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Abstract—This paper proposes a novel technique to enhance 
the performance of grid-based Radio Frequency (RF) fingerprint 
position estimation framework. First enhancement is an 
introduction of two overlapping grids of training signatures. As 
the second enhancement, the location of the testing signature is 
estimated to be a weighted geometric center of a set of nearest 
grid units whereas in a traditional grid-based RF fingerprinting 
only the center point of the nearest grid unit is used for 
determining the user location. By using the weighting-based 
location estimation, the accuracy of the location estimation can be 
improved. The performance evaluation of the enhanced RF 
fingerprinting algorithm was conducted by analyzing the 
positioning accuracy of the RF fingerprint signatures obtained 
from a dynamic system simulation in a heterogeneous LTE small 
cell environment. The performance evaluation indicates that if 
the interpolation is based on two nearest grid units, then a 
maximum of 18.8% improvement in positioning accuracy can be 
achieved over the conventional approach. 

Keywords— Grid-based RF fingerprint; Kullback-Leibler 
Divergence; Minimization of Drive Tests 

I.  INTRODUCTION 
Various location-based services in wireless communication 
networks depend on mobile positioning. Commercial 
examples range from low-accuracy methods based on cell 
identification to high-accuracy methods combining wireless 
network information and satellite positioning. These methods 
are typically network centric, where the position is determined 
in the network and presented to the user via a specific service. 
Due to logistical reasons, the position is estimated from static 
snapshot measurements, possibly provided by the mobile 
station (MS) [1]. A major driving force to estimation mobile 
user location is the requirement for E-911 emergency 
positioning in the North American market. This requirement 
calls for accuracies of 50 meters (68%) and 150 meters (95%) 
in the terminal-dependent case and 100 meters (68%) and 300 
meters (95%) in the network-dependent case [2]. Today, the 
Global Navigation Satellite System (GNSS) is the most 
effective positioning technology in the outdoor open 
environments [3]. However it has limitations such as poor 
performance in built-up areas and high power consumption. 
These limitations led to the development of positioning 
techniques based on the wireless networks. These technologies 

include a variety of time-of-arrival techniques (ToA and 
TDoA), angle-of-arrival techniques (AoA), and location 
fingerprinting techniques [4]. Typically, RF fingerprinting 
refers to a database correlation method where the position is 
estimated by comparing the radio measurements e.g., the RF 
fingerprint of the user equipment (UE) with the training 
fingerprints in the correlation database. The training 
fingerprints consist of received signal strength (RSS) radio 
measurements from several base stations (BS) that are used to 
provide a fingerprint of the radio conditions at a specific 
geographical location. Typically, this location is determined 
with an accurate positioning method, for example GNSS. 
Hence, fingerprinting is a positioning method which exploits 
the already existing infrastructures such as cellular networks 
[5] and WLANs [6]. 

One of the biggest challenges of RF fingerprinting is the 
burden of creating and maintaining the correlation database of 
the training fingerprints. Operators can maintain the 
correlation database by conducting extensive and expensive 
periodical drive test campaigns to collect the required 
measurements. However, the concept of Minimization of 
Drive Tests (MDT) provides a framework for gathering user 
reported location-aware radio measurements from commercial 
mobile phones that can be used for creating and maintaining 
such training databases [7], [8]. In fact, one of the benefits of 
MDT is that it provides an efficient way to automate the 
collection of training fingerprints in Universal Terrestrial 
Radio Access Network (UTRAN) and Evolved-UTRAN 
(EUTRAN) cellular systems. The MDT procedure allows 
operators to collect radio measurements, i.e. received signal 
strength and quality, with UE location information and a time 
stamp. It is worth noting that for immediate MDT, the network 
can make a request to UE to attempt to make GNSS location 
information available for MDT [8]. 

In our previous work [9], [10], we have evaluated the RF 
fingerprint positioning accuracy using Kullback-Leibler 
Divergence (KLD) and Mahalanobis distance with a single 
grid layout (SGL) in rural, urban and heterogeneous small cell 
networks. Although the positioning accuracy in dense urban 
scenario was good, the positioning error (PE) did not fulfill the 
E-911 requirements in the rural case.  

