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Abstract—A stepwise feature labeling method for UWB rang-
ing is presented, which allows better separation of LOS and
NLOS components in the training data. The packet-by-packet
range error evaluation is used as input of the labeling function
instead of the conventionally used double-sided two-way ranging
result which relies on a cycle of three packets. To assess the
packet-wise error, a two-step synchronization scheme is proposed.
First, the clock model between anchor and tag is estimated by a
least-squares approach. Second, the remaining bias is corrected
by determining the time-shift between the channel impulse re-
sponses recorded by both nodes. The evaluation of measurement
data shows a significant improvement in classification between
LOS and NLOS, as well as slightly improved ranging accuracy
when used to train a binary classifier.

Index Terms—UWB ranging, LOS/NLOS detection, double-
sided two-way ranging, labeling.

I. INTRODUCTION

Time of flight (ToF) is a key measurement for precise
localization. In ultra-wideband (UWB) radios, the most promi-
nent principle to obtain the ToF is the double-sided two-way
ranging (DS-TWR) [1]. The scheme requires the exchange
of a cycle of three ranging packets and the calculation using
the corresponding recorded transmit and estimated receive
times. The obtained cycle-wise ToF estimate is thus a weighted
average of the three individual packet ToFs.

The main source of error in indoor localization is imposed
by multipath and non-line-of-sight (NLOS) propagation. A
body of work can be found that recently addressed this
problem in model free approaches [2]–[6]. In common, they
require labeled training data to determine machine learning
parameters in an offline phase to then perform an NLOS
detection or error mitigation strategy in the online phase. The
data comprises the estimated ToF and channel related features
[4], [7]. The labels of the training data are obtained through the
ranging error which is proportional to the difference between
the estimated and the expected ToF. However, in weak NLOS
environments labeling errors are introduced due to application
of DS-TWR.

Weak NLOS [8]–[10] manifests in UWB ranging by some-
times measuring ToF of the direct path (i.e., the true distance)
and sometimes the ToF of a reflection path. This usually
happens at signal levels of the direct path that are close to
the detection threshold of the leading edge (LDE) algorithm,
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Fig. 1: Histogram of ranging error in weak NLOS (see test set
1 in Sec. IV). Ranging error (Top:) when individual packets
are considered, (Bottom:) for cycle-wise DS-TWR ranging.

which is implemented as blackbox algorithm in commercially
available UWB receivers (cf. [11]). If all packets are detected
on the direct path or on the reflection path, either the distance
of the direct path or the distance of the reflected path is
obtained. However, if only one or two packets within the DS-
TWR cycle are misdetected, an averaging effect of direct and
reflection path occurs (see Fig. 1). Such averaging artefacts
occur mainly in weak NLOS and make it difficult to correctly
label LOS measurements when assessing the ranging error.

In this work we propose a labeling scheme for weak NLOS
scenarios. It mitigates the averaging in the training data by
evaluating the ToF of each DS-TWR packet with a two-step
clock synchronization method. The so-obtained labels yield a
better separation of LOS and NLOS classes.

II. RANGE-BASED LABELING

Knowing that the propagation path is obstructed, data points
can either be labeled by external knowledge, i.e. ray tracing
[5], [6], or labeled based on ranging error [6]. In indoor
localization, only the latter is feasible due to the appearance
of weak NLOS in complex environments, where distance
distributions as in Fig. 1 are observed. Such distributions
occur for example if objects like wooden boards, shelfs, office
equipment, humans, etc. attenuate the direct path.
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Fig. 2: DS-TWR message exchange scheme.

A. DS-TWR scheme

The DS-TWR is the most widely used ranging scheme and
was introduced to minimize the effect of clock synchronization
errors in the ranging [1]. In the scheme, a cycle of three
packets a, b, c is exchanged between asynchronous tag and
anchor devices, as depicted in Fig. 2. Tag and anchor, respec-
tively, record the time stamps ti and τi, i ∈ {a, b, c}. While
the transmit time stamps ta, τb, tc are recorded precisely, the
receive time stamps τa, tb, τc are estimated from the LDE
algorithm. The time of flight is estimated [1] by

t̂TOF =
(τc − τb)(tb − ta)− (τb − τa)(tc − tb)

−ta − τa + tc + τc

=
Ra Rt −Da Dt

Ra +Rt +Da +Dt
, (1)

using the interval definitions as in Fig. 2. The distance estimate
is then obtained by d̂ = c t̂TOF , with c being the speed of light.

