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Abstract— This paper presents an overview of current research
investigations within the WHERE-2 Project with respect to
location-dependent information extraction and how this informa-
tion can be used towards the benefit of positioning. It is split into
two main sections; the first one relies on non-radio means such
as inertial sensors and prior knowledge about the environment
geometry, which can be used in the form of map constraints to
improve user positioning precision in indoor environments. The
second section presents how location-specific radio information
can be exploited in a more sophisticated way into advanced
positioning algorithms. The intended solutions include exploita-
tion of the slow fading dynamics in addition to the fast-fading
parameters, adaptation of the system to its environment on both
network and terminal sides and also how specific environmental
properties such as the dielectric wall parameters can be extracted
and thereafter used for more accurate fingerprinting database
generation using Ray Tracing modelling methods. Most of the
techniques presented herein rely on real-life measurements or

experiments.

I. INTRODUCTION

The more information that is being considered into a posi-

tion estimation problem, the higher probability of a more accu-

rate result is. Depending on the capabilities of the terminal or

overall system in storing, monitoring and extracting location-

specific radio (e.g. signal strength, angle of arrival, time of

arrival, impulse responses) or non-radio parameters (inertial

measurements, prior map/layout knowledge), advanced po-

sitioning algorithms can be developed which may fuse the

extracted radio context to provide improved positioning preci-

sion. However, specific radio parameters used in the estimation

of the position many times may impose various limits on

the localisation accuracy that might be hard to be exceeded.

Therefore, by considering also non-radio means (information

or parameters) such as inertial sensors or any prior knowledge

regarding the map/layout of the environment of the users

to be positioned, new solutions may put forward enabling

data fusion or matching which would potentially improve the

localisation accuracy.

Inertial Navigation Systems (INSs) combining different

kinds of sensors (e.g. accelerometers, magnetometers, and

gyroscopes) have proved to adequately complement existing

navigation means such as GPS/GNSS. The knowledge of the

mobility pattern (velocity, orientation, direction) of the device

can be processed in order to predict or even assign higher prob-

abilities to future immediate positions of the portable device,

allowing better positioning precision or even constitute the

primary positioning system when in some areas the terminal

might be out of the radio coverage of the base stations or

access points.

The information from inertial sensors can be used in con-

junction with environment maps to improve the precision of

the position prediction. The idea is to utilise the environment

description availability (building databases, blueprints of in-

door areas, satellite photography) for the purpose of aiding

the user localisation process. By using map information, the

movement of the user can be constrained and/or different prob-

abilities can be assigned to different areas of the environment

where the user might reside.

Besides non-radio assisting means, advanced positioning

techniques which utilise the available radio context monitored

and extracted by the terminal or by the base stations are

considered for improved estimation precision. These involve

(1) location through the tracking of dynamic multipath com-

ponents, (2) Adaptation to the environment and (3) Modelling

and estimation of environment related parameters from the

radio channel response.

Section II describes how non-radio aided context is ex-

tracted and used for positioning whereas Section III deals

with the exploitation of radio-aided context into improved

positioning techniques.

II. NON-RADIO AIDED POSITIONING

A. Exploiting Inertial Sensors

Inertial navigation is a self-contained navigation technique

in which inertial sensors measurements are used to track the

position and orientation of an object relative to a known start-

ing point, orientation and velocity. An Inertial Measurement

Unit (IMU) comprises accelerometers and gyroscopes and

measures and reports velocity, orientation and gravitational

forces and reports these to a computer, which calculates



its current position based on velocity and time. An attitude

heading reference system , AHRS, consists of sensors, gyro-

scopes, accelerometers and magnetometers on all three axes

that provide heading, attitude and yaw information. The key

difference between an IMU and an AHRS is the addition of

an on-board processing system in an AHRS which provides

solved attitude and heading solutions versus an IMU which

just delivers sensor data to an additional device that solves the

attitude solution. The inclusion of inertial sensor information

into positioning is being studied and will be tested through

a heterogeneous test-bed, with different wireless technologies

(UWB, Zigbee, LTE).

