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Abstract—This paper presents a localization approach which
aims to detect and localize discrete mobile scatterers. Therefore, a
network of spatially distributed transmitting and receiving nodes
is used. The localization problem is formulated as a non-linear
optimization problem and corresponding performance bounds
for the positioning error are provided. To solve the optimiza-
tion problem, an iterative non-linear least squares approach is
used, following the algorithm of Levenberg and Marquard. The
proposed localization approach is evaluated based on wideband
measurement data. It is shown, that the localization of mobile
scatterers can be achieved. A further evaluation reveals a strong
dependence of the localization performance on the preceding
link level parameter estimation. Particularly sparse networks are
shown to be sensitive to rich multipath environments.

Index Terms—Mulitlateration, localization, parameter estima-
tion, KEST, non-linear least-squares, Levenberg-Marquard

I. INTRODUCTION

Vehicular environments, in particular in urban space, are
typically shared by many different users including cars, motor-
cycles, cyclists, and pedestrians. With the trend of increasing
urbanization, the number of road users steadily grows. The
resulting dense and highly complex environment is challeng-
ing for any means of automated transport, requiring broad
situational awareness to enable safe routing. Therefore, coop-
eration between road users, i.e. the exchange of user specific
information including position and velocity, helps to improve
the mutual awareness [1]. Many road users, however, are not
equipped with any actively probing devices, i.e. are neither
able to determine their own position nor to communicate to
others. Hence, realizing reliable situational awareness requires
further methods and sensor technologies, which explicitly
account for these non-cooperative road users.

Current automated and autonomous vehicles mainly rely
on locally mounted sensors to perceive their surroundings,
including radar and lidar sensors, as well as camera-based
systems. Due to physical properties these locally mounted
perception sensors have a series of critical limitations such as
their limited performance in occluded sight situations [1]. To
improve the reliablity and to extend the awareness range of the
ego-perception, supporting infrastructure based systems have
been suggested, e.g. based on dedicated radar sensors [2] or
cameras [3]. For an appropriate deployment of such systems,

several sensors would have to be mounted to sufficiently sense
only a limited area like an urban intersection, which results in
high deployment and maintenance costs.

Therefore, a novel road surveillance system is introduced
in [4], proposing to reuse signals from vehicular communica-
tions infrastructure for passive radar application. The detection
and localization of road users is intended to be achieved
by sensing the wireless propagation characteristics between
the links of existing communication networks. Thereby, it is
assumed that road users and other objects induce delayed
and Doppler shifted multipath components (MPC), which
correspond to their location and dynamics. Exploiting the
network structure and evaluating the individual links allows
to infer the location and velocity of road users. A similar
idea is followed in [5], where all devices that transmit signals
are considered as possible illuminators of opportunity. That
means, besides static network nodes also mobile devices can
be used. Since the localization accuracy strongly depends
on precise location information about the individual network
nodes, an incorporation of mobile nodes is challenging and
requires to account for location uncertainties.

Following the idea of the surveillance systems of [4] and [5],
this paper presents a complementary localization approach.
The corresponding measurement model is derived and perfor-
mance bounds are provided. Eventually, the proposed approach
is evaluated based on wideband measurement data.

II. NETWORK AND MEASUREMENT MODEL

Consider a widely distributed network of K transmitting and
L receiving nodes. Both, transmitting and receiving nodes are
assumed to be static at known locations xTx

k , k ∈ {1, . . . ,K},
and xRx

l , l ∈ {1, . . . , L}, respectively, where receiving nodes
can be collocated with transmitting nodes or individually
placed. The transmitting nodes emit known signals sk(t) with
period Tp allowing to measure the channel impulse response
(CIR) at the receivers [6]. For each link in the network, the re-
ceived signal is modeled as a superposition of a finite number
of scaled and delayed replicas of the transmit signal. These
comprise the line-of-sight (LoS) and discrete MPCs due to
reflection and scattering. The MPCs are further differentiated
according to the dynamics of the scattering objects, i.e. static978-1-7281-2445-2/19/$31.00 c©2019 IEEE



and mobile [7]. Hence, the CIR for a pair of transmitting and
receiving nodes Txk and Rxl can be written as

hkl(t, τ) = hLoSkl (t, τ) + hSkl(t, τ) + hMkl(t, τ), (1)

with hLoSkl (t, τ), hSkl(t, τ), and hMkl(t, τ) denoting the contri-
bution of the LoS, the sum of Pkl discrete static and of Qkl
discrete mobile MPCs to the CIR, respectively.