The misdetection of individual receive time stamps by ∆τa,
∆tb, ∆τc (e.g., caused by weak NLOS), contributes to the
overall ToF estimation error by

∆t̂TOF ≈ ∂t̂TOF

∂τa
∆τa +

∂t̂TOF

∂tb
∆tb +

∂t̂TOF

∂τc
∆τc .

In case of symmetric conditions Rt=Ra=R, Dt=Da=D it
can be found that the weights ∂t̂TOF/∂τa = ∂t̂TOF/∂τc = 0.25
and ∂t̂TOF/∂tb = 0.5, which indicates that a detection error
of packet b has twice the impact on the the overall error
compared to packets a and c. In the asymmetric implemen-
tation as used in this paper (see Sec. IV), the weights are
∂tTOF/∂τa = ∂tTOF/∂τc = 0.2 and ∂tTOF/∂tb = 0.6.

B. Features for NLOS Detection

Using the Qorvo DW1000 UWB transceiver, multiple quan-
tities1 can be recorded besides the receive time-stamp. An
example of measurement values for a single packet reception
is depicted in Fig. 3.

From these measurements, a number of commonly known
features are used. These are: the three power features - received
signal power level PRX, first path power level PFP [11] and

1The register values ACC_MEM, STD_NOISE,FP_INDEX,FP_AMPL1..3,
RX_STAMP, LDE_THRESH, LDE_PPINDEX, PP_AMPL, NTM, RXPACC are
explained in detail in [11].
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Fig. 3: (a) Absolute CIR values from ACC_MEM and related
DW1000 parameters. The time axis corresponds to the mem-
ory index. (b) CIR overlay of 3 DS-TWR packets, aligned to
detected first path. The first path detection was incorrect at
packets {a,b} and correct at c, yielding to averaging artefacts.

accumulator saturation Mc [12]; calculated from the CIR, four
physical features - maximum amplitude hmax, mean excess
delay τMED, delay spread σDS and Kurtosis κ [7, Eqs. (2)-(7)];
two probabilistic features - probability of NLOS pNLOS and
probability of undetected early path pUEP [12]. Together with
the receive timestamp RX_STAMP, ten features are available.

C. Cycle-wise and Step-wise Labeling

Consider a training data set of N DS-TWR cycles, denoted
by i∈{0, N−1}, with the collected feature vectors xj,i ∈R10,
j∈{a, b, c}. In a conventional approach, a label y is computed
cyclewise, i.e.,

yi = Λ
(
c t̂TOF,i − dtrue

)
, (2)

where Λ(·) is a labeling function, c t̂TOF,i the cycle-wise
distance estimate according to (1), and dtrue the ground truth
distance. The so-obtained label yi can be used cyclewise, i.e.,
(xi, yi) with xi =

[
xT

a,i,x
T
b,i,x

T
c,i

]T
being the stacked version

of the individual feature vectors, as depicted in Fig. 4(a).
Alternatively–to reduce training complexity–the obtained yi
can be used to label each step, i.e., (xj,i, yi) as depicted in
Fig. 4(b). While each packet of the DS-TWR is identically la-
beled, the feature dimension is kept low. The biggest drawback
of the conventional labeling is the error from the averaging
artefacts. Therefore, in this work we introduce a method that
enables the estimation of the packet-ToFs t̂TOF,j,i to then label
each packet by

ŷj,i = Λ
(
c t̂TOF,j,i − dtrue

)
. (3)

After labeling, the tuples (xj,i, ŷj,i) are available for further
processing. The concept of packet-wise labeling is sketched
in Fig. 4(c).
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Fig. 4: Labeling options for DS-TWR: (a) conventional cyclic labeling - using a single label for the stacked features; (b)
conventional stepwise labeling - labeling the features of each received packet with a copy of the cyclic label; (c) proposed
stepwise labeling - computing a different label for each received packet.