In this work, we propose a novel RF fingerprint algorithm 
to enhance the positioning accuracies further for rural case and 
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also in the dense urban scenario. The proposed enhancements 
are based on an overlapping grid layout technique to produce 
the training signatures and to determine the estimated position 
using the two smallest KLD weighted values among the 
matched training signatures. The effect of using the 
overlapping grid layout (OGL) is that it increases the training 
signatures as well as reduces the distances among the 
surrounding grid centers and thereby improving the 
positioning accuracy. However it increases the computational 
time needed to estimate the testing UE positions as compared 
to that of the traditional SGL method by a small amount. 

 This paper is organized as follows. Section 1 gives an 
introduction to the research problem. In Section 2, first 
conventional SGL RF fingerprinting and then the OGL 
approach using Kullback-Leibler Divergence method is 
described. Finally in Section 3, the performance evaluation of 
the enhancements is discussed in the light of extensive system 
simulations.

II. GRID-BASED RF FINGERPRINTING FRAMEWORK 

A. Single Grid Layout 
In SGL approach, RF fingerprinting correlation database is 

compressed to present the geographical space G={g1, g2, …, 
gN} e.g., “area of interests” as a regular tessellation of N 
square grid units gi as depicted in Fig. 1. Each grid unit gi is 
associated with a center point having coordinates ci={xi,yi} 
and a set of RF fingerprint training signatures Si={si,1, si,2, …, 
si,k} which will depend upon different sets of same BS id MDT 
samples. Hence, a training signature si,j is the jth signature 
associated with ith grid unit and it is constructed from n 
different MDT measurement samples. Each sample in Mi,j 
contains detailed location information e.g., x and y coordinate 
obtained from GNSS receiver, and m RSS measurement e.g., 
Reference Signal Received Power (RSRP) in EUTRAN, from 
different BSs. 

1 1 1,1 1,m

,

n,1 n,m

i j

n n

x y rsrp rsrp

x y rsrp rsrp
M , (1) 

where, rsrp1,m is the 1st RSRP measurement with a BS 
identifier m. Moreover, Euclidean distance between the 
detailed locations of the n measurement samples and the 
center point of ci suggests that the nearest grid unit is gi. For 
ensuring an efficient and fast processing of the measurement 
data, the MDT training measurements are compressed e.g., for 
each grid gi, the signatures in Si stores only the means and the 
covariance of the received signal strengths between the 
detected BSs in Mi,j as discussed in [9], [10].  
 

B. Overlapping  Grid Layout 
In Overlapping Grid Layout (OGL) approach, the whole 

area of interest is divided into square grids similar to the SGL 
approach but there are now multiple layouts which overlap 
each other. In the present work, OGL consisted of two grid 

layouts denoted by OGL1 and OGL2 having same sized square 
grids. OGL2 was placed in a fashion that an OGL1 grid unit is 
overlapped by ¼th area of an OGL2 grid unit. In this way  
OGL1 grid unit is fully overlapped by four OGL2 grid units as 
shown in Fig. 2, here the squares with blue border lines 
belongs to OGL1 layout and the blue stars represents the 
corresponding grid centers, whereas the squares with green 
border lines and green stars depicts the OGL2 layout.  Thus the 
center points of four OGL2 grid units fall on the four corners of 
the overlapped OGL1 grid unit.  

Training signatures are formed in grid-wise manner. A 
training signature comprises of a set MDT samples that are 
located within a grid unit and these MDTs were reported to 
have the same BS ids. The same set of training samples is used 
to form the training signatures for OGL1 and then for OGL2. 
Because of the offset between the layouts mostly different 
training signatures will be associated with the layouts. 
Inherently some common signatures will exist between these 
layouts. All the training signatures belonging to OGL1 and 
OGL2 layouts are put together to create the whole training 
signature database. 

