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Abstract—The increasingly connected world magnifies the
threats to users’ location privacy. Encryption protocols offer
solutions to privacy concerns, but they are computationally
very demanding. A reduction of the bit-length of the Received
Signal Strength (RSS) measurements is required for a realistic,
privacy-preserving positioning system based on fingerprinting.
This paper studies the practical design of quantizers for RSS
fingerprinting data and analyses the effect of the quantization
on the positioning performance, with several real data sets and
positioning algorithms. Our results show that a 4-bit quantization
of RSS yields the same positioning accuracy as with unquantized
RSS and that 1-bit approaches (i.e. proximity based positioning)
are also feasible for certain applications.

Index Terms—Received Signal Strength (RSS), quantization,
secure protocols, privacy-preserving positioning, fingerprinting

I. INTRODUCTION AND MOTIVATION

The Received Signal Strength (RSS) information in a
wireless system is nowadays used in a variety of applications,
ranging from link-budget computations and optimizations of the
communication chain to RSS-based localization and tracking.
Typically, the RSS are used without any quantization, but a
quantized RSS approach would bring in significant benefits in
terms of lowering the energy consumption and communication
bandwidths [1] and increasing the security of the positioning
protocol for RSS-based positioning. In this paper we address
the latter case, namely the quantization of RSS values for
the purpose of enabling low-complexity security protocols in
positioning for an increased user privacy. Indeed, in a RSS-
based positioning approach, there are two main threats to user’s
location privacy if the RSSs heard by the user are sent in “clear’
(i.e. without any encryption mechanism):

]

o The location server in charge with computing the user’s
location can also track the users’ position and could
disclose it unwittingly to third parties.

« An attacker with the access to a fingerprint database of
a particular building can intercept the user’s signalling
towards the location server (Medium Access Control
(MAC) addresses of the Access Nodes (AN) and their cor-
responding RSS) and infer the user’s location information.

User’s position privacy infringements can bring in significant

threats, as outlined recently in [2]. In order to offer solutions
to the user’s privacy problem, privacy-preserving protocols
have to be derived. Security against external adversaries
intercepting signals between the user and server is relatively
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easy to solve by encrypting the channel, e.g., with TLS.
Privacy problems originating from the server’s ability to track
users is significantly harder to solve, but a few attempts are
available in the literature [3]—-[8]. Many of them use secure
multiparty computation (MPC) based on partially homomorphic
encryption that allows limited operations with encrypted data.
Unfortunately, weaknesses have been identified recently in
some of them [8]. The schemes also introduce significant
computation and communication overheads compared to basic
privacy-violating protocols. Nevertheless, some promising
schemes have been identified in [8] based on MPC built from
garbled circuits and additively homomorphic encryption. Their
complexities are directly related to the precision (bits) of RSS
values used in the protocols. Consequently, significant efficiency
improvements could be received by using fewer bits in the
quantized RSS values, both used in the fingerprint database
and measured by the user’s device.

While RSS quantization decreases the complexity of the
privacy-preserving protocol, it will also decrease the accuracy
of the location estimate. The goal of this paper is to investigate
the impact of RSS quantization on the positioning accuracy.

Most related work about RSS quantization can be found in
the research on sensor node localization in densely deployed
wireless sensor networks, where sensors are low-cost with
limited energy, communication and sensing ability. The authors
of [9]-[11] use quantized RSS to localize a target in a sensor
network, but they are not concerned about the trade-off between
quantization and positioning accuracy.

In [12] a quantizer is proposed whose output level is
a function of the number of spatial grid cells, in order
to minimize the number of beacons while pertaining the
positioning accuracy. The basic path loss model with log-normal
shadowing is used in simulations to evaluate the method.

The studies [13] and [14] derive the Cramér-Rao lower
bound (CRLB) to analyse the performance of a RSS-based
localization system with quantized RSS. The principal objective
in these studies are the optimal quantization thresholds based
on the CRLB. Both works conclude that a small number
of quantization levels suffices to achieve a good localization
performance. Patawari et al. [13] state that eight levels (3 bit)
suffice to achieve a performance comparable with that of
systems using unquantized RSS. These contributions were
later extended by [1] to a distributed estimation of the target
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location. They found that 5-bit quantized RSS achieve a similar
CRLB as using raw RSS.

These theoretical studies derive the optimal quantization
thresholds for specific networks, network configurations and
particular assumptions (a-priori knowledge of the sensor
locations, isotropic signal attenuation model, reception of
target’s signals at all nodes, access nodes communicate with
each other). This limits the validity of their findings and renders
the transfer of the outcomes uncertain for positioning systems
that do not reflect these assumption.