Fig. 1. Integrated navigation system architecture

In Figure 1 a data flow of the combination of inertial

context with position estimation is presented. Once the inertial

information is obtained, it is filtered or fused with preliminary

position estimation or any other location information to im-

prove the final position estimation. Apart from performance

considerations, this fusion assumes a more relevant role, since

future personal terminals are expected to integrate multiple

standards and sensors, hence making heterogeneous modalities

available on the user side.

1) Inertial Sensors usefulness for positioning: An initial

inertial sensor study, a PCB implementation and a data fusion

algorithm implementation have been carried out. Generally,

context from these sensors are fused using a Kalman filter

to obtain quantities of interest. Therefore, implementation of

low computational cost Kalman filters is also being anal-

ysed. The first step towards an inertial sensor module is the

sensors selection process. An initial market survey has been

performed in order to evaluate commonly used sensors. A

small set of sensors has been selected based mainly on their

(1) Connectivity, (2) power consumption, (3) availability and

(4) price. These sensors have been mounted and tested in a

preliminary board on which one accelerometer (LIS331), one

gyroscope (ITG-3200) and one magnetometer (HMC5883L-

TR) have been implemented.

Each type of sensor has its strong and weak points. The

idea behind sensor data fusion is that characteristics of one

type of sensor are used to overcome the limitations of another.

Although Kalman filter was originally widely used, there are

relatively new several implementations of IMU and AHRS

sensor fusion algorithms specially suited for low cost boards.

Some of these algorithms [1], [2] are currently being tested

with the board implemented in order to find the best solution.

2) Kalman filtering for position tracking using IMU infor-

mation: The topic addressed here is adaptive Kalman Filtering

(AKF), dealing with joint estimation of the state sequence and

parameters appearing in the state space model. The applica-

tion is position tracking with simultaneous estimation of the

acceleration dynamics and/or IMU parameters. The latest state

of this research can be found in [3], which observes that the

Expectation-Maximization (EM-KF) approach is among the

most powerful techniques currently in use.

3) Pedestrian navigation fusing non-collocated IMUs and

IR-UWB devices: Despite fine intrinsic localization capabili-

ties, Impulse Radio - Ultra Wideband (IR-UWB) systems still

suffer from harsh Non-Line of Sight (NLOS) conditions in

practical indoor environments. In this context, a pedestrian

tracking solution has been put forward in [4], which relies

on the loose fusion of an IR-UWB handset transmitter with a

shoe-mounted IMU including a 3-axis accelerometer and a 3-

axis gyroscope (3A3G), as shown on Figure 2-(a). A specific

Extended Kalman Filter (EKF) has thus been defined to

hybridize such non-collocated radio and inertial devices. This

filter combines TOA-based UWB measurements from energy

detectors [5] into new observations defined as Combined

TDOA (CTDOA) [6]. While reducing filter complexity, the

proposed solution enables to remove outlier measurements,

without reconfiguring the whole tracking filter structure. Re-

garding inertial data, the IMU placement helps to identify

stance phases and to periodically reset the foot velocity, hence

mitigating classical drift effects. The obtained pedestrian head-

ing and body velocity finally control the filter state prediction.

Real experiments were carried out in the representative

indoor environment of Figure 2-(b), illustrating the comple-

mentarities of the two sub-systems. In particular, it is shown

on Figure 2-(c) that the IMU part can adequately assist IR-

UWB in generalized NLOS situations and/or in penalizing

locations where harmful geometrical configurations would be

experienced with respect to the receivers (e.g. in Room B

here). Overall, coupling both sub-systems enables reliable and

robust tracking with uniform spatial quality of the location

service. But these results also disclose perspectives in terms of

parsimonious fusion to save energy/complexity, by switching

on-demand from one stand-alone sub-system into the complete

fusion-oriented scheme depending on the current conditions

(i.e. NLOS or geometric dilution of precision).