During the testing phase, all training signatures that match 
with the testing signature BS ids are searched, and then the 
KLD distances are calculated between the testing signature 
and those training signatures. In KLD method, training and 
testing phase signatures e.g., mean vectors u and covariance 
matrices  parameterize multivariate Gaussian distributions 
p(x|u, ), and therefore, the method aims to exploit 
interdependencies among the received signal strengths 
between BSs by using covariance matrices for training and 
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Fig. 3: Sparse regular macro scenario 

testing phase signatures as given by the following closed form 
KLD equation:  

             

                             (2) 

 

where, uu, and ûi,t corresponds to the mean received signal 
strength values, while u and i,t represents the covariance 
matrices of the received signal strength values of the testing 
and training signatures respectively. Here, tr() denotes the 
trace of matrix, -1 denotes the inverse of covariance matrix  
and I is the identity matrix. It is a non-symmetric measure of 
the difference between testing and training signature 
probability distributions pu and pi,t. Two grid units are selected 
which correspond to the two smallest KLD distance values 
among all the matched training signatures. Now the estimation 
point for the testing signature is calculated to be in between 
the center points of these two grids according to the KLD 
weight factor of the corresponding grids. For example, in Fig. 
2, the testing signature 1 i.e., ‘test sig.1’, has two matched 
training signatures: ‘tr.sig. 2’ which belongs to OGL1 and 
‘tr.sig 3’ of OGL2 layout. In order to determine the estimated 
position for the testing signature, the KLD values of these two 
training signatures are used as weights and depending upon 
the weighted value the estimation point moves along the line 
joining the center points of the corresponding grid units as 
described in next section.  

C. Weighted Overlapping Grid Layout 
The enhanced algorithm for a grid-based RF fingerprinting 

uses the weighted geometric center of a set of nearest grid 
units to determine the location of a testing signature in a two 
dimensional grid. Formally, the geometric center (or centroid) 
is an arithmetic mean of a set of points weighted by special 
weight i.e., point density or mass. In the context of this paper, 
the KLD metric is used to find the n nearest grid units and to 
weight the arithmetic mean. 

To determine the location of a testing signature si, a subset 
Gi = {g1, g2, …, gk} of nearest grid units based on KLD metric 
is chosen depending upon the matched BS ids of the testing 
signature. In addition, each grid unit in Gi is assigned with a 
weight wj and therefore a set of weights Wi = {w1, w2, …, wk} 
is obtained. Since, the KLD metric is smallest for the nearest 
grid unit, the weighting factors are inversely proportional to 
KLD metric for ensuring that more weight is given to the 
nearest grid unit. The weighting factor wj for jth grid unit gj in 
subset Gi is given as,  

 

1 1

1
1

1 1
j

j k k

j
l ll l

w                 (3) 

where, j is the KLD metric between testing signature si and 
jth grid unit in the subset Gi of the k nearest grid units. Note 
that the weights in Wi are normalized so that they sum up to 1. 

Therefore, the weighted geometric center of the testing 
signature is obtained from, 

T[ , ] ( ) [ , ]i i i i ix y w x y

where wi, xi, and yi are column vectors containing the weights 
and x and y coordinates of the k nearest grid units in Gi.  
Moreover, (.)T is a vector transpose operation. Hence, (4) 
gives the scalars xi and yi which is the location of the weighted 
arithmetic mean of the points in Gi and the estimated location 
of si. In this study, k is equal to 2, so only two nearest 
neighbors where considered for analyzing the location 
estimates for testing signatures. 

III. PERFORMANCE EVALUATION 

A. Simulation Scenario 
In this study we have conducted a performance evaluation 

of our enhanced RF fingerprinting method having two 
overlapping grid layouts with the traditional single grid layout. 
For this purpose, we have performed two simulations in two 
different network scenarios, (i) sparse regular macro (RM) and 
(ii) heterogeneous small cell (HSC) network as illustrated in 
Fig. 3 and Fig. 4 respectively. Both scenarios are the same as 
in [10] and those were simulated by using a state-of-the-art 
LTE Rel’10 dynamic system simulator to model both the 
downlink and the uplink in an OFDM symbol resolution with 
several radio resource management, scheduling, mobility, 
handover and traffic modeling functionalities. Simulation 
parameters and mathematical models are based on the 3GPP 
specifications, (especially in the simulation assumptions in 
3GPP TR 36.839) defining parameterization for used 
bandwidth, center frequency, path-loss, slow fading, and fast 
fading [11]. Moreover, UE measurements e.g., RSRP, were 
implemented in the simulator taking into account the technical 
requirements for the absolute and relative measurement errors 
and -6 dB Ês/Iot cell detection criterion as in [12]. 