Each mobile MPC is attributed to an individual moving
scattering object in the observation area. Thereby, the number
of mobile MPCs is assumed to be identical for all pairs
of transmitters and receivers, i.e. Qkl = Q, and uniquely
attributable for each link. Eventually, for time and phase syn-
chronized transmitting and receiving nodes, the contribution
of discrete mobile scatterers is expressed by

hMkl(t, τ) =

Q∑
q=1

αM
klq(t)e

−j2πfcτM
kl (xq(t))δ(τ−τMkl (xq(t))) (2)

where αM
klq(t) represents the complex amplitude and

τMkl (xq(t)) the propagation delay associated with the qth
mobile scatterer at location xq(t) = [xq(t), yq(t)]

T . The term
e−j2πfcτ

M
klq(xq(t)) denotes the corresponding delay-induced

phase shift for center frequency fc. For convenience, in the
following the notation for time dependence will be omitted.

The propagation delay is determined by the distances be-
tween transmitter and scatterer and between scatterer and
receiver as

τMkl (xq) = τMklq =
1

c

(
‖xq − xTx

k ‖+‖xq − xRx
l ‖
)

=
1

c

(
dTx
kq + dRx

lq

) (3)

with c as the speed of light, dTx
kq and dRx

lq as the distance
of scatterer q to Txk and Rxl, respectively. The operator
‖·‖ denotes the standard Euclidean norm. For KL network
links, linear independent propagation delays induced by the
qth scatterer as defined in (3) compose the vector

τ q = [τM11q, . . . , τ
M
K1q, τ

M
12q, . . . , τ

M
K2q, · · · , τM1Lq, . . . , τMKLq]T .

(4)
Given the corresponding vector of measured delays τ̂ q , the
measurement model is defined as

τ̂ q = τ q + wq (5)

with wq as zero-mean white normal distributed noise with
covariance matrix Σq = diag(σ2

klq).

III. LOCALIZATION APPROACH

As stated above, location information of mobile scatterers
are contained in the propagation delay of time-variant MPCs.
Besides the time-variant MPCs, the CIR between any pair of
transmitting and receiving nodes additionally comprise static
LoS and MPCs as given in (1). In order to localize mobile
scatterers, the time-variant channel components need to be
exposed. Therefore, the proposed localization approach is
composed of two stages. First, the identification and char-
acterization of LoS and static MPCs in a calibration stage,

and second the exposure of mobile MPCs and the actual
localization of mobile scatterers in an estimation stage.

For both stages Kalman enhanced super resolution tracking
(KEST) is used to estimate and track the channel parameters of
the CIR, including complex amplitude and propagation delay
of LoS and MPCs [6].

A. Calibration Stage

To characterize the propagation effects of the static envi-
ronment, the observation area is assumed to be devoid of any
mobile scattering objects, i.e. Q = 0. For each transmitter-
receiver pair, the channel is observed over a period Tcal
which results in bTcal/Tgc consecutive CIR measurements,
with Tg as the time interval between two adjacent measure-
ments. Using KEST, the channel parameters for all recorded
CIR are estimated. Subsequently, the parameter estimates are
clustered with regard to amplitude and delay [8]. The resulting
clusters correspond to the LoS and to Pkl static MPCs. Each
cluster mean and standard deviation are determined as τ̄klp
and σ̄klp, p ∈ {0, . . . , Pkl}, where p = 0 denotes the LoS
component. Hence, the vectors τ̄ kl = [τ̄kl0, . . . , τ̄klPkl

]T and
σ̄kl = [σ̄kl0, . . . , σ̄klPkl

]T characterize the static propagation
environment between Txk and Rxl.