In [15] a genetic algorithm is used to find the partitions
of a RSS quantizer. From experiments with EMSPCC 11
nodes in an 8 x 12m?2 environment, they conclude that a
2-bit representation of RSS yields an adequate compromise
between data compression and positioning accuracy.

Our study outlines privacy-preserving fingerprinting local-
ization in WLANs and investigates the trade-off between
positioning accuracy and quantization bit-length using real-
field measurements in large multi-floor spaces (office and mall
buildings with areas larger than 100 x 100 m? per floor). We
design several practical quantizers, derived empirically from
the fingerprint data, and we evaluate them with k-Nearest
Neighbour (k-NN) algorithms using three different distance
metrics for five different WLAN RSS data sets.

II. INDOOR POSITIONING WITH PRIVACY CONSTRAINTS

Indoor positioning methods rely commonly on inertial
measurements or on radio signals, as those used in WLAN
and Bluetooth [16]-[18]. Among the possible positioning
techniques, fingerprinting with RSS measurements has been
widely adopted, because of the ease with that the necessary data
can be acquired and because of its low complexity. In addition,
alternative techniques based on signal propagation times suffer
severely from shadowing and multipath propagation effects and
yield typically poorer accuracy. With fingerprinting localization,
a positioning accuracy of a few meters can be achieved, which
is sufficient for many location based services.

RSS-based fingerprinting uses a pattern matching technique
that finds the user’s position by comparing an observed RSS
signature, a set of RSS values from all ANs in range, with
previously collected RSS signatures in a database. During an
off-line phase, RSSs and the positions at which the RSSs have
been recorded, are collected and stored in a database. In an
on-line phase a RSS signature is measured and compared with
the RSS signatures in the database. The position associated
to RSSs that match best with the observed RSSs serves as an
estimate for the user position. For that comparison we use the
k-NN method with the following commonly used metrics:

a) Gaussian-kernel distance:
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Fig. 1. Privacy preserving fingerprinting localization using quantized RSS.

c) Sgrensen distance:
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where {s,, }}_, is the observed RSS signature, {5, ;})M_,;
the ¢th entry in the database and M denotes the number of ANs.

To preserve the users’ location privacy its RSS measurements
need to be protected. Fig. 1 shows a flow chart of the privacy-
preserving positioning system that integrates quantization and
encryption. In Sect. III, we describe possible privacy-preserving

protocols and Sect. IV details the quantization of RSS.

3)

III. SECURITY PROTOCOLS FOR POSITIONING

In privacy-preserving RSS-based localization the problems
are twofold: (1) how to prevent the server from learning
the user’s RSS measurements and, consequently, the user’s
location and (2) how to prevent the user from obtaining the
server’s database. Secure multi-party computation (MPC) are
cryptographic protocols that allow two (or more) parties to
jointly perform computations without revealing their inputs
to each other. Yang and Jirvinen [8] surveyed different
possibilities to use MPC for efficient privacy-preserving RSS-
based localization. They identified garbled circuits and addi-
tively homomorphic (Paillier) encryption as the main enabling
techniques. In the following, we discuss the benefits of reducing
the number of bits per RSS value in both of them.

A. Garbled Circuits

Garbled circuits introduced by Andrew Yao [19] allow two
parties to jointly evaluate a function f(x,y) without revealing
their inputs (x and y, respectively) to each other. The simplest
way to use this for privacy-preserving RSS-based localization is
to let x be the user’s RSS measurements and y be the server’s
database, but other more efficient ways have been proposed [8].

In MPC using garbled circuits, the main problem is the size
of the garbled circuits that is proportional to the communication
between the parties. The function f is first represented as a
Boolean circuit and then this circuit is scrambled into a garbled
circuit so that each non-XOR gate in the circuit becomes a
2\-bit table [20], where A = 128 is a typical value, and XORs
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are for free [21]. For instance, an addition (subtraction) of
two b-bit integers requires a 2bA-bit garbled circuit whereas a
schoolbook multiplication requires a 2(2b% — b)\-bit garbled
circuit (see, e.g., [22]). Given this, it is clear that the size of
the garbled circuit for computing, for example, Eq. (2) depends
heavily on the precision of RSS values.
Example: Consider constructing a garbled circuit for

Eq. (2) (but omitting the square root because it does not affect
the ordering) with M = 500 and A\ = 128. With 8-bit RSS
values, s,, — §,, requires 256 B. Squaring the result requires
3840B. To simplify, we assume that accumulating the 500
squares (16-bit values) is done with 25-bit additions' (each
800B) and, then, we get that the total circuit becomes about
2.33 MB. The corresponding numbers with 2-bit RSS values
are 64 B (2-bit addition), 192 B (2-bit multiplication), 416 B
(13-bit addition), and 0.32 MB.