Here, the labeling function Λ is chosen as a step function
with threshold ζ and ranging error e as

Λ
(
e
)
=

{
1 if e < ζ

0 otherwise .
(4)

III. ADVANCED STEP-WISE LABELING

The proposed packetwise ToF estimation for labeling the
training data applies a clock parameter estimation and a timing
refinement based on the captured CIR.

A. Clock Parameter Estimation

Consider anchor time τ as reference time that maps to the
tag time t = χ(τ) using the clock model

χ(τ) =
a

2
τ2 + v τ + t0 .

The ToFs for the packets of a cycle i can be expressed by
tTOF = χ

(
τa,i

)
− ta,i + wa,i, tTOF = tb,i − χ

(
τb,i

)
+ wb,i and

tTOF = χ
(
τc,i

)
− tc,i+wc,i, where w denotes noise. Rewritten

in matrix form yields



ta,0
...

ta,N−1

tb,0
...

tb,N−1

tc,0
...

tc,N−1


︸ ︷︷ ︸

≜t

=



τa,0
2 τa,0 1 −1

...
...

...
...

τa,N−1
2 τa,N−1

... −1

τb,0
2 τb,0

... 1
...

...
...

...

τb,N−1
2 τb,N−1

... 1

τc,0
2 τc,0

... −1
...

...
...

...
τc,N−1

2 τc,N−1 1 −1


︸ ︷︷ ︸

≜H


a/2
v
t0
tTOF


︸ ︷︷ ︸

≜θ

+w .

The least-squares solution for the unknown parameters θ is

θ̂ = (HTH)−1HTt , (5)

which is the optimal solution for white Gaussian noise w.

B. Estimation Bias

Since the measurement noise w is not zero-mean in ob-
structed environments (cf. Fig. 1), the resulting bias in (5) has
to be analyzed. Substituting the relation t = Hθ+w into (5)
and taking the expectation yields

E
{
θ̂
}
= E

{
(HTH)−1HTt

}
= E

{
(HTH)−1HT(Hθ +w)

}
= θ + (HTH)−1HTE

{
w
}︸ ︷︷ ︸

bias b

.

Denoting the bias on the individual packets by E
{
wj,i

}
= µj ,

j∈{a, b, c}, the relation

b =


0

N η (µc−µa)
3s2+2N η2

µa+µc
4 − µb

2

−µa+µc
4 − µb

2

 ≈


0
0

µa+µc
4 − µb

2

−µa+µc
4 − µb

2

 , (6)

can be found for symmetric message exchange with interval
η = τb,i−τa,i = τc,i−τb,i and with s2≜

∑N−1
i=0

(
τb,i−E{τb,i}

)2
.

The approximation in (6) assumes realistic clock parameters
(in the magnitude of ppm) and practical time intervals (in the
magnitude of seconds). It can be concluded that bias due to
NLOS mainly effects t0, referred to as bt, and tTOF.

C. Clock Refinement

To eliminate the clock offset bias and to improve the
accuracy of the ToF estimation for each packet, the following
refinement based on the recorded CIR is proposed:

1) Estimate clock model (5) and map anchor time to tag
time. Note: A clock bias bt remains at this stage.

2) Shift all CIRs with the estimated TX time as origin.
Note: The remaining bt will appear in opposing direc-
tions on anchor and tag.

3) Average CIR from anchor to tag and from tag to anchor.
4) Calculate average shift between averages CIRs.
5) Refine the clock offset estimate.