B. Estimation Stage

Similar to the previous stage, KEST is used to estimate
and track the channel parameters of incoming CIRs. As given
in (1), the CIR comprises LoS, static and mobile MPCs. There-
fore, the vector of propagation delay estimates is composed as

τ̂ full
kl = [τ̂Skl0, . . . , τ̂

S
klPkl︸ ︷︷ ︸

LoS and static MPC

, τ̂Mkl1, . . . , τ̂
M
klQ]T . (6)

In order to expose mobile MPCs, the vector of delay estimates
τ̂ full
kl is adjusted with respect to the static components τ̄ kl

determined in the preceding calibration stage. Particularly, that
means to remove all elements of τ̂ full

kl lying in an interval of
τ̄klp ± 3σ̄klp. Here, the 3-σ interval ensures to exclude delay
estimates assigned as static with a probability higher than 99%.
Thereby, it is assumed that the previously determined amount
of static MPCs remains constant. The resulting measurement
vector of mobile MPCs for the link Txk and Rxl is

τ̂ kl = [τ̂Mkl1, . . . , τ̂
M
klQ]T . (7)

Eventually, rearranging the elements of scatterer q over all
links in the network gives the measurement vector τ̂ q .

On the basis of the measurement model given in (5), the
localization of scatterer q can be achieved by maximum like-
lihood estimation. Using a weighted non-linear least-squares
approach [9], [10] to minimize the cost function

L(xq) = (τ̂ q − τ q)
TΣ−1

q (τ̂ q − τ q) (8)

with respect to the unknown position xq , which yields

x̂q = arg min
xq

L(xq). (9)

To solve the non-linear two-dimensional optimization problem
of (9) it is necessary to use an iterative approach, as there exists



no closed-form solution. For minimizing the cost-function (8),
the Levenberg-Marquardt algorithm is applied [10], due to
high robustness and fast convergence characteristics. Given
the elements of the Jacobian matrix J(xq) ∈ RKL×2, i.e. the
partial derivatives of τ q with respect to xq , as

J(xq) =



xq−xTx
1

dTx
1q

+
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1

dRx
1q
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1
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1

dRx
1q

...
...
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K

dTx
Kq

+
xq−xRx

1

dRx
1q

yq−yTx
K

dTx
Kq

+
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1
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1
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2
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2q
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1
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...
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L
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, (10)

the iterative procedure results in

x(i+1)
q = x(i)

q +
(
JT (x(i)

q )Σ−1
q J(x(i)

q ) + λ(i)I
)−1

JT (x(i)
q )Σ−1

q

(
τ̂ q − τ (i)

q

)
,

(11)

with identity matrix I and dampening parameter λ(i) for
iteration step i. The individual elements of vector τ

(i)
q are

calculated according to (3) as τMkl (x
(i)
q ).

IV. PERFORMANCE BOUND

The Cramér-Rao lower bound (CRLB) provides a lower
bound on the variance of any unbiased estimator for de-
terministic parameters. The CRLB is defined as the inverse
of the Fisher information matrix (FIM) [9]. Thus, for the
vector parameter xq , the elements of the unbiased estimator
x̂q = [x̂q, ŷq]

T satisfy

Var(x̂q) ≥ [F(xq)
−1]1,1 = σ2

xq
(12)

and
Var(ŷq) ≥ [F(xq)

−1]2,2 = σ2
yq (13)

with [F(xq)
−1]n,n, n = 1, 2 , as diagonal elements of

the inverse FIM F(xq). Var(·) denotes the variance of an
estimator.

