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Abstract—In the Global Navigation Satellite System (GNSS)
context, the growing number of available satellites has lead to
many challenges when it comes to choosing the most accurate
pseudorange contributions, given the strong impact of biased
measurements on positioning accuracy, particularly in single-
epoch scenarios. This work leverages the potential of machine
learning in predicting link-wise measurement quality factors and,
hence, optimize measurement weighting. For this purpose, we use
a customized matrix composed of heterogeneous features such as
conditional pseudorange residuals and per-link satellite metrics
(e.g., carrier-to-noise power density ratio and its empirical
statistics, satellite elevation, carrier phase lock time). This matrix
is then fed as an input to a recurrent neural network (RNN) (i.e.,
a long-short term memory (LSTM) network). Our experimental
results on real data, obtained from extensive field measurements,
demonstrate the high potential of our proposed solution being
able to outperform traditional measurements weighting and
selection strategies from state-of-the-art.

Index Terms—Satellite Selection, Single-epoch Positioning,
Machine (Deep) Learning, Long-Short Term Memory Neural
Network, Satellite Measurement Features

I. INTRODUCTION

Accurate outdoor positioning using Global Navigation
Satellite System (GNSS) is a key enabler for many important
applications, such as autonomous vehicles and unmanned
aerial vehicles, tracking of blue force and first responders,
seamless end-to-end logistics and supply chains optimization,
large-scale crowd sensing, etc. To ensure reliable positioning,
several satellite vehicle (SV) selection, fault detection and
exclusion (FDE), and weighting techniques, must be per-
formed during the tracking phase of the navigation processor.
However, in a single-epoch context, the problem becomes even
more challenging, taking into consideration that there is no
access to prior estimates.

Despite these challenges, single-epoch positioning remains
essential in several operating contexts. First, it can serve as an
initial position estimate to initialize the navigation processor
[1]. Second, the loosely-coupled data fusion of GNSS with an
Inertial Navigation System (INS) requires the GNSS outputs
(i.e., position and velocity) to be independent. This is to pre-
vent any time-correlated measurements from occurring at the
input of the fusion engine. Therefore, single-epoch solutions
are necessary. Finally, recently developed Internet of Things
(IoT) chips, such as Semtech’s LoRa chip LR1110 [2], utilize

low-power receivers to capture a single snapshot of GNSS
measurements. These measurements are then transmitted via
the IoT network to undergo remote cloud processing. Despite
the imposed single-epoch framework, the processing power is
not actually limited.

In this context, the signals received from satellites in harsh
environments such as urban canyons can be significantly
impacted by Non-Line of Sight (NLOS) and multi-path (MP)
propagation, resulting in strongly biased pseudorange mea-
surements. It is hence crucial to identify the most reliable
and informative measurements while disregarding the most
harmful ones. This selection process is especially challenging
as modern GNSS receivers typically receive tens of measure-
ments from different constellations at each time epoch. Basic
selection approaches primarily rely on single-link satellite
features, such as the signal carrier-to-noise power density ratio
(C/N0) or the elevation angle (θ), to exclude or mitigate
the impact of satellites that are likely to contribute to large
positioning errors [3], [4].

Several techniques have been proposed to select the re-
maining satellites that meet basic single-link quality criteria,
including subset-testing [5], RANdom SAmple Consensus
(RANSAC) [6], iterative reweighting [7], etc. These methods
offer various trade-off levels between computational com-
plexity and performance. However, because of the massive
combinatorial complexity of testing all possible subsets of
satellites, exhaustive search is not feasible and the selection
problem remains an open issue to the best of our knowledge.
Conventional selection approaches [8], rely on the spatial
distribution of intermediate positioning results conditioned
on specific satellite subsets to determine the most harmful
contributions. These approaches only exclude satellites with
strongly biased pseudoranges instead of mitigating for these
biases. This may limit the best possible positioning accuracy
accordingly.

In this paper, we present a new pre-processing approach
specifically designed for single-epoch stand-alone position-
ing, which addresses the limitations of conventional satellites
selection techniques. Our approach casts the initial satellite
selection problem into a weighting problem. A first innovative
aspect lies in exploiting machine learning (ML) into the
domain of pseudorange residuals, resulting from offline condi-
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tional positioning results, jointly with that of instantaneous SV
measurements, such as C/N0 and angle elevation, to optimize
satellite weights.