B. Map Matching

Proper use of any available information into the localisation

problem is something that might improve the positioning

accuracy. In fact, information from inertial sensors in com-

bination with environment maps offers this extra knowledge

which aims to improve the positioning prediction. This section

describes how this environment knowledge can be extracted

and exploited and how it can be used into the localisation

process using probabilistic fingerprinting techniques and a

Robust Geometric Localisation Algorithm (RGPA).

1) Extraction of map constraints: The concept of map

matching basically consists in employing a known environ-



Fig. 2. (a) Pedestrian equipped with an IR-UWB transmitter handset and
an ankle-mounted 3A3G IMU; (b) Real 100m-long trajectory and indoor
layout, with 4 receivers (BSs) in Room A; (c) Average location error for
various tracking options: IR-UWB (Deep blue), IR-UWB with adaptive
observation covariance (Blue) and outliers detection (Green), IMU (Orange),
IR-UWB/IMU loose fusion (Brown).

ment map for the purpose of aiding the user localization

process. Recent work has notably shown significant improve-

ments in the position prediction when environment maps

are used jointly with information from inertial sensors. In

indoor, the building layout usually relies on a CAD (Computer-

Aided Design) description of the building external walls and

partitions, and can be refined with description and location of

the most important pieces of furniture like cupboards, tables

or desks. This digital representation is then processed to derive

different kinds of map constraints either directly inferred from

the geometry (simple map constraints may distinguish areas

where regular users are mostly moving, static or are not

expected to be located like inside wall/furniture) or by using

jointly the geometry and the knowledge of the mobility of

specific users or specific user classes.

2) Map Constraints into fingerprinting positioning: This

approach is based on the RSS Bayesian inference method [7]

which uses a probabilistic approach to perform fingerprinting

positioning as it tries to find the maximum of a likelihood

probability function. It takes into consideration a-priori knowl-

edge as well as the probability of the user in being a specific

location. The latter allows to incorporate map constraints into

the position estimation by assigning different probabilities to

specific areas of an environment describing the likelihood that

the user may be located in specific areas of the environment.

For a position space (S) and fingerprints (o), the fingerprint-

ing positioning algorithms that adopted tries to correlate the

real-time observation (o′) with the database set (o) and find

the position state (sk) that maximises the following:

P (sk|o
′) =

P (o′|sk)P (sk)

K
∑

k=1

P (o′|sk)P (sk)

(1)

P (o′|sk) is learned at the survey phase and expresses the

probability for a real time measurement to be collected at a

specific location (state). It requires that multiple observations

for specific states are made in order to be able to assign this

possibility. P (sk) is the probability that a user is at state sk.

If no other knowledge is used, then it is assumed that the

user has equal probability of being in any position in space

(therefore P (sk) = 1/k). However, we plan to introduce map

constraints therefore P (sk) will express the probability of a

user being in a particular location more realistically based

on the given environment. Current measurement results have

indicated that for a typical indoor environment, this method

achieves a positioning accuracy around 1.59m. Future work

includes generation of map constraints as described in section

II-B.1 and investigation whether the reported accuracy of this

probabilistic algorithm can be further improved.

3) Map constraints within the RGPA technique: This ap-

proach uses map constraints to feed the RGPA technique. The

map constraints are learned based on State Vector Machines

(SVM) which employ Location Dependent Parameters (LDPs)

such as RSSI, ToA and TDoA in order to estimate the room

where the user is located. A probabilistic model of user

location is hence learned from the user behaviour which can

then be converted to geometric map constraints to be input to

the RPGA algorithm. The proposed SVM technique shows an

error probability of only 1.3% using 4 RSSIs. The obtained

map constraints are then used into RGPA and the Figure 3

compares the positioning accuracy using 4 TOAs with and

without map constraints and reveals that using such map

constraints enhances the positioning accuracy (∼ 50cm at

80%).