For each link in the network, the received signals are a
function of propagation delays τ q . Therefore, applying the
chain rule to the FIM F(xq) allows an alternative expression
as [9]

F(xq) = J(xq)
TF(τ q)J(xq) (14)

given the Jacobian matrix J(xq) as defined in (10) and the
FIM F(τ q) ∈ RKL×KL with respect to delays τ q . Since the
Fisher information for time delay is well known [9], for linear
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Fig. 1. Overview of the evaluated measurement network with transmitting
and receiving nodes as circle and triangles. Moving car and driving direction
indicated by grey rectangle and corresponding arrow. Dashed blue line
illustrates its trajectory.

independent time delays τ q , the diagonal elements of F(τ q)
are defined as

[F(τ q)]m,m =
8π2β2SNRmq

c2
(15)

where β2 denotes the effective bandwidth of the transmit
signal. The index m = 1, . . . ,KL enumerates vector elements
according to the order of network links as introduced in (4).
Therewith, SNRmq expresses the signal-to-noise-ratio (SNR)
for the MPC induced by scatterer q in network link m. For
Txk and Rxl to define link m, the SNR can be written as

SNRmq =

(
PTxk

GTxk
GRxl

σqc
2

(4π)3f2c (dTx
kq )2(dRx

lq )2

)
P−1
n (16)

with PTxk
as transmit power, Pn as receiver noise power,

GTxk
and GRxl

as antenna gains, and σq as radar cross-section
(RCS) of scatterer q [4]. Hence, the FIM elements in (15) are
proportional to [F(τ q)]m,m ∝ ((dTx

kq )2(dRx
lq )2)−1.

Using the CRLB of (12) and (13) allows to analyze the
localization accuracy in terms of root mean square error
(RMSE), given as

RMSEq =
√
E [‖x̂q − xq‖2] ≥

√
σ2
xq

+ σ2
yq . (17)

V. CASE STUDY

In this section the proposed localization approach is eval-
uated based on channel measurements for a static network
of K = 1 transmitting and L = 3 receiving nodes. As
shown in Fig. 1, the network nodes are individually placed
forming a square with an inter-node distance of approximately
10 m. The selected scenario considers a driving car as single
mobile scatterer (Q = 1), approaching and passing through
the static network setup. As the experiment was conducted
outdoors in an open-sky environment, GNSS was used as
ground truth system. Therefore, the car was equipped with
a Topcon Legacy E+ L1/L2 Glonass/GPS receiver which
was connected to a NavExperience 3G+C defense antenna.
The antenna was placed centrally on the roof of the car.
As measurement system the Medav RUSK-DLR wideband
channel sounder was used [11]. The measured data are CIRs
between transmit and receive antennas, which correspond to
network nodes, respectively. Table I provides a summary of the
corresponding measurement parameter settings. The individual



TABLE I
MEASUREMENT PARAMETERS

Parameter Value

Center frequency fc 5.2GHz

Bandwidth B 120MHz

Signal period Tp 0.8 µs

Measurement rate Tg 1.024ms

Transmit power PTx 36dBm

Antenna gain GTx 8dBi (toroidal, omni-directional)

Antenna gain GRx1−3
8dBi (toroidal, omni-directional)

static antenna locations of the network are measured prior to
the experiment. With the transmit antenna Tx chosen as the
origin of the coordinate system, the considered observation
area spans from −45 m to 30 m in x-direction and from −5 m
to 15 m in y-direction.

As stated in Sec. III, the channel parameters for all links
in the network are estimated using KEST. The estimation
results of KEST for the measured CIR over the positions in
x-direction of the driving car are shown in Fig. 2a-2c for each
link individually. The figures show the consecutive vectors
of delay estimates (6) over the full traveled distance. Static
delay estimates, including LoS and static MPCs, are shown in
grey. These static delays together with corresponding standard
deviations are determined during a preceding phase without
any mobile objects in the observation area applying the steps
of the calibration stage (Sec. III-A). This characterization of
the static propagation environment allows to expose the mobile
MPC, shown in color according to the estimated amplitude
level. According to the movement of the car towards the
network, passing through it, and moving away from it, the
delay estimates of the mobile MPC are characterized by an
initially decreasing and later increasing shape. This holds for
each link.