To fully exploit the potential of deep learning tools in
uncovering the hidden correlations between pseudorange mea-
surements and the position solution, as well as possible joint
effects of discarding multiple measurements at a time, we
exploit a long-short term memory neural network (LSTM NN)
from the family of recurrent neural networks (RNNs) that
is fed with a customized feature matrix, what represents
another originality of our contribution. The LSTM NN predicts
quality factors that estimate the link-wise standard deviations
of pseudorange errors. These predictions are then used to
compute nearly-optimal satellite weights within a conventional
weighted least squares (WLS) positioning solver.

The training and testing of our neural network (NN) were
performed using real data collected from extensive field tests
comprising more than 290 experiments (i.e., driving sessions)
and 440, 000 epochs. For this purpose, we used a receiver
capable of operating over mulitple constellations in both
single-band and dual-band modes. The ground-truth reference
positioning data was collected from a high-end GNSS-aided
INS system providing cm-level accuracy.

In summary, the main contributions of this paper are: First,
we propose a novel deep learning-based solution to the satel-
lite selection problem. Our approach relies on a LSTM NN
fed with a customized matrix containing joint features (i.e.,
conditional pseudorange residuals) and per-link features (e.g.,
carrier-to-noise power density ratio and its statistics, elevation
angle, carrier phase lock time). Second, our approach is shown
to enhance the computation of measurement weights compared
to conventional parametric methods. This has been verified
through real-field data obtained by measurement campaigns
and a dedicated test platform in various driving scenarios and
environments.

II. PROBLEM FORMULATION

A. Single Epoch Positioning

To simplify the presentation and notations, with no loss
of generality regarding the proposed approach, we consider
here a set of N single band, single constellation, pseudorange
measurements {ρi}i=1...N . While accounting for experimental
results in Section IV, we will consider a multi-band and multi-
constellation scenario. The necessary corrections, computed
from ephemeris data (such as SV clock bias, ionospheric
and tropospheric delays, Sagnac correction, etc.), have already
been applied to these pseudorange measurements. The mea-
surement from the i-th SV, in the absence of MP or any strong
bias, can be modeled as follows:

ρi =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 + c δ + ηi, (1)

where ρi is the pseudorange between the receiver and the
i-th SV, with (xi, yi, zi) and (x, y, z) the coordinates of the
i-th satellite and the receiver, respectively. The parameter c
is the speed of light, and δ is the clock bias between the
receiver and the considered constellation. ηi is the observation

noise, which represents both the receiver noise and errors
resulting from troposphere and ionosphere extra delays, etc.
Although ionosphere and troposphere residual errors (i.e., after
correction from navigation message) are highly correlated
over time, they are usually considered as independent and
zero mean in single-epoch processing. Hence, we simply
assume that the observation noise follows a centered Gaussian
distribution ηi ∼ N (0, (σ2)i).

Our aim is to estimate the vector X = [x, y, z, δ]⊤ from the
set of measurements {ρi}i=1...N . A Solution that is efficient
and widely used is then provided by the maximum-likelihood
estimator (MLE) [9], which simplifies to a WLS estimator for
our Gaussian noise model:

X̂ = argmin
X

N∑
i=1

ωi(ρi − hi(X)
)2
, (2)

where the observation function for the i-th satellite is defined
as

hi(X) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 + c δ, (3)

and the optimal weights are equal to

ωi =
1

(σ2)i
. (4)

The solution can be computed using an optimization algorithm
such as Levenberg-Marquardt or Gauss-Newton [10].

B. GNSS Satellite Selection and Weighting Problems

Generally, an initial rough SV selection based on satellite
elevation or C/N0 thresholds is performed to exclude pre-
sumably strongly biased measurements. Then, the standard
deviation of the remaining measurements is estimated using
an empirical function, for instance as follows [11]:

(σ2)i =
1

sin2 (θi)

(
σ2
ρZ +

σ2
ρc

(C/N0)i
+ σ2

ρa(a
2)i

)
, (5)

This function mainly depends on satellite elevation θ, C/N0,
acceleration a, and other empirically calibrated coefficients
(σ2

ρZ , σ
2
ρc, σ

2
ρa) that are hard to be fine-tuned.