Above, we considered only computing a single instance of
Eq. (2) but, in reality, we need to compute several distances
and, then, find the shortest of them, e.g., as shown in [23].

B. Faillier Encryption

In the following, we use Paillier’s additively homomorphic
public key encryption scheme [24] as an example of how
reducing the precision of RSS values can significantly reduce
the number of ciphertexts that needs to be communicated. We
discuss Paillier encryption because it is used in [8] for privacy-
preserving localization, but similar advantages can be achieved
for most additively homomorphic encryption schemes.

In Paillier encryption, the encryption and decryption func-
tions with a key pair (sk, pk) are as follows:

¢ = Enc(pk, m) 4)

&)

where m € Z, = {0,1,2,...,n — 1}, where n is a large
integer (more than 2000 bit), m is the plaintext message, c is the
ciphertext, sk is the secret key, and pk is the public key. Paillier
encryption is additively homomorphic and, therefore, given two
ciphertexts c; and cs, which are encryptions of my and mso,
there is an operator x for the ciphertexts such that c3 = ¢1 * co
and Dec(sk, c3) = mq + mo. For Paillier, x is multiplication
modulo n?. This allows the server to compute Euclidean
distances using the user’s encrypted RSS measurements without
learning their real values [3], [8].

As shown above, Paillier encryption allows encrypting very
large numbers because n is large. Hence, it is not immediately
obvious how reducing the precision of RSS values plays any
role. However, as shown in [25], it is possible to reduce the
number of ciphertexts sent from the server to the user by
packing several b-bit Euclidean distances into one ciphertext.
The packing can be done by, first, scaling the ciphertext of
d; by 20=D? via repeated homomorphic additions with itself
and, second, by adding several scaled ciphertexts together
homomorphically. Fig. 2(a) shows how most of the log,(n)-bit
plaintext space of a Paillier ciphertext is wasted if only one b-bit

m = Dec(sk, ¢),

'In practice, the first additions can use a smaller precision.
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Fig. 2. (a) Only one b-bit distance per ciphertext that could store a log, (n)-bit
plaintext (b) 7" distances packed in one ciphertext for efficient use of the
plaintext space
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distance is stored in a ciphertext. Fig. 2(b) demonstrates how
T = |log,(n)/b] distances can be packed in one ciphertext
for efficient use of the plaintext space. Obviously, the number
of distances that fit into a ciphertext depends on b, the number
of bits per distance, which in turn depends on the RSS values.

Example: Let log,(n) = 2048 and assume that Euclidean
distances are computed with Eq. (2) by omitting the square root
(not possible with Paillier but also no effect on the ordering).
Let the number of ANs be M = 500 and the number of
reference points be N = 1000. If only one distance is stored
in one ciphertext, then 2048 000 bit need to be transmitted
regardless of b. With 8-bit RSS values, we have that each
(Sm — 8m)? can be a 16-bit value and as we have M =
500, one distance can be at maximum a 25-bit value. Hence,
T = [2048/25] = 81 values can be packed in one ciphertext
resulting in [1000/81] - 2048 = 26 624 bit to be transmitted.
With 2-bit RSS values, each distance is only a 13-bit value and
T = 157 which gives that only 14 336 bit need to be transmitted
leading to a 46.5 % saving compared to 8-bit values (and 99.3 %
compared to the non-packed version). This clearly shows that
the precision plays an important role.

IV. RSS QUANTIZATION

This section details the fix bit-length quantization of RSS for
secure multi-party computation in support of privacy preserving
localization systems.

A quantizer is specified by a codebook and a parti-
tion. The codebook defines a finite set of L output levels,
{y1,92,...,yr}, and the partition defines the L cells that form
the input range of the quantizer. The partition cells are specified
by their endpoints {x1,x2,...,z}, also called boundary
points or decision levels. Quantizers are typically regular, that is,
each partition cell is an interval of the corresponding boundary
points (mi_l,a:i) and y; € (mi_l,xi).