Fig. 3. Map constraints into the RGPA technique

This approach uses map constraints with RGPA (see section

II-B.3). In this technique the map constraints are learned based

on State Vector Machines (SVM) which employ Location



Dependent parameters such as RSSI, ToA and TDoA. A

probabilistic model of user location is learned from the user

behaviour which can then be converted to geometric map

constraints to be input to the RPGA algorithm.

III. RADIO AIDED POSITIONING

A. Performance Bounds and Identifiability Conditions for Lo-

cation Estimation in NLOS Dynamic Environments

The non-trivial problem of NLOS localization can be tack-

led with the aid of geometrical channel and mobility models.

This approach results in high performance algorithms but

requires a combination of different sources of information,

like e.g. angles, delays and Doppler shifts. In order to lo-

calize a mobile terminal (MT) in a NLoS environment, the

information about the MT location contained in the multipath

signal components may be exploited. To that end, we may

consider only the first few arriving components and make the

assumption that they have bounced only once. The use of

this Single Bounce Model (SBM) offers a simple one-to-one

mapping between the various LDPs and the coordinates of the

MT and the scatterers, for static environments. For dynamic

environments, a dynamic-SBM (DSBM), which is the result

of the integration of a mobility model with the SBM can be

used instead. In [8] we demonstrate the high performance of

such methods even in poor scattering environments. On top

of that, we compare the algorithms for different scenarios and

highlight the superiority of algorithms designed for channels

that change dynamically due to the movement of the MT.

B. Adaptation to the environment

The leading idea here is to exploit the natural complemen-

tarity between the infrastructure and the mobile terminal. We

propose adaptive knowledge schemes focusing on ways on

how to acquire and represent this information allowing easy

exploitation for parametric positioning and also how to miti-

gate uncertainties about the environment and infrastructure.

1) Using Fingerprinting Techniques: Along this section

some improvements on the fingerprinting positioning usage

are addressed, and also alternative techniques to overcome

possible deployments impairments and uncertainties.

One approach fuses together different signal characteristics

into a single fingerprinting positioning algorithm for an indoor

Wi-Fi environment. For this specific usage, in the learning

or training phase a database is informed with a series of

data regarding the distance of the user’s terminal from the

wireless node and the signal characteristics such as SNR, Bit

Rate (BR), RSSI etc. Therefore, a database is constructed that

consists of a radio and a performance map where each specific

location point corresponds to a value of SNR and BR data at

specific points which are used for estimating the best location

of the user. Preliminary results on this work indicate a mean

positioning error of 2.2m for a typical indoor environment.

In a second approach the fingerprint location system is

assisted by users’ historic movements in order to achieve a

more accurate localisation system which relies in the users’

history inside the building. This is based on the fact that

the users’ movements tend to have definable patterns imposed

by building restrictions. The algorithm developed is based on

real RSSI measurements, also taking into account the building

layout and constraints. In order to minimise the resources

required by exhaustive measurement campaigns during the

learning stage an Intermediate Points RSSI estimation algo-

rithm is being proposed (see Figure III-B.1) which allows

the collection of fewer RSSI fingerprints and estimates the

RSSI values of the intermediate points that measurements have

not been performed. A requirement for the algorithm is that

there is good knowledge about the building layout in order to

extract any building constraints. Results so far indicate that

the algorithm performs well achieving a mean error of 2dB
compared to measured RSSI values. The next step is to use a

positioning algorithm which considers the historic movement

of users using the developed fingerprinting database.

Fig. 4. Block Diagram of the Intermediate’s Point Algorithm.

In contrast to the traditional RSS fingerprinting, PDP Fin-

gerprinting (PDP-F) may allow positioning on the basis of

a single (Base Station-Mobile Terminal) BS-MT link if the

multipath is rich enough (multiple BSs may not be required).