However, some measurements could be strongly biased by
MP for instance, and violate the expected Gaussian model,
resulting in a significant degradation of the solution accuracy.
It is thus of primary importance to exclude these measurements
from the solution, either by discarding them or by assigning
them a zero weight, which is also called de-weighting. Such
measurements can be efficiently detected at the navigation
processor stage based on innovation monitoring tests for in-
stance [12], but this requires the tracking filter to have already
converged and the predicted state (i.e., position, receiver clock
offset, etc.) to be accurate enough.

For single epoch processing, no predicted solution is avail-
able and SV selection relies on measurements only with very
limited prior knowledge. This implies that the detection of k
faults among N measurements could potentially result in a
huge number of subsets, CN

k , to test in case of an exhaustive
search, which is intractable in real-time and even for post-
processing. As an example, assuming at most 10 faults among



40 measurements would result in more than 847×106 subsets
to test, which is computationally prohibitive.

C. Existing Works

In the field of GNSS, improving the integrity of navigation
solutions requires the identification and rejection of corrupt
signals. FDE techniques, such as classical FDE [13], [14],
advanced receiver autonomous integrity monitoring (ARAIM)
[15], [16], brute force subset testing [17], and range consensus
(RANCO) [8], have been proposed in the literature. Recently,
a new FDE algorithm [18] has been put forward that utilizes
both a standalone FDE block based on a residual test using
WLS and an FDE-based Extended Kalman Filter (EKF). The
algorithm alternates between the two branches depending on
a covariance matrix threshold. When the covariance matrix
falls below a pre-defined threshold, the EKF utilizing FDE
is employed; otherwise, the FDE is used on its own. This
algorithm has shown significant improvements in accuracy
compared to conventional state-of-the-art FDE algorithms, and
is hence used as a reference for benchmark purposes in this
paper. However, since the focus is on single-epoch localization
applications, only the standalone FDE block is utilized in this
study.

III. PROPOSED SYSTEM ARCHITECTURE

As previously mentioned, we focus on single-epoch stan-
dalone positioning based on pseudoranges without differential
corrections, where measurements have just been pre-processed
(see Section II-A). Our main objective is to exploit the
complex inter-dependencies and joint effects across multiple
links using supervised deep learning. This will allow us to
efficiently weight the contributions from all satellites.

For this, we first need to build a comprehensive set of
information inputs to our NN. One novelty of our proposal
is to concatenate both per-link and joint features, which will
be detailed below, and feed them as one single customized
matrix into the RNN (i.e., LSTM NN). The network is then
trained to predict the weights ω̂i related to the underlying
distribution of pseudorange errors according to (4). We expect
our network to predict nearly null weights ω̂i ≈ 0 for strongly
biased satellites to be excluded.

To sum up, the original difficult selection problem is cast
into a soft weighting problem. Fig. 1 shows the complete
architecture of our proposed solution.
A. Per-link Features

Several per-link measurement features can be informative,
and hence beneficial to be provided as an input to the NN, such
as: the SV elevation angle θ, the carrier phase lock time, C/N0

and its empirical statistics (i.e., empirical variance σ2
C/N0

and
mean C/N0 computed for the sliding window).

The intuition behind the SV elevation angle as a feature is
based on the fact that signals from SV with low elevation
angles have a longer traveling distance in the ionospheric
and tropospheric layers and a greater probability of NLOS
conditions. Also, the carrier phase lock time is an important
indicator for newly acquired SVs.

Regarding C/N0, low values increase the tracking noise of
the ranging processor and, consequently, increase the pseudor-
ange measurement noise. Beyond, the statistics of C/N0 (i.e.,
its variance and mean) are also expected to convey informative
indications about the operating conditions. For instance, it
has been observed that the short-term empirical variance,
computed over a short period of time, could be a fairly good
indicator of MP [19]. Even though we deal with single-epoch
processing in our case, we can still practically approximate
the actual variance of C/N0 over a few past seconds, as it
will only affect measurement weights and introduce minimal
correlation between them.