The overall goal when designing a quantizer is to minimize
the (squared) error that the quantization y = Q(z) introduces:
d = |x — y|? [26]. The performance of a quantizer depends
on the quantizer itself, but also on the data, X, which we
model as random variable with a probability density function
(pdf) fx(z). A more general and informative measure of a
quantizer’s overall performance is then the average distortion
D = E[d(X, Q(X)] [26], where E denotes the expectation. To
find an optimal quantizer, the codebook and the partitions need
to be found at the same time.
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The RSS in a fingerprint database are spatio-temporal
samples of an underlying random process whose analytic model
is unknown. We design therefore the quantizer based on the
empirical distribution of a RSS data set, considering all RSS
in a fingerprint database. Fig. 3 illustrates the histogram of
the RSS for a three-floor university building. We consider
two principle options in this study: uniform quantization and
nonuniform quantization. The motivation of studying also
the nonuniform quantizers comes from the fact that the RSS
probability distribution is not uniform, as shown in Fig. 3.

A. Uniform and nonuniform quantization

Uniform quantization is characterized by an input-output
function that lies on a line with unit slope. That implies equally
spaced boundary points and also output levels, A = y; — y;_1.
Thus, the output levels are given as the midpoints of the
quantization intervals, y; = (z; + 2;—1)/2 [26]. This limits the
maximum quantization error to A /2 regardless the distribution
of the input data. We denote such a design by Q1’.

A nonuniform quantizer that is adapted to the input pdf
quantizes frequent values fine and less frequent values coarse.
This results in smaller errors for frequent input values, which
may compensate the larger errors yielded from less frequent
values, and thus decreases the average distortion compared
to an uniform quantizer. This enables higher dynamic ranges
without an increase of the distortion. We use Q2’ to refer to
this type of quantizer.

RSS measurements are in logarithmic scale, thus, the
distortion of the quantizer may not be the crucial factor for
the positioning accuracy. We evaluate additionally a quantizer
that takes into account the exponential decay of the RSS as
a function of distance. For this quantizer we choose smaller
quantization levels for large RSSs and coarse quantization

levels for low RSSs. This quantizer design is denoted by Q3.

B. Codebook and partition choice

In order design a quantizer, the optimal partitions for a given
codebook must be found. We first compute the codebook based
on the complete set of RSS of a fingerprint database and then
we fix the partitions. The number of bits, ¢, determines the
number of output levels L = 2¢.

The codebook of the Q1' quantizer is simply determined
by picking L equally spaced values from the interval defined
by the maximum and minimum of the RSSs: y; = ;1 + A,
where y; = min X and A = (max X — min X)/(L — 1).

The codebook of the 92’ quantizer is determined in two
steps: First, we determine a vector of L equally spaced ordinal
numbers starting at one and ending at the cardinality of the
RSS fingerprint data set, v = (1, [|X|/(L—1)],...,|X]). The
[ ] is the rounding operator and |-| is the cardinality. Second,
we rank the set of RSSs. The codebook is then the ordered set
of RSS that corresponds to the ranks contained in v.

For Q3" we proceed as for Q2’, but instead of equally spaced
ordinal numbers we determine L exponentially spaced (base
10) ordinal numbers in the same interval as for 02/, [1,]X]].

An optimal partition for a given codebook should minimize
the distortion. Thus, the input values in the range of the partition
cell 7 should be closer to y; than to any other output level.
This is equivalent to choosing the partition boundary points as
midpoints of the neighbouring output levels x;_1 = (y;—1 —
yi)/2, also known as the nearest neighbour condition [26]. We
choose the partitions of the three quantizers according to that
rule.

In a last step we encode the quantizer outputs with a simple
binary code. As only the difference between the RSSs matters
(see metrics in Sect. II), the binary number does not have to
reflect the actual RSS value as long the same encoding is used
on the server and client side, recall Fig. 1.

C. Modified (combined) quantizer

Furthermore, we introduce a modification of the three
quantizers described in the Sect. IV-A. The modified quantizers
reserve an extra bit for the ANs whose signals could not
be received. This information is either directly or indirectly
contained in a fingerprint database: indirectly, if the identifiers
of certain ANs do not appear in a fingerprint but in other
fingerprints; directly, if the RSS values of every AN are
included in the database but are set to some invalid value.

We compute the codebook of these modified quantizers as
described before, but with a number of output levels L = 2t 1.
Based on these codebooks, we determine the partition, also
as described before, and then add an extra output level and
boundary point to accommodate the retained zero-bit. We use a
value below the lowest RSS of sy, = —105 dB for the not heard
RSS. The resulting quantizers QI, Q2 and Q3 are depicted for
the same data set in Fig. 4(a) to (c).

V. POSITIONING RESULTS WITH QUANTIZATION

This section presents the experimental set-up, data sets
and fingerprinting positioning results with quantized RSS.
To evaluate the positioning with quantized RSS we use
fingerprinting with WLAN RSS. Nonetheless, we expect similar
results for RSS-based fingerprinting methods in other networks,
such as Bluetooth. We set & = 3 for the k-NN.