These steps are visualized in Fig. 5 and detailed below.
For CIR processing, the ACC_MEM time resolution of 1 ns
is increased by upsampling factor u = 64 to match the
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RX_STAMP resolution of Ts = 15.8 ps. In time basis t, the
upsampled CIR recorded at the receiver h(RX) is shifted to
estimated transmission time h(TX) by

h(TX)[k] = h(RX)[k −∆n+ FP_INDEX · u] ,

where ∆n≜⌊t̂TOF/Ts⌉ and index k w.r.t. estimated transmis-
sion time. Third, all CIRs from anchor to tag, i.e., h(TX)

a,j [k]

and h
(TX)
c,j [k], and tag to anchor h(TX)

b,j [k] are averaged

h̄
(TX)
T→A[k] =

1

2N

N−1∑
j=0

h
(TX)
a,j [k] + h

(TX)
c,j [k] ,

h̄
(TX)
A→T[k] =

1

N

N−1∑
j=0

h
(TX)
b,j [k] .

The relative time shift ∆k (corresponding to 2bt) between
h̄
(TX)
T→A[k] and h̄

(TX)
A→T[k] is found by

∆k = arg max
j

〈
h̄
(TX)
T→A[k], h̄

(TX)
A→T[k − j]

〉
.

Finally, the refined clock offset estimate t̂∗0 is obtained by

t̂∗0 = t̂0 −
∆k

2
.

D. Packet-wise ToF Estimation

With the estimated clock model

χ̂(τ) =
â

2
τ2 + v̂ τ + t̂∗0 ,

it is now possible to determine the ToF for each packet with

t̂TOF,a,i = χ̂
(
τa,i

)
− ta,i , (7)

t̂TOF,b,i = tb,i − χ̂
(
τb,i

)
, (8)

t̂TOF,c,i = χ̂
(
τc,i

)
− tc,i , (9)

and consequently the distance and ranging error. Fig. 6(a) de-
picts a comparison of the stepwise and the cyclic ranging error
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Fig. 6: Ranging error e from cyclic vs. proposed ToF/range
estimation: (a) sequence over time and in histogram; (b) in
2-D feature space.

e. It can be observed that the averaging artefacts disappear
for the proposed step-wise procedure. In the feature space,
as examplary depicted for x =

[
PFP, τMED

]T
in Fig. 6(b), a

better separation w.r.t. the ranging error can be observed as
well. The ToF estimates (7)–(9) can be now used for labeling
the training data through (3).
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Fig. 7: Evaluation on three data sets (top: test set 1, middle: test set 2, bottom: training set) of the proposed labeling scheme: (a)
histograms of proposed packet-wise computation of ranging error vs. conventional cyclic DS-TWR computation; (b) influence
of the labeling function threshold ζ on the proportion of LOS samples; (c) separation of LOS and NLOS classes; (d) RMSE
of DS-TWR results after binary classifier that was trained with labeled training set.

IV. EVALUATION

The proposed stepwise labeling approach is tested on mea-
surement data and compared to the conventional cyclic and
the conventional stepwise approach.

A. Evaluation Data

In total, 400k DS-TWR cycles were collected and structured
in 36 data sets (available at [13]). The data sets differ in weak
NLOS environment (15 in corridor, 12 in lab, 5 outdoors, 4
in anechoic chamber), in ground truth distance (1, 3, 5 and
8 m), and in obstacle on the LOS path (none, non-conductive
wooden wall, conductive flipchart, human). Per data set, 20
relative angular orientations differing by 18° were adjusted
and for each 200 DS-TWR cycles between 3 node pairs
were performed. For each DS-TWR packet, 10 features (see
Sec. II-B) and the CIR were measured.

The evaluation data is partitioned into two disjoint data set
groups for training and testing consisting of ntrain and ntest
data sets, as indicated by the ntrain/ntest tuples in Tab. I. All 24
data sets from the training group are referred to as the training

TABLE I: Composition of training and testing data sets.

#datasets anechoic corridor lab outdoor Σ
ntrain/ntest chamber
LOS 2/0 2/1 2/1 2/0 8/2
human 0/0 3/0 0/1 2/0 5/1
wood 0/0 3/0 2/0 0/0 5/0
flipchart 0/0 2/1 2/0 0/0 4/1
monitor 0/0 0/0 2/1 0/0 2/1
Σ 2/0 10/2 8/3 4/0 24/5

set. From the testing group, the single scenario "lab-human"
is used in test set 1, which shows significantly good results.
Note that the obstacle/environment combination of lab/human
does not exist in the training data. All data sets of the testing
group are referred to as test set 2, in which a combination of
obstacles, environments and distances is included.