For this purpose, we consider a sliding window to calculate
both the empirical variance σ2

C/N0
and mean (C/N0)i of

C/N0. This time window varies in size and contains the C/N0

values from the previous epochs. As illustrated in Fig. 2, the
size of the window is determined by the number of epochs
in which a particular satellite was received, and it can reach
a maximum of 10 epochs (equivalent to 2 seconds). If the
window contains only one entry, the variance is set to an
arbitrarily large value. At last, the size of the sliding window
is also fed as a feature to the NN.

As a result, the obtained per-link features are concatenated
into a sub-matrix containing 6 feature column vectors of
dimension N (see Fig. 1).

B. Joint Features

Joint features accounting for the simultaneous impact of
multiple measurements over distinct links (i.e., in contrast to
per-link features) can also be extracted from the comparison
of the positioning solutions from different tested subsets. To
overcome the challenge of testing all the possible subset
combinations, which is computationally prohibited, our ap-
proach leverages the ability of ML in extracting hidden inter-
dependencies from only N such subsets.

At each navigation epoch, we assume that multiple (i.e., N )
satellite signals are received and a new matrix of positioning
residuals M is constructed, as follows. We generate N subsets
Sn of N −1 satellites, where we exclude one distinct satellite
(i.e, nth satellite) at a time.

Sn = {ρi}, i = 1 . . . N, i ̸= n (6)

For each subset Sn, we calculate the corresponding solution
Xn using (2) with equal weights. Then, for each of the
N resulting positions {X1, ...,XN} we calculate the N − 1
pseudorange residuals

δρiXn
= ρi − hi(Xn), i ̸= n (7)

The coefficient [M]n,i (i.e. row n, column i) of the residual
matrix M is then simply given by the corresponding residual
for non-diagonal coefficients, or by an arbitrary large value γ
for the diagonal terms, indicating that the satellite has been
deliberately excluded.

[M]n,i =

{
δρiXn

, i ̸= n

γ, i = n
(8)



Fig. 1. Complete architecture of our proposed approach.

Fig. 2. Variable size sliding window for C/N0 variance and mean calculation.

Each row n of the matrix will thus provide residuals associated
with the exclusion of the n-th measurement. Although it
assumes a single fault per subset (i.e., row), our intuition is that
such a matrix is able to reveal the complex joint contributions
of each satellite onto the positioning solution, while being fed
as a single input to the NN.

C. Long-Short Term Memory Neural Network

The overall input matrix of features being fed to the NN
can be seen as a sequence of N pseudo-observations. At each
observation, a single pseudorange measurement is excluded
from computing the solution. By analyzing this sequence, the
LSTM NN can exploit the correlations between the excluded
measurement and the solution and pinpoint which measure-
ment exclusions have the best impact on the quality of the
positioning solution. As a result, the NN will be capable of
predicting weights that exclude multiple biased measurements
by analyzing the sequence of pseudo-observations, set as joint
features (see Section III-B). Besides, the additional per-link
features for the excluded measurements were concatenated for
each pseudo-observation to provide more information about
the excluded satellites (see Section III-A).

In this kind of problems, the LSTM NN architecture, which
is a type of RNN [20], has the advantage of keeping memory
over multiple (possibly distant) pseudo time steps. Hence, it
is also suited to exploit the correlations across the matrix
rows in our case, even if we explicitly deal with a single-
epoch problem. Similar applications of the LSTM NN to other
time-invariant problems have already been considered. For
instance, in [21], LSTM NN was used to process data with
long-range interdependence (i.e., using geometric properties
of the trajectory for unconstrained handwriting recognition).

Note that several other (more complex) NN architectures
were evaluated. For instance, we considered a more complex
architecture composed of two different concatenated NNs. The
first NN processes only the residual matrix as input. Its output
is concatenated with the additional per-link features and fed as
inputs to the second fully-connected NN (FCNN). However,
such architectures did not provide any significant improvement
over the LSTM NN that only processes the residual matrix.
For the sake of conciseness, such alternative architectures are
not further discussed in this paper.

IV. NUMERICAL RESULTS

To assess both the feasibility of our approach and the
impact of using a customized residual matrix to capture inter-
dependencies between the measurements and the computed
solution, we conducted two tests. First, we evaluated our
approach using only the residual matrix as input to the NN.
Second, we evaluated our approach using the overall feature
matrix (containing the residuals coupled with the per-link
features) as an input. The results obtained were compared
with the state-of-the-art (SOTA) approach [18] described in
Section II-C.