 The RM network consisted of 57 BSs operating on primary 
frequency band (CC0) and 36 sectored high power Pico BSs 
operating on non-overlapping secondary carrier (CC1). Inter-

1 1 1
, , , , ,,

1|| ˆ ˆ ˆln
2 i t i t i t u i t u

T
ii u tu t ud p p trû û Iu u
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Fig. 4: Heterogeneous small cell scenario 

site distance between the BSs on CC0 and CC1 are 1750m and 
875m, respectively. Locations of three-sectored Pico sites on 
CC1 were shifted to be in between the macro BSs on CC0 as 
depicted in Fig. 3 with red triangels. In RM scenario a total of 
82320 MDT samples were generated for the analysis. For this  
case we have picked up the MDT samples from an area 
enclosed by the blue hexagon as shown in Fig. 3 in order to 
maintain size similarity between the RM and HSC scenarios.  
 The HSC network consisted of 57 macro BSs having inter-
site distance of 500m and operating on CC0 band. In addition, 

36 small cells with omni-directional antennas were randomly 
deployed in the coverage area of 12 centermost macro BSs as 
depicted in Fig. 4 with red circles. Distance to the nearest 
inter-site small cell varied from 50m to 170m with average 
distance being 95m. In HSC scenario, UEs were moving only 
in the area of 12 centermost macro BSs but were able to 
monitor all detected cells. In RM scenario, UEs were moving 
in one specific area with area size similar to the simulation 
area in HSC scenario. In total, 1200 randomly moving outdoor 
vehicular UEs (30 km/h) were distributed uniformly to the 
simulation area. Traffic profile consisted of data generated by 
MDT reports which were sent once per second, however, 
100% resource block loading was used for creating 
interference limited simulation environment which is more 
challenging from cell detection point of view. More details 
abou the used simulation parameters can be found in the Table 
I in [10].  

B. Performance Results 
In this study the positioning accuracies were analyzed using 
two different amounts of training data and testing data. First 
90% of the MDT data samples were used in training and the 
estimation was done for the remaining 10% MDT samples. 
Then 10% of the MDT data samples were taken for training 
and 90% for the testing purpose. Such an approach was 
selected for studying how the amount of training data affects 
the performance of OGL method. The training and the testing 
database samples are selected in call-wise manner e.g., all 
MDT reports from single UE belongs always either on the 
training or the testing database. This is done to avoid too 

optimistic positioning results in cases where consecutive 
measurements from one UE are found in training and testing 
databases. The number of training signatures used and 
analyzed test signature percentages in SGL and OGL methods 
are given in Table I. From this table we can find that number 
of training signatures used in OGL is about twice the number 
used in SGL for all the different simulations.  

TABLE I. ANALYZED RF FINGERPRINT SIGNATURES OF SGL AND OGL 
LAYOUTS 

Grid-
cell size 

Scen-
ario 

Train-
ing 

Data 
(%) 

Total no. of 
Training 

Signatures 
(Absolute) 

Analyzed Test 
Signatures (%) 

SGL OGL SGL OGL 

10
-B

Y
-1

0 
M

 

RM  
(ISD 

1750M) 

90% 16443 32758 83.19 84.86 

10% 2044 4092 62.19 69.07 

HSC  
(ISD 

500M) 

90% 48808 97687 71.66 73.39 

10% 6319 12707 47.60 55.14 

40
-B

Y
-4

0 
M

 

RM  
(ISD 

1750M) 

90% 7090 14222 82.64 85.72 

10% 1709 3401 64.02 73.80 

HSC  
(ISD 

500M) 

90% 22079 44219 70.50 74.62 

10% 

 
5321 10677 47.74 61.43 

TABLE II. POSITIONING ACCURACY PERFORMANCE EVALUATION 

 
Scen-
ario 

Trai-
ning 
Data 
(%) 

RF 
Finger-

print 
Algori-

thm

For 10-by-10 m Grid  For 40-by-40 m Grid 

68% PE 
(m)  

95% PE 
(m) 

68% PE 
(m) 

95% PE 
(m) 

 

RM  
(ISD 
1750

M) 

 
 

90% 

 
SGL 

Based 

 
29.73 

 
165.29 

 
43.53 

 
196.30 

 
OGL 
Based 

 
31.41 

(+5.6%) 

 
147.49 

(-10.7%) 

 
40.86 

(-6.1%) 

 
161.75 

(-17.6%) 
 
 

