that: (1) The comparison between
GLAD' and GLAD in terms of global distance shows that
hypersphere learning effectively clusters normal samples in
the graph embedding space, i.e., the converged normalized
global distance of GLAD is less than half of that of GLAD'. (2)
The comparison between GLAD' and GLAD in terms of edge
loss and validation F-1 score shows that hypersphere learning
further improves the anomaly detection performance, i.e., the
edge loss of GLAD decreases more stably and its validation
F-1 outperforms that of GLAD' in the later training stage.

We also analyze the impact of using different GNN en-
coders, i.e., GCN [27], SAGE [29], GIN [28]], GAT [30]], on
GLAD’s performance in the BGL dataset. Figure [f] reveals
that the performance of GLAD remains consistently robust
across diverse GNN encoders, though some models excel in
specific evaluation metrics, e.g., GCN and GIN show superior
performance in terms of F-1, AUC, and AUPR scores. This
resilience against changes in DL models demonstrates that
GLAD can be flexibly deployed using various combinations
of state-of-the-art architectures.

Field Extraction. To investigate the effectiveness of our field
extraction method, we annotate n log messages with two
prompts (P, Py in Table for each field type and train
corresponding field extraction models. Note that we use P;
in GLAD for graph construction due to slightly better anomaly
detection performance. As shown in Table [VI[ with only 5-
shot learning, our field extraction model is as competitive
as hand-crafted rules in terms of F-1 scores. Our method
significantly outperforms rule-based method when conducting
10-shot learning, which explains the superiority of GLAD over
GLAD® and suggests the practicability of our few-shot method
in low-resource scenarios where annotations are limited.

Parameter Study. We investigate the impact of two criti-
cal hyperparameters—window size and the number of GNN



—+- Precision —-%- Recall —&— F-1
1.0 1.0
0.8 X == X==_ 0.8
k==
0.6 1 Pain 0.6 1
R
-t -
0.44 0.4
0.24 0.24
0.0 T T T T — 0.0 T T T T
05 1 2 5 10 30 1 2 3 4 5

(a) Window Size (min) (b) Number of Layers

Fig. 7: GLAD performance with different parameters.

layers—on GLAD’s performance in the BGL dataset. In each
experiment, one hyperparameter is altered while the rest are
held constant. As shown in Figure the performance of
GLAD, especially the F-1 scores, is robust to variations in
these hyperparameters. This indicates that GLAD maintains its
effectiveness across a range of configurations, highlighting its
suitability for deployment in real-world scenarios. Specifically,
Figure suggests that a longer monitoring period leads to
higher precision but lower recall. This implies that the window
size can be tuned to balance between achieving higher true
positive rates and reducing false positive rates. Similar strategy
(Figure [7b) is applicable to configuration of GNN layers.

TABLE VII: Comparison of total training and testing over-
heads, and average overheads per log for different methods.

Training Time Testing Time

Method Total (s) Avg. (ms) | Total (s) Avg. (ms)
PCA 87.36 5 0.61 0
iForest 0.00 0 4.63 0
OCSVM 235.79 15 107.13 8
DeepLog 2321.21 155 1595.18 125
LogAnomaly | 4420.02 296 2625.36 196
LogBERT 1950.31 130 470.14 37
LogGD 1753.82 117 1050.07 82
LogFlash 678.52 45 286.33 22
DeepTralog 1261.55 84 796.81 62
GLAD 2490.40 166 1170.73 92

Efficiency Analysis. We compare the training and testing
time of different methods in the BGL dataset. As shown in
Table traditional methods such as PCA, iForest, and
OCSVM show small overheads as they are rather simple,
among which OCSVM exhibits a rather high overhead due
to construction of a feature matrix based on norm data
for anomaly detection. DL sequence-based methods such
as DeepLog, LogAnomaly, and LogBERT, generally pos-
sess higher overheads due to their complex architectures.
Among them, LogAnomaly has the highest overhead due to
complex template2vec learning process and low parallelism.
While graph-based methods show rather lower overheads,
underscoring the computational efficiency of graph structures.
Interestingly, GLAD provides a training and testing overhead
of 166 and 92 milliseconds per log, which is notably less than
that of LogAnomaly and comparable to DeepLog. Given the
sophisticated transformer and GNN architectures of GLAD, its
relatively small overhead underscores our efficient design. This
can be attributed to the direct application of temporal-attentive
transformers on graph features, avoiding both tokenization and
embedding, thereby increasing parallel computation.
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Fig. 8: Visualization of a normal graph (left) and anomalous
graph (right). Edge marked in red denotes anomalous relation.

Case Study. To provide deeper insight into the performance of
our graph-based anomaly detection, we visualize two sample
graphs in Figure [§] In this case, all log messages share the
same event template “f49657b2”, and the anomalous relation
manifests as the user “keven” making frequent requests to a
server (28 times) compared to other users whose requests are
considerably fewer. Existing methods that neglect system inter-
actions cannot identify such anomalies, as they do not consider
relations among system components. Our GLAD, however,
successfully detects these anomalies by considering both the
edge weight values and temporal patterns in a sequence of
graphs. The comparison of the two constructed graphs also
demonstrate the interpretability of our graph-based approach.

V. CONCLUSIONS

In this paper, we proposed a Graph-based Log Anomaly
Detection framework, GLAD, which considers relational pat-
terns in addition to log semantics and sequential patterns for
system relation anomaly detection. First, a field extraction
module utilizing prompt-based few-shot learning is used to
extract field information, e.g., service, user, from log contents.
Then, with the log events and fields extracted, dynamic log
graphs can be constructed for sliding windows with events
and fields as nodes, and the relations between them as edges.
Finally, a temporal-attentive graph edge anomaly detection
model is introduced for detecting anomalous relations from the
dynamic log graphs, where a GNN-based encoder facilitated
with transformers is used to model the structural, content, and
temporal features. Experiments conducted on three datasets
demonstrated the effectiveness of GLAD on system relation
anomaly detection using system logs and providing deep
insights into the anomalies.
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