A. Data Collection and Scenarios

We conducted our tests on real-world data collected from
measurement campaigns under various operational conditions.
These conditions included open skies, dense urban areas, and
a range of mobility scenarios. The data was collected using
Vehloc, a multi-sensor platform developed by CEA-Leti. This
board can be equipped with one out of two different receiver
chips: either a NEO-M8P or a ZED-F9P, both from Ublox. The
ZED-F9P dualband RTK GNSS chip can receive up to N = 60
satellite signals from various GNSS constellations (including
GALILEO, GPS, GLONASS, etc.) across multiple frequencies
(i.e., L1, L2, E1, and E5 bands). The NEO-M8P chip can
receive single-band L1 signals from multi-constellation (i.e.,
only GPS and GLONASS were used).

The raw measurements were collected at a rate of 5 Hz,
as well as the broadcasted ephemeris. These measurements
included the SV ID, constellation ID, frequency ID, pseudo-
range, pseudorange rate, carrier phase, C/N0, carrier phase
lock time, etc. The reference position was obtained from
a high-end, GNSS-aided INS, Ekinox platform from SBG,
which was post-processed using Qinertia software (from SBG)
to provide centimeter-level accuracy, even in difficult GNSS
conditions. The complete experimental setup is depicted in



Fig. 3. Data collection setup.

Fig. 3, which shows the Ublox antenna of the Vehloc platform
and the SBG reference system mounted on the roof of a
vehicle. In total, 291 experiments were conducted during the
data collection campaigns phase, which yielded a diverse,
representative, and comprehensive dataset for evaluation, en-
compassing up to 440, 000 epochs.

B. Evaluation Results

The architecture of our NN including the number of layers
and the number of neurons per layer was optimized empiri-
cally. So as to prevent overfitting effects, an early stopping
callback was used during the training process. Data was
randomly split into three disjoint subsets: 60% of the data for
training, 20% of the data for validation, and 20% for testing
and evaluating the performance of our approach (i.e., unseen
during training phase). The best architecture among the tested
ones was then found to consist of 2 hidden layers composed
of 893 neurons each (see Fig. 1).

In supervised learning, the data must be labeled. However,
the optimal labels are not well-defined in our case. From the
Bayesian estimation perspective, this would require having
access to the true distribution (i.e., the standard deviation in
particular, assuming a Gaussian distribution of the measure-
ments errors), while only a single sample of this distribution
is available. Indeed, having more precise information about
the underlying distribution would require collecting multiple
measurements from the same receiver’s position with also the
same SV positions, which is not feasible. When dealing with
a single sample/observation, the most accurate estimate of the
standard deviation is the absolute value of the error calculated
specifically for that measurement. This approach is further
reinforced by empirical evidence, by utilizing the weights as:

ωi = 1/(ρi − h(Xtrue))
2, (9)

where the Xtrue stands for the ground-truth position collected
from the reference system. Utilizing this weighting method has
provided very good results as shown in Fig. 7 and 8, thus these
weights were used as the data labels.

As a first example, we have analyzed a vehicular setup of
40 minutes, comprising urban, sub-urban and back-country
environments using the ZED-F9P receiver chip. For this test,
the horizontal error for the SOTA single-epoch algorithm is
only 2.18 m, which can be qualified as good when compared
to the accuracy of the 2.03 m solution provided by the
receiver benefiting from a filtered mode. Our approach offers a

Fig. 4. Conceptual illustration of satellite measurements weighting with the
proposed approach.

Fig. 5. Conceptual illustration of satellite measurements weighting with the
SOTA approach [18], for the same epoch as that of Fig. 4.

significant performance improvement (of 35%) with only 1.41
m of error.

To provide a better understanding of the possible benefits
of our approach, we focus next on a specific epoch in a
sub-urban environment, where the difference with SOTA is
quite significant. For qualitative benchmark purposes, Fig. 4
and 5 illustrate the satellite links in this setup and how the
satellites were treated by the two approaches, where the color
bar indicates the degree (between accepted or rejected) of the
weights used for positioning. As it can be seen, SVs GAL#36,
GAL#9, GLO#24, GLO#1, etc. are clearly in NLOS condi-
tions. These SVs were not rejected by the SOTA approach
(see Fig. 5), while they were either rejected or weighted by
our approach (see Fig. 4). Furthermore, other SVs in LOS
conditions such as GPS#9, GPS#7, GLO#8, GAL#12, etc.
were completely rejected by the SOTA approach, while being
efficiently weighted by our approach.