10% 

 
SGL 

Based 

 
72.00 

 
228.80 

 
72.48 

 
225.45 

 
OGL 
Based 

 
63.96 

(-11.1%) 

 
206.05 
(-9.9%) 

 
65.03 

(-10.2%) 

 
203.70 
(-9.6%) 

 

HSC  
(ISD 
500 
M) 

 
 
 

90% 

 
SGL 

Based 
 

 
21.12 

 
58.08 

 
33.73 

 
76.43 

 
OGL 
Based 

 
19.45 

(-7.9%) 

 
50.94 

(-12.2%) 

 
27.57 

(-18.2%) 

 
64.87 

(-15.1%) 
 
 

10% 

 
SGL 

Based

 
27.23 

 
73.61 

 
34.83 

 
80.86 

 
OGL 
Based 

 

 
25.14 

(-7.6%) 
 

 
66.47 

(-9.6%) 

 
28.28 

(-18.8%) 

 
68.71 

(-15.0%) 
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It is noticeable from Table I that for 90% of training data 
the increased percentage of analyzed test signatures for OGL 
as compared to SGL method is about 1.7% and 3% for 10 by 
10 m and 40 by 40m grid-cells respectively. Whereas for 10% 
of training data the improvement shown by OGL method over 
SGL is about 7% and 10% for 10 by 10 m and 40 by 40m 
grid-cells respectively in analyzing the test signatures. 
The simulation results for the conventional SGL and the 
proposed OGL RF fingerprint positioning in RM and HSC 
scenarios are given in Table II. Here 68 and 95 percentiles 
give the positioning error (PE) in meters for SGL and OGL 
methods using different training data sets during simulations. 
The percentage within the first bracket under the PE value of 
each of the OGL based method indicates the degradation (with 
a + sign) or improvement (with a - sign) in positioning as 
compared to the SGL method. For example, in the HSC 10% 
training case with 40m by 40m grid the SGL fingerprint 
positioning algorithm has given 34.83 meters and 80.86 
meters of PE in the 68 and 95 percentiles respectively whereas 
that of OGL is 28.28 meters and 68.71 meters respectively. 
Hence OGL method has reduced the PE by 18.8% and 15.0% 
in 68 and 95 percentiles respectively as compared to that of 
the SGL method. Also for HSC 90% training case with the 
same grid size OGL has shown 18.2% and 15.1% of 
improvement in 68 and 95 percentiles respectively over that of 
the SGL. Table I depicts that almost in every simulated study 
OGL RF Fingerprinting performs better than SGL method. 
Moreover, it is worth highlighting that if only 10% samples 
are available for constructing the training signatures, 40-by-40 
meters OGL can outperform 10-by-10 meters SGL 
performance.  

In our present study the MDT samples comprising the 
testing signatures tend to be distributed over several training 
grid units, as a result positioning accuracies were improved 
when an overlapping grid layout is used for the formation of 
training signatures and then the centroid point is determined 
from the two smallest weighted KLD grids. The OGL method 
has constructed more training signatures with different 
combinations of BS IDs than the SGL method. Therefore, it is 
more probable to find matching combination of BS IDs in 
OGL method. Hence the proposed algorithm not only 
improves the positioning accuracy but it can also analyze more 
testing samples.  

IV. CONCLUSION 
This paper proposed two enhancements for grid-based RF 
fingerprint position estimation framework. First enhancement 
is an introduction of overlapping grid layout to form training 
signatures. In the second enhancement, the location of the 
testing signature is estimated to be a weighted geometric 
center of a set of nearest grid units. This is different from the 
traditional grid-based RF fingerprinting where only the center 
point of the nearest grid unit is used for determining the user 
location. The performance evaluation of the enhanced RF 

fingerprinting algorithm was conducted by analyzing the 
positioning accuracy of the RF fingerprint signatures obtained 
from a dynamic LTE system simulation.   

The proposed enhancements can increase the number of 
training signatures that needs to be analyzed for finding the 
nearest grid but in addition the positioning accuracy is 
increased, specifically in cases where only a limited amount of 
data is used for constructing the training signatures. The 
performance evaluation indicates that the proposed 
overlapping grid layout method using KLD can provide a 
maximum of 18.8% improvement in positioning accuracy as 
compared to that of the conventional single grid layout 
approach. 
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