B. Ranging Error

In the histograms in Fig. 7(a), the proposed ToF compu-
tation (7) is compared to the conventional cyclic DS-TWR
(1) via the distance error e. For the two test data sets (first
two rows), the proposed scheme is able to separate the error



distribution into two distinct groups. These groups can be
interpreted as LOS and NLOS. For the training set (third
row), the histogram does not show a visible improvement in
separation. This is explained by multiple overlapping NLOS
groups that appear in the 24 individual data sets.

C. Label Quality

We further investigate the proposed scheme when used for
LOS/NLOS labeling according to (4). Fig. 7(b) depicts the
relation between threshold parameter ζ of (4) and the relative
amount of LOS labeled data points. The highlighted plateaus
in both test sets (top 2 rows) for the proposed stepwise scheme
confirm the separation seen in the histograms, i.e., although
the threshold is increased, no new samples are added to the
LOS set. In the training set (row 3), as already suggested
by the histogram of ranging error, neither a clear separation
nor an improvement of the proposed scheme is visible. For
further investigation on class separation in labeling, the Fisher
Linear Discriminant [14] is compared in Fig. 7(c). In all three
data sets, a better separation–indicated by higher values of the
discriminant–can be observed for a reasonable percentage of
labeled LOS values. Note that the high discriminant value of
the conventional scheme in test set 1 (red line in top row) is at
about 6% labeled LOS, i.e., a possibly high number of LOS
measurements is neglected. Overall, Fig. 7(b) and (c) indicate
that the proposed scheme improves class separation on all data
sets when used for labeling.

D. Detection Performance

Finally, we evaluate how the proposed labeling approach
improves the performance of LOS/NLOS detection schemes.
Since no ground-truth data on LOS/NLOS paths is available,
the detection performance is evaluated through the root mean
square error (RMSE) of DS-TWR results from estimated
LOS packets. Thereby, two detection algorithms, k-nearest
neighbors (KNN) and support vector machine (SVM), re-
spectively, are trained either with the proposed stepwise (p),
the conventional cyclic (cc) or the conventional stepwise (sc)
labeled training data set and tested on test set 1 and 2.
Fig. 7(d) depicts RMSE versus percentage of estimated LOS
packets, and compares to the RMSE of all measurements
(corresponds to worst case) and, respectively, to the RMSE
of LOS measurements if labeled with the best separation
threshold (corresponds to best case). Remarkably, on test set
1 (top row) the detectors with the proposed labeled training
data show an improved RMSE performance for both detector
types over almost the entire range of % estimated LOS, i.e., the
detected LOS samples have lower ranging errors. Cyclic con-
ventional is the worst choice for labeling (up to 20 cm worse),
followed by stepwise conventional (up to 10 cm worse). On
test set 2 (second row), a clear advantage of the proposed
labeling scheme can not be confirmed. For KNN, learning
with the proposed labeling scheme clearly outperforms (by
up to 15cm) the conventional cyclic method. However, it is as
good as the conventional stepwise labeling. For SVM, all three
labeling methods perform almost equally for a wide range of %
estimated LOS. The results on these two test sets suggest that

the stepwise labeling is always preferable for KNN, which is
explained by a reduced feature dimension. For SVM, a similar
observation holds, while the difference is not so clear. The
proposed stepwise labeling method either performs better or
almost equal for detection. Further investigations, not depicted
here, confirm these results.

V. CONCLUSION

We have shown the problem of averaging artefacts for
double-sided two-way ranging in weak NLOS environments
and proposed a method to mitigate this effect. The proposed
method enables separate labeling of each packet sent in
the double-sided two-way ranging message exchange. The
labeling method is applied to the training data and utilizes
time information and channel impulse responses to accurately
estimate the time-of-flight of individual packets. It was shown
that the proposed labeling increases the separation between
LOS and NLOS classes in the feature space. In one of the
two presented test cases, a detector trained with the proposed
labeled data showed significantly better detection results.
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