Due to the geometrical arrangement of the receiving an-
tennas and limits in the dynamic range of the measurement
system, the detection, estimation, and tracking capabilities
of KEST differs [11]. Regarding detection range, i.e. the
maximum distance which allows to detect the object as an
individual MPC, the link for Tx-Rx2 shows the best perfor-
mance. This corresponds to the link distance between receive
and transmit antenna, which is highest for Tx-Rx2 among the
considered network links. Since the received LoS signal power
is lowest, the dynamic range is least stressed. A lower stressed
dynamic range, in turn, results in a lower noise floor of the
network link. Since scattered MPCs possess very low power,
it is obvious that a low noise floor improves the detection
and therewith the estimation quality of the corresponding
parameters.

Besides detection range, the estimation results of Fig. 2,
clearly show how the presence of LoS and static MPCs impact
the composition of measurement vector τ̂ q and therewith the
localization of the mobile scatterer. An unambiguous solution
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Fig. 2. Estimation results of KEST for the CIR over x-positions of the driving
car. Exposed mobile MPC is colored according to the estimated amplitude
level. LoS and static MPCs are shown in grey. Vertical black lines indicate
car position for localization example in Fig. 4.

of (9) requires at least three independent measurements. The
required static environment mitigation, i.e. the displacement of
any delay estimates close to static components (see Sec. III-B),
however, reduces the amount of delay estimates assigned to
a specific mobile scatterer. Thus, a rich static MPC environ-
ment reduces the overall localization capabilities. This holds
particularly for very sparse networks, such as the three-link
network considered in this section, since an outage in any
link impedes localization. Besides static MPCs, also the LoS
impacts the localization capability due to the so called blind
zone problem [12]. That means, induced MPCs of scatterers
located close to the baseline between a transmitting and
receiving node are hardly to detect. The estimation results of
the described experiment confirm these blind zones, since it is
not possible to expose mobile MPCs when the car is located
in the proximity of the individual link baselines. This accounts
for the links to Rx1 and to Rx2 in the region between −10 m
to 0 m, and for the link to Rx3 at around 0 m.

Apart from the link level parameter estimation capabilities,
the overall localization performance can be evaluated using
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Fig. 3. RMSE for the observation area of the evaluated measurement network.
Transmitting and receiving nodes as circle and triangles, trajectory of moving
car as dashed line.

the RMSE as defined by the CRLB in (17). To calculate the
RMSE, the parameters provided in Table I are used and a
transmit signal with rectangular power spectral density, i.e.
an effective bandwidth of β2 = B2/12 [9], is assumed.
Due to the metallic chassis of the car, a typical value of
100 m2 is used for RCS [4]. Thereby, the RCS accounts for
the object’s reflectivity characteristics influenced by its size,
shape, and material. For the considered observation area, the
resulting positioning error is illustrated in Fig. 3. The overall
shape of the RMSE indicates good localization performance
of scatterers located inside and very close to the network.
For distant scatterers the localization performance decreases,
which can be explained by both a poor system geometry
regarding localization and a lower received power of the
echoed signal. Please note, the derived CRLB of Sec. IV only
depends on waveform and SNR. That means, the influence
of the superposition of LoS and MPCs on the parameter
estimation is not considered [13], and would be out of scope
of this paper. However, since the superposition of LoS and
MPCs strongly impacts the estimation capabilities, e.g. the
blind zone problem, its influence on parameter estimation will
be included in future research.

Finally, the proposed iterative localization procedure in (11)
is applied for 75 consecutive CIR measurements. The time
instant of these measurements is indicated by vertical lines in
Fig. 2 and the corresponding position of the car is illustrated
in Fig. 4a. For the localization approach, corresponding ele-
ments of the covariance matrices originating from the delay
estimation using KEST are used as measurement noise. The
resulting location estimates are shown in Fig. 4. Due to the
mobility of the car, the location changes during the considered
evaluation interval. Thus, both the ground truth, indicated by
the white cross as the center of the car, and the location
estimates, indicated by black crosses, are compensated with
respect to the absolute movement. Eventually, the estimated
location results can be compared to a single ground truth.
Thereby, it can be observed that the location estimates differ
from the car’s center. Accounting for the dimensions of the
car, this indicates, that the scattering points are located along
the chassis. To analyze the localization accuracy, the CRLB in
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(a) Overview of measurement network and car position for evaluated local-
ization example. Dashed rectangle refers to zoomed illustration in Fig. 4b.