Therefore, in a third approach, by exploiting the multipath

propagation pattern, PDP Location Finding (LF) creates a

signature unique to a given location. Research on the analysis

of PDP LF was performed along two directions. Firstly, we

focus on a global performance indicator, in the form of

Pairwise Error Probability (PEP) [9], [10]. The objective is to

determine the probability of error when the channel estimates

from the MT-BS link are matched with a wrong entry of the

database. Hence position estimation error occurs as a result.

We observe that the diversity present in the channel impulse

response leads to the same SNR diversity order for PDP-F

PEP as for probability of error in digital communications over

fading channels. The diversity order corresponds to the number



of paths in which the PDP differs between the correct and

wrong location. In a second investigation, we derive Cramér-

Rao bounds (CRBs) for LDPs when they are finite and perform

local identifiability analysis under different path amplitude

assumptions [11]. We observe that local identifiability of the

position vector depends on the number of paths (L) and the

modeling of the path amplitudes as well. For the Rayleigh

fading case, for the anisotropic modeling (attenuation is a

genuine 2D function of position), local identifiability of the

position vector can be achieved even for L = 1. However

for the isotropic modeling (attenuation only a function of

distance), at least two paths are required (L ≥ 2) for local

identifiability.

Finally, a basic fingerprinting limitation is the time taken

and the effort required to train a database and also the fact that

the heterogeneity of devices introduces a variable that degrades

the positioning performance when the device to be positioned

is different from the one that the original measurements

have been performed in the learning phase. Therefore, we

have studied the use of 3D Ray Tracing (RT) to construct

radiomaps for WLAN RSS fingerprint-based positioning, in

conjunction with calibration techniques to make the overall

process device-independent [12]. We address both challenges

by exploiting 3D RT-generated radiomaps and using linear

data transformation to match the characteristics of various

devices. We evaluate the efficiency of this approach in terms

of the time spent to create the radiomap, the amount of data

required to calibrate the radiomap for different devices and

the positioning error which is compared against the case of

using dedicated radiomaps collected with each device. Our

performance evaluation indicates that only a small amount

of device-specific data are required to reach the same level

of positioning accuracy attained with a manually collected

radiomap (about 60% less data collection effort). Thus, our

approach is far less laborious compared to traditional radiomap

construction. Moreover, the radiomap can be easily updated

if the propagation environment changes in the future (e.g.

APs are added or removed, furniture or other equipment

is relocated, etc.) by running the RT simulator, instead of

collecting the radiomap data from scratch.

Ray Tracing accuracy is strongly subject to the accuracy

of the input parameters, such as the geometrical (dimensions)

and morphological description (electrical parameters of walls)

of the buildings and also other uncertainties such as the

antenna pattern, location of clutter etc. The work so far

involved the implementation of a technique which extracts the

electrical parameters of walls using a Vector Network Analyser

(VNA). We adopt the multi-pass technique described in [13]

which uses the S21 parameters obtained using the VNA. A

directional antenna is placed in each side of the wall and

the complex S21 is obtained. The real and imaginary parts

of the complex dielectric constant ǫr = ǫ′− jǫ′′ are calculated

through the use of a multiple-pass technique [13] where, an

insertion transfer function H(jω) that accounts for multiple

reflections inside the dielectric slab is required. This insertion

function is directly related to the Transmission coefficient T

by Tejβod = H(jω), where H(jω) is the insertion function

of the channel, d is the thickness of the material under test

and βo = 2πf/c. The transmission coefficient T is equivalent

to the measured scattering parameter S21. In order to obtain

the real and imaginary part of the complex dielectric constant

the following expression needs to be solved for x [13].

(x+
1

x
) sinh(xP ) + 2 cosh(xP )−

2

S21

= 0 (2)

where x =
√
ǫr, S21 = H(jω) = e−jωτo , τo = c/d and P =

jβod. This equation is solved numerically for the complex

dielectric constant ǫr = ǫ′− jǫ′′ using two dimensional search

algorithms.