Fig. 6 represents another comparison of our approach with
SOTA, focusing on a specific portion of one navigation
session in a GNSS-challenging environment (urban canyon).
The deviation of the localized position with our approach
from the reference one is much less than that of the SOTA
approach. In this case, several strongly biased SVs in NLOS
conditions, such as GPS#12, GPS#32, and GLO#9, were used
by the SOTA approach to calculate a position estimation,



Fig. 6. Example of positioning traces obtained in a field navigation session
(urban canyon) with the proposed approach (green dots), the one in [18] from
recent state-of-the-art (red dots), and the ground-truth reference system (blue
solid line).

whereas in our approach the same SVs have been excluded
from the solution by assigning them very low weights (i.e.,
ωGPS#12 = 0.0016, ωGPS#32 = 0.0006, ωGLO#9 = 0.002),
hence resulting in a much better accuracy of 2.06 m typically.
In other words, our approach seems more robust and suited to
highly challenging environments, by mitigating the influence
of strongly biased measurements through adequate weighting.

Finally, Fig. 7 and 8 show the empirical cumulative density
function (CDF) of horizontal and vertical positioning errors
obtained with four different weighting strategies over all
navigation sessions from ZED-F9P receiver (386,000 epochs):
the first one, referred to as “Ground-truth Weights”, utilizes
weights as in (9) with the ground-truth position, before ap-
plying WLS positioning. The second method, named “Feature
Matrix”, exploits the overall feature matrix comprising the two
sub-matrices (i.e., the “Residual Matrix” concatenated with the
additional per-link features) as an input to the NN to predict
link-wise quality factors which are then used to compute
weights as in (4) for WLS positioning. The third method,
named “Residual Matrix”, uses only the residual matrix (joint
features) as an input to the proposed algorithm. Finally, in the
fourth “SOTA” method, the state-of-the-art solution from [18]
(See Section II-C) is used for positioning.

We thus observe a significant improvement in terms of both
horizontal and vertical errors of the deep learning approaches
compared to the state-of-the-art solution. On the one hand,
“Feature Matrix” exhibits a performance gain with respect
to the SOTA approach of 1 m (resp. 1.47 m) in terms of
horizontal error at 68% (resp. 95%) of the CDF. As for the
vertical error, we also observe an improvement of 1.2 m (resp.
1.75 m) at 68% (resp. 95%) of the CDF. On the other hand,
the “Residual Matrix” approach shows a performance gain
compared to the SOTA approach of 0.61 m (resp. 1.38 m)
in terms of horizontal error at 68% (resp. 95%) of the CDF.
As for the vertical error, we also observe an improvement of
0.66 m (resp. 1.43 m) at 68% (resp. 95%) of the CDF.

It is worth highlighting that the additional per-link features
concatenated with the residuals have a significant and positive

Fig. 7. Empirical CDF of horizontal error for various measurements weight-
ing/selection strategies (incl. [18]) on real field data (over all navigation
sessions from ZED-F9P receiver).

Fig. 8. Empirical CDF of horizontal error for various measurements weight-
ing/selection strategies (incl. [18]) on real field data (over all navigation
sessions from ZED-F9P receiver).

impact on the positioning accuracy. The superiority of the
proposed approaches on the tested data illustrates their relative
robustness in various operating conditions.

V. CONCLUSIONS

In this paper, we introduced a novel approach for SV
measurement weighting in single-epoch GNSS positioning by
exploiting a combination of joint features (i.e., conditional
pseudorange residuals) and per-link features (i.e., C/N0 and
its empirical statistics, SV elevation angle, carrier phase lock
time). Our approach relies on a LSTM NN in predicting
several quality factors to weight the contributions of different
measurement into the calculation of a position. Our results
on real data obtained from field experiments demonstrated the
robust performance of the proposed solution in challenging
environments, while outperforming a recent SOTA approach.
This solution is particularly promising into IoT applications
(remote processing), where accurate single-epoch positioning
is essential, whether in real-time or offline.
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