−26 −24 −22 −20 −18 −16

1

2

3

4

x [m]

y
[m

]

(b) Close up view of car position and location estimates.

Fig. 4. Exemplary location estimates for 75 consecutive CIR. Dimensions
of car indicated by grey rectangle. White cross as averaged ground truth
located in the center of the car. Black crosses indicate the corresponding
location estimates, compensated for mobility. Dashed lines show section of
the experiment trajectory.

(12) and (13) are calculated for the selected example position.
With a ratio of σy/σx ≈ 5.3, the theoretical bound of the
estimation accuracy in y-direction is more than five times
higher than in x-direction. The distribution of the estimated
locations in Fig. 4 can qualitatively confirm this ratio, i.e.
the uncertainty in y-direction exceeds the uncertainty in x-
direction. The observed accuracy ratio, however, holds only
for the selected example position, since it strongly depends on
the system geometry and therewith on the absolute position of
the mobile scatterer.

VI. CONCLUSION

In this paper a localization approach was presented aiming
to detect and locate discrete mobile scatterers by means of
a network of spatially distributed transmitting and receiving
nodes. Therefore, the localization problem was formulated as a
non-linear optimization problem. For solving the optimization
problem, an iterative non-linear least-squares approach was
used, following the algorithm of Levenberg and Marquard.
Moreover, the positioning CRLB as performance bound for
the stated localization problem was provided.

The proposed localization approach was evaluated based on
wideband measurement data. In a case study considering a
single mobile scatterer the algorithm’s capability to detect
and localize a discrete mobile scatterer could be shown.
Furthermore, the evaluation revealed challenges in parameter
estimation, particularly regarding the mitigation of static LoS
and static MPCs in the received signals. Rich multipath
environments strongly degrade the availability of usable delay
estimates which in turn degrades the localization performance.
Thus, an advanced underlying parameter estimation and track-



ing algorithm, focusing on mobile MPCs, will enhance the
localization approach in both performance and robustness.
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M. Käske, G. Schäfer, S. Schieler, C. Schneider, A. Schwind, and
P. Wendland, “Cooperative Passive Coherent Location: A Promising
Service for Future Mobile Radio Networks,” arXiv:1802.04041, March
2018.

[6] T. Jost, W. Wang, U. Fiebig, and F. Perez-Fontan, “Detection and
tracking of mobile propagation channel paths,” IEEE Transactions on
Antennas and Propagation, vol. 60, no. 10, pp. 4875–4883, Oct 2012.

[7] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen,
C. F. Mecklenbrauker, and A. F. Molisch, “A geometry-based stochastic
MIMO model for vehicle-to-vehicle communications,” IEEE Transac-
tions on Wireless Communications, vol. 8, no. 7, pp. 3646–3657, July
2009.

[8] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters.” in Proceedings of the 17th
International Conference on Machine Learning (ICML), 2000, pp. 727–
734.

[9] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, 1993.

[10] C. Mensing and S. Plass, “Positioning algorithms for cellular networks
using TDOA,” in 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, vol. 4, 2006, pp. 513–516.

[11] M. Schmidhammer, F. de Ponte Müller, S. Sand, and I. Rashdan,
“Detection and Localization of Non-Cooperative Road Users based on
Propagation Measurements at C-Band,” in 12th European Conference
on Antennas and Propagation (EuCAP 2018), April 2018, pp. 1–5.

[12] M. Chiani, A. Giorgetti, and E. Paolini, “Sensor radar for object
tracking,” Proceedings of the IEEE, vol. 106, no. 6, pp. 1022–1041,
June 2018.

[13] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U. Fiebig,
“Multipath Assisted Positioning with Simultaneous Localization and
Mapping,” IEEE Transactions on Wireless Communications, vol. 15,
no. 9, pp. 6104–6117, Sep. 2016.