A. Measurement environments

We use RSS data from five different data sets, collected
in different buildings, with different devices. Details about
the different environments can be found in Tab. I. Among
the buildings there are three typical university buildings with
primarily office and lab use (Data-set-1 to Data-set-3), but
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Fig. 4. Quantizers with zero-bit for the same RSS data set. The threshold for
the zero-bit is sy, = —105dBm.

TABLE I
CHARACTERISTICS OF FINGERPRINT (FP) DATABASES USED IN THE
EXPERIMENTS. THE BASE AREA IS ROUGHLY ESTIMATED FROM THE
POSITIONS OF THE FINGERPRINTS.

base area (m?) #AN #FP #floors
Data-set-1 176 x 73 509 628 4
Data-set-2 176 x 73 331 360 5
Data-set-3 [27] 166 x199 489 446 3
Data-set-4 183 x163 653 406 3
Data-set-5 [28] 395 x275 465 19861 5

also a shopping mall (Data-set-4). Data-set-5 consists of three
university buildings. Data-set-1 and Data-set-2 were collected
in the same building, but with different devices.

B. Positioning accuracy with quantized RSS values

Fig. 5 shows the Root Mean Square Error (RMSE) and the
Floor Detection Rate (FDR) for Data-set-3 for different bit
sizes and for different £-NN metrics, Egs. (1)—(3). It compares
the positioning performance that results from the use of the
zero-bit when quantizing the RSS with Q1.

Noticeable is first of all the high RMSE and FDR of
the £-NN with Euclidean and Sgrensen distance at 1-bit
quantization, when zero-bit was not used. Interestingly, the
Gaussian distance does not show that behaviour, it outperforms
the other two metrics if the RSS are quantized with 1-bit,
regardless of the zero-bit. For bit-lengths larger than four, the
difference between the quantizer with zero-bit and without
it is almost negligible. If two or more bits are spent, the

Serensen distance performs better than the Gaussian distance.

The Euclidean distance yields consistently the highest RMSE
and lowest FDR.

Next, the three quantizers Q/, Q2 and Q3 are studied. All
three quantizers use the zero-bit and the positions are estimated
for all five data sets, with the £-NN employing the Sgrensen
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Fig. 5. Positioning performance of the £-NN with Gaussian kernel-, Euclidean-
and Sgrensen distance for the quantizers Q1’ and QI, without and with the
zero-bit, respectively, for the not heard values.

distance. Fig. 6 depicts the RMSE for different bit-lengths
and shows the RMSE obtained from unquantized RSS for
comparison.

The use of RSSs quantized with only 4-bit achieves,
and eventually falls below, the positioning accuracy of raw,
unquantized RSSs. That means for WLAN, where RSSs are
quantized with eight bit, that four bits can be saved in any
case without compromising the localization performance. The
RSSs quantized with Q3 lead to a lower positioning error than
the RSSs quantized with Q7 or Q2, particularly for bit-lengths
larger than three. According to the path loss curve, large RSSs
discriminate distances better than low RSSs. Thus, spending
more bits for large RSSs (Q3) yields lower positioning error
than spending many bits for low RSSs values (Q2).

A final remark is on the positioning accuracy of Data-set-4,
whose fingerprints were collected sparsely in an environment
that consists of only a few separations: An accuracy of 15m
is too high for a practical indoor localization system. However,
despite the accuracy deviation also this data set conforms with
the general pattern regarding the effect of quantization.

VI. CONCLUSIONS AND FURTHER STUDIES

Through the design of different quantization schemes and
the subsequent use of quantized RSSs in WLAN positioning
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Fig. 6. Positioning performance of k-NN with Sgrensen distance with RSS
for three different quantizers, Q7/-Q3, and multiple RSS fingerprint data sets.
The data sets from top to bottom correspond the order in Tab. L.

methods, we found that quantizing the RSSs with ¢ = 4 bit
yields comparable positioning accuracies than with unquan-
tized RSSs. Thus, 4bit can be saved, which improves the
practicability of privacy preserving WLAN positioning. We
recommend to spend available bits on large RSSs; anyhow, the
accuracy resulting from different quantizers is quite small. It
was shown that the zero-bit is only beneficial for localization
with binary quantized RSSs and that although the Gaussian
distance proved to be robust for proximity based positioning
(1-bit quantized RSSs), the Sgrensen distance yielded the best
overall performance. We would also like to point out that for
certain applications the accuracy of proximity based positioning
might actually suffice. For such applications the computational
and storage costs would be decreased significantly.
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