2) Using other Techniques: In addition to fingerprinting

based techniques for radio aided positioning, we present in

this section two contributions both based on the exploitation

of RSSI observables. The first presents a technique of ranging

based on the RSS-delay profile (RSSDP) instead of simple

RSS and the second contribution presents a technique to jointly

estimate the path loss model and localising the MTs.

The idea of RSSDP-based ranging (Figure 5) is to estimate

the channel impulse response magnitude as a function of delay,

possibly average it over fast fading, take the deterministic

component as a function of delay and model the random

variations due to slow fading and possible residual fast fading.

It is then possible to formulate a maximum likelihood esti-

mation problem for the LOS delay (range). In principle this

approach should give range identifiability, even in the absence

of knowledge about the transmit power, receiver AGC settings,

synchronization or a LOS component, due to the range specific

curvature of the RSSDP curve over a given delay spread.

Fig. 5. RSS-Delay Profile/Mask (RSSDM) based Range Estimation.

For the joint localisation and path loss learning we propose

technique based on State Vector Machine (SVM) aiming to

continuously learn and update the path loss model jointly

with the localization task. The assumed scenario is a situation

where each BS is collecting RSSI measurements from different

MTs moving in its coverage and use these information to

update its path loss model and feedback to the MTs in order

to be localized. Both one-slope and multi-slope models are

considered. The used model in all this work is the log-normal

shadowing model which is defined by Equation (3)



Er(dB) = E0 − 10np log10

(

d

d0

)

+Xsh (3)

where Er is the received energy, E0 is the received energy

at d0 which is taken equal to 1 meter, np is the propagation

constant, and Xsh is a zero-mean Gaussian random variable

with a standard deviation σsh which models the shadowing.
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E0 =-33.84, np =2.77, σ=4.40 (One-Slope Model)

Fig. 6. Multi-slope Model vs. One-Slope Model

Using distance and RSSI information, the SVM technique

classifies the points in different clusters which are homoge-

neous and have lower variance and dispersion than the one-

slope model. For each new obtained data, the BSs apply

the SVM technique in order to classify this data and then

update the multi-slope model which then represents better the

radio channel and its fluctuations. Figure 6 shows an example

of multi-slope model obtained on MA-UWB measurements.

A comparison between ranging performances of one-slope

and multi-slope models indicates an interesting enhancement

which reaches 1.4 meters at 80%.

IV. CONCLUSION

This paper summarizes the ongoing activities in the

WHERE-2 Project on the topic of location information extrac-

tion and how this information can be used in positioning. More

particularly we present preliminary results on the exploitation

of non-radio and radio location specific parameters and how

these can be used into improved positioning algorithms.

Regarding non-radio context the exploitation of information

received from inertial sensors as well as information which

can be extracted from environment maps has been studied.

Different approaches for performing Kalman filtering have

been identified and a particular tracking filter embodiment was

designed to enable the loose fusion between non-collocated

radios and inertial units. Also an application which combines

ankle-mounted inertial sensors with an existing UWB platform

has been presented. Finally, extracted map-related information

is being used into two different fingerprinting techniques.

More advanced positioning algorithms which utilize

location-specific radio information are being proposed. One

approach deals with performance bounds and identifiability

conditions for positioning in NLOS environments by exploit-

ing multipath information. Several research activities have

also been carried out addressing the improvement and usage

of radio aided positioning systems through fingerprinting by

exploiting and fusing the available context and also ways

to overcome various uncertainties about the environment.

Also we deal with the problem when training and using a

fingerprinting database using different devices. Finally other

techniques which exploit RSSDP information and RSSI ob-

servables for path loss learning are being presented.

The results and techniques presented in this paper are part of

an on-going research and more definite solutions are expected

to be presented in the future based on the encouraging results

presented here. More information can be found in Deliverable

D2.2 of the WHERE-2 Project